第一篇:中考数学整式
梦幻网络(http://www.xiexiebang.com)数百万免费课件下载,试题下载,教案下载,论文范文,计划总结
第2讲 整式
◆考点链接
1.会用代数式表示一些问题的数量关系;•能解释一些简单代数式的实际背景或几何意义.
2.了解整数指数幂的意义和基本性质,会用科学记数法表示数.
3.了解整式的概念,掌握其运算法则,并能熟练进行整式的运算.
4.会用提公因式法、公式法进行因式分解. ◆典例精析
【例题1】填空:
(1)单项式-2xyz523的系数是______,次数是_______;
n-
1(2)关于x的多项式5x-x+m-1是二次二项式,则n=______,m=_____;
2(3)当m=______时,代数式x-2(m-3)x+16是完全平方式.
答案:(1)-25,6
(2)n=3,m=1
(3)m=7或-1
【例题2】计算:
(1)(-2a2b)3÷(2a3)×(-b2)÷(-4ab2)2;
(2)(a-1)(a+2)-(-1-2a)(2a-1)-(2a-3)2.
解题思路:(1)综合运用积的乘方,幂的乘方,单项式乘法,•单项式除法等运算法则进行计算.
(2)运用多项式乘法法则、乘法公式进行计算.
答案:(1)14ab(2)a2+13a-12
评析:(1)题是单项式的乘方、乘除混合运算,要注意先乘方再乘除的运算顺序,要注意符号的处理;
(2)题要掌握和区分平方差以及两数差的完全平方公式,•还要注意去括号时符号的处理.
梦幻网络(http://www.xiexiebang.com)——最大的免费教育资源网站
第二篇:中考数学 整式的加减复习教案 新人教版[最终版]
整式的加减(1)
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y+(x+2xy-3y)-(2x-xy-2y)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1(P166例1)
求单项式5xy,-2 xy,2xy,-4xy的和。
分析:式子5xy+(-2 xy)+2xy+(-4xy)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)2
222222
22222
2例2(P166例2)
求3x-6x+5与4x-7x-6的和。
解:(3x-6x+5)+(4x-7x-6)(每个多项式要加括号)=3x-6x+5+4x-7x-6(去括号)=7x+x-1(合并同类项)例3。(P166例3)
求2x+xy+3y与x-xy+2y的差。解:(2x+xy+3y)-(x-xy+2y)= 2x+xy+3y-x+xy-2y =x+2xy+y22 2222222
2222222222223、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a-2b-3c, B=-3a+b+2c, 求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、P169:A:1(3、4),3,5,6,7,8。B:1,2。222
2基础训练同步练习
第三篇:初一数学 整式的加减
专题07 整式的加减
阅读与思考
整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:
1.透彻理解“三式”和“四数”的概念
“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数.
2.熟练掌握“两种排列”和“三个法则”
“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.
物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项.
例题与求解
[例1] 如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______.
(江苏省竞赛试题)
解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手.
[例2] 已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是()
A.a+b
B.a-b
C.a+b2
D.a2+b
(“希望杯”初赛试题)
解题思路:采用赋值法,令a=,b=-,计算四个式子的值,从中找出值最大的式子.
[例3] 已知x=2,y=-4时,代数式ax2+by+5=1997,求当x=-4,y=-时,代数式3ax-24by3+4986的值.
(北京市“迎春杯”竞赛试题)
解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.
[例4] 已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值.
(北京市“迎春杯”竞赛试题)
解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式.
[例5] 一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?
(“希望杯”初赛试题)
解题思路:前7站上车总人数等于第2站到第8站下车总人数.本例目的是求第8站下车人数比第7站上车人数多出的数量.
[例6] 能否找到7个整数,使得这7个整数沿圆周排列成一圈后,任3个相邻数的和等于29?如果,请举出一例;如果不能,请简述理由.
(“华罗庚金杯”少年邀请赛试题)
解题思路:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排成一圈后,满足题意,由此展开推理,若推出矛盾,则假设不成立.
能力训练
A级
1.若-4xm-2y3与x3y7-2n是同类项,m2+2n=______.
(“希望杯”初赛试题)
2.当x=1,y=-1时,ax+by-3=0,那么当x=-1,y=1时,ax+by-3=______.
