单相思的古诗句

时间:2019-05-15 14:02:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《单相思的古诗句》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《单相思的古诗句》。

第一篇:单相思的古诗句

单向的想念一个人,不一定要听到他的声音,想像中的一切,往往比现实稍微美好一点。想念中的那个人,也比现实稍微温暖一点。以下是小编整理的单相思的古诗句,欢迎阅读参考!

1、春心莫共花争发,一寸相思一寸灰。

2、美葵一意只朝日,蓠下莴心尽败颓。

3、直道相思了无益,未妨惆怅是清狂。

4、我本将心像明月,奈何明月照沟渠。

5、红楼隔雨相望冷,珠箔飘灯独自归。

6、多情只有春庭月,犹为离人照落花。

7、山有木兮木有枝,心悦君兮君不知。

8、无情不似多情苦,一寸还成千万缕。天涯海角有穷时,只有相思无尽处。

9、落花有意,流水无情。

10、柳莺婉叩氤氲开,为思佳人愁又来。唯见复日勾魂笑,心头积郁方得排。

11、唯有相思似春色,江南江北送君归。

12、此情可待成追忆,只是当时已惘然。

13、落花已作风前舞,流水依旧只东去。

14、春霄睡重,梦里还相送,枕畔起寻双玉凤,半日才知是梦。一从卖翠人还,又无音信经年。却把泪来作水,流也流到伊边。

15、漠漠轻寒上小楼,晓音无赖似穷愁。淡烟流水画屏幽,自在飞花皆似梦。无边私语细如愁,宝帘闲挂小银钩。

16、落花有意随流水,流水无意恋落花。

17、君住长江头,我住长江尾,日日思君不见君,共饮长江水。

18、一如侯门深似海,从此蟑螂陌路人。

19、斑骓只系垂杨岸,何处西南待好风。

关于单恋的句子:

1、在我们的生命中,有些人来了又去,有些人去而复返,有些人近在咫尺,有些人远在天涯,有些人擦身而过,有些人一路同行。或许在某两条路的尽头相遇,结伴同行了一段路程,又在下一个分岔路口道别。无论如何,终免不了曲终人散的伤感。

2、或许每个人心底都有一只妖孽,就算踩死碾碎风干磨成灰也无法消失,但总有获得小小幸福的权利。

3、我想和他站在同样的高度,能够真正让他刮目相看,而不是仅仅跟在他的身后追随着他的脚步我想要和他并肩而立,我想拥有和他站在一起的资格。

4、即使再远的地方,也可以回得去。

5、就算他还在等,固执地一直等好象只要他有耐心等下去,那个人就会回来,会继续活着,活在他模糊的视线里。

6、相思相望不相春,飞不过忘川,就溺入欲海吧无穷无尽地撕咬,互相伤害如此而已,如此而已。

第二篇:单相半波整流电路教案

单相半波整流电路教案

课题:单相半波整流电路

教学目标:利用实物展示、挂图和演示实验现象来引导学生理解整流的概念和作用,激发学生的兴趣,促进教育学的配合。

能力目标:帮助学生掌握单相半波整流电路的结构、工作原理及负载电压和电流的计算。

培养学生分析和检修整流电路故障的能力。

教学重点和难点

单相半波整流电路的工作原理分析,输出电压极性和波形分析及负载直流电压电流的计算。

课前教具准备

1N4007小功率整流二极管一只、手机充电器及其配套锂电池、教学方法

实物展示法、实验演示法、讲练结合法、启发诱导法

教学活动

一:复习提问:

(1):教师拿出一个1N4007的小功率整流二极管复习半导体二极管的结构与符号。(2):提问二极管的单向导电性并请同学们画出二极管的正、反向偏置电压的电路图。

二:导入新课:

(一):师生互动环节(教师展示手机充电器对锂电池充电过程)

师:同学们我们现在使用的手机锂电池的低压直流电能是从哪里得来的呢? 生:是手机充电器供给的(学生异口同声的回答)

师:是的。充电器直接引入的是市电220V,50HZ的交流电能,而手机锂电池需要存储的是低压直流电能,那么请同学们思考下充电器是如何给锂电池充电的呢? 生:先降压后变换(少数学生能回答)