(北京市“迎春杯”竞赛试题)
3.若a+b<0,则化简|a+b-1|-|3-a-b|的结果是______.
4.已知x2+x-1=0,那么整式x3+2x2+2002的值为______.
5.设则3x-2y+z=______.
(2013年全国初中数学联赛试题)
6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则C=().
A.5a2+3b2+2c2
B.5a2-3b2+4c2
A.3a2-3b2-2c2
A.3a2+b2+4c2
7.同时都有字母a,b,c,且系数为1的7次单项式共有().
A.4个
B.12个
C.15个
D.25个
(北京市竞赛题)
8.有理数a,b,c在数轴上的位置如图所示:
0
b
a
c
第8题图
则代数式|a|-|a+b|+|c-a|+|b-c|化简后的结果是为().
A.-a
B.2a-2b
C.2c-a
D.a
9.已知a+b=0,a≠b,则化简(a+1)+(b+1)得().
A.2a
B.2b
C.+2
D.-2
10.已知单项式0.25xbyc与单项式-0.125xm-1y2n-1的和为0.625axnym,求abc的值.
11.若a,b均为整数,且a+9b能被5整除,求证:8a+7b也能被5整除.
(天津市竞赛试题)
B级
1.设a<-b<c<0,那么|a+b|+|b+c|-|c-a|+|a||+b|+|c|=______.
(“祖冲之杯”邀请赛试题)
2.当x的取值范围为______时,式子-4x+|4-7x|-|1-3x|+4的值恒为一个常数,这个值是______.
(北京市“迎春杯”竞赛试题)
3.当x=2时,代数式ax3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx3-5的值等于______.
4.已知(x+5)2+|y2+y-6|=0,则y2-xy+x2+x3=______.
(“希望杯”邀请赛试题)
5.已知a-b=2,b-c=-3,c-d=5,则(a-c)(b-d)÷(a-d)=______.
6.如果对于某一特定范围内x的任意允许值,P=|1-2x|+|1-3x|+…+|1-9x|+|1-10x|的值恒为一个常数,则此值为().
A.2
B.3
C.4
D.5
(安徽省竞赛试题)
7.如果(2x-1)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a0+a1+a2+a3+a4+a5+a6等于______;a0+a2+a4+a6等于______.
A.1,365
B.0,729
C.1,729
D.1,0
(“希望杯”邀请赛试题)
8.设b,c是整数,当x依次取1,3,6,11时,某学生算得多项式x2+bx+c的值分别为3,5,21,93.经验证,只有一个结果是错误的,这个错误的结果是().
A.当x=1时,x2+bx+c=3
B.当x=3时,x2+bx+c=5
C.当x=6时,x2+bx+c=21
D.当x=11时,x2+bx+c=93
(武汉市选拔赛试题)
9.已知y=ax7+bx5+cx3+dx+e,其中a,b,c,d,e为常数,当x=2时,y=23;当x=-2时,y=-35,那么e的值是().
A.-6
B.6
C.-12
D.12
(吉林省竞赛试题)
10.已知a,b,c三个数中有两个奇数,一个偶数,n是整数,如果s=(a+n+1)·(b+2n+2)(c+3n+3),那么().
A.s是偶数
B.s是奇数
C.s的奇偶性与n的奇偶性相同
D.s的奇偶性不能确定
(江苏省竞赛试题)
11.(1)如图1,用字母a表示阴暗部分的面积;
(2)如图2,用字母a,b表示阴暗部分的面积;
(3)如图3,把一个长方体礼品盒用丝带打上包装(图中虚线为丝带),打蝴蝶结的部分需丝带(x-y)cm,打好整个包装需用丝带总长度为多少?
图1
a
a
a
b
a
b
图2
a
x
y
z
图3
12.将一个三位数中间数码去掉,成为一个两位数,且满足=9+,如155=9×15+4×5.试求出所有这样的三位数.
第四篇:七年级数学整式教案2
2.1 整式
一、素质教育目标
(一)知识教学点
1.使学生理解多项式的概念.
2.使学生能准确地确定一个多项式的次数和项数.
3.能正确区分单项式和多项式.
(二)能力训练点
通过区别单项式与多项式,培养学生发散思维.
(三)德育渗透点
在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.
(四)美育渗透点
单项式和多项式在前二章,特别是第一章已有新接触,本节课来研究多项式的概念可谓水到渠成,体现了数学的结构美
二、学法引导
1.教学方法:采用对比法,以训练为主,注重尝试指导.
2.学生学法:观察分析→多项式有关概念→练习巩固
三、重点、难点、疑点及解决办法
1.重点:多项式的概念及单项式的联系与区别.
2.难点:多项式的次数的确定,以及多项式与单项式的联系与区别.
3.疑点:多项式中各项的符号问题.
四、课时安排 1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师出示探索性练习,学生分析讨论得出多项式有关概念,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)复习引入,创设情境
师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.
(出示投影1)
1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.
,,2,,2.圆的半径为,则半圆的面积为_____________,半圆的总长为_____ ________.
学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.
【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容.
师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?
学生活动:同座进行讨论,然后选代表回答.
师:谁能把1题中不是单项式的式子读出来?(师做相应板书)
学生活动:小组讨论,、,对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.
(二)探索新知,讲授新课 师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.
[板书]3.1整式(多项式)
学生活动:讨论归纳什么叫多项式.可让学生互相补充.
教师概括并板书
[板书]多项式:几个单项式的和叫多项式.
师:强调每个单项式的符号问题,使学生引起注意.
(出示投影2)
练习:下裂代数式,,,,中,是多项式的有:
___________________________________________________________.
学生
活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.
【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.
师:提出问题,多项式、,各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.
师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中,次数是1,次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.
[板书]
学生活动:同桌讨论,,应怎样称谓,然后找学生回答.
师:给予归纳,并做适当板书:
[板书] 学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.
根据学生回答,师归纳:
在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 中,这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.
[板书]
【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.
(三)尝试反馈,巩固练习
(出示投影3)
1.填空:
2.填空:
(1)是_________次__________项式; 是_________次_________项式; 的常数项是___________.
(2)是_________次________项式,最高次数是___________,最高次项的系数是__________,常数项是___________.
学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.
【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.
(四)归纳小结 师:今天我们学习了《整式》一节中“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.
归纳:单项式和多项式统称为整式.
[板书]
说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做了述板书,使所学知识纳入知识系统.
巩固练习:
(出示投影4)
下列各代数式:0,,,中,单项式有__________,多项式有____________,整式有_____________.
学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏.
【教法说明】数学
要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.
(五)变式训练,培养能力
(出示投影5)
1.单项式,的和_________,它是__________次__________项式.
2. 是_______次________项式 是__________次_________项式,它的常数项_________.
3. 是________次________项式,最高次项是_________,最高次项的系数是_________,常数项是__________.
4. 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).
学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言. 师:做肯定或否定,强调3题中最高次项的系数是,是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.
【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识.
自编题目练习:
每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.
【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.
师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.
学生活动:学生边回答师边板书,然后学生讨论是否符合要求.
【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学
生逆向思维的能力.
八、随堂练习
判断题
(1)-5不是多项式()
(2)是二次二项式()
(3)是二次三项式()
(4)是一次三项式()
(5)的最高次项系数是3()
九、布置作业
(一)必做题:课本第149页习题3.1A组12.
(二)选做题:课本第150页习题3.1B组3.
十、板书设计
作业 答案
教材P.149中A组12题:(1)三次二项式(2)二次三项式
(3)一次二项式(4)四次三项式
教材P.150页中B组3题:有,项;各项系数依次是
1、-
5、;各项次数依次是6、4、2;这个多项式的次数是6。
数学教案-整式一文由月亮船教育资源网搜集整理,版权归作者所有,转载请注明出处!
第五篇:初三数学知识点整式总结
数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺,以下是小编为大家收集整理的初三数学知识点整式总结,欢迎阅读参考。
一、代数式
1.概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。
2.代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式
单项式和多项式统称为整式。
1.单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算
1.同类项所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.整式的加减:有括号的先算括号里面的,然后再合并同类项。
4.幂的运算:
5.整式的乘法:
1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6.整式的除法
1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解把一个多项式化成几个整式的积的形式
1)提公因式法:(公因式多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2)公式法:A.平方差公式;B.完全平方公式:
以上内容由数学网独家专供,希望这篇新编初三数学知识点:整式知识点总结能够帮助到大家。