师:对了。所以今天这两堂课我们就要一起来学习如何将电网中220V、50HZ的交流电能变换成脉动的低压直流电能--------单相半波整流电路(板书)

(二):引出课题:

(板书)整流:将交流电压变换成脉动的直流电压。(板图)

三:讲授新课:

0

(一):单相半波整流电路的结构与工作原理(板书)

教师提示:“单相”一词是指输入整流电路的交流电是单相交流电。而“半波”一词同学们可在下面讲授的半波整流原理中自己总结,到时老师请同学们回答。(任务驱动法教学可集中学生的听课注意力)1:电路结构组成(板书)(板图)

分析各元器件的作用:

(1)电源变压器T:将220V交流电压变换为整流电路所要求的低压交

流电压值。(2):整流二极管V:利用二极管的单相导电性进行整流。(5):负载RL:是某一个具体的电子电路或其它性质的负载。

2:工作原理(板书)教师引导:输入整流电路的交流电压来自于电源变压器的二次绕组输出端,在分析整流原理时应将交流电压分成正、负半周两种情况来考虑。另外为了分析方便,变压器T应假设为无损耗的理想元件,整流二极管V应为理想二极管,负载为纯电阻性负载。

(1):单相半波整流电路的整流原理(板书)

整流过程的核心就是利用整流二极管的单向导电性。注:图中的灯只是用来检验整流二极管的导通与截止的情况,在实际电路中人眼时看灯灭的情况,在这里目的是让学生更好地理解整流二极管截止的现象。

(2):V导通时的电流回路分析(板书)

教师提问:①:上面分析了半波整流电路的工作原理,由此可以回答什么是半波整流。(请学生回答)

②:若在上面图中把整流二极管V极性对调后整理电路的原理又怎样分析呢?(给1分钟时间学生自行分析后再讲解,起到了举一反三的作用)

探究活动:通过整流二级管导通时电流的分析,可以进一步理解整流电路的工作原理,同时有利于整流电路的故障分析和检修。在整流电路回路中任意一个点出现开路故障都将造成无电流输出。(设置几个开路和短路故障,要求学生分析和排除故障现象,提高学生解决实际问题的能力。)(3):输出电压极性与电压电流波形分析(板书)设变压器:次级绕组电压为:

u2(t)2U2sint

分析内容:整流电路输出电流由上而下流过负载RL,在RL上的压降为输出电压UL,因为输出电压为单向脉动的直流电压,所以它有正负极性,在RL上输出上正下负的电压。

探究活动:将整流二极管V极性对调后输出电压极性与电压电流的波形又是怎样呢?(学生自行分析)

(二):负载电压、电流计算与整流二极管的选取(板书)

1:负载电压电流计算(板书)

由输出电压极性与电压电流波形分析可知,负载所得半波整流电压虽然方向不变,但大小总是随时间变化,数学理论可证明输出直流电压UL为一个周期内电压的平均值(半波整流电压的平均值是交流电压峰值的1倍)即:

输出电压:U2 2U2≈045U2(板书)

输出电流:ILULU0452(板书)RLRL2:整流二极管的选取

在电路图中分析可知整流二极管截止时所承受的最高反向电压为u2的峰值即:可见选URM2U2,整流二极管在正向导通时最大的整流电流IOM应大于负载电流IL,用整流二极管应: IOM>IL(板书)URM>2U2(板书)3:讲解例题(利用PPT展示)

通过例题讲解可以帮助学生掌握选用整流二极管的方法。

四:课堂小结:

(1):单相半波整流电路广泛应用于电工电子技术中,其整流的原理是利用二极管的单向导电性。

(2):由于半波整流电路所采用元器件较少,所构成的电路简单、成本低,但从输出电压的波形图上可以看出输出的直流电压低、脉动大,变压器一半的时间未利用,所以效率较低,只适用于对脉动要求不高的场合。(可引导学生小结)

(3):在选用整流二极管时应重点考虑最大的整流电流和最高的反向工作电压。

五:板书板图设计

单相半波整流电路

整流:将交流电压变换成脉动的直流电压。

(一):单相半整流电路的结构与工作原理

1:电路结构组成

2:工作原理(1):单相半波整流电路的整流原理

(2):V导通时的电流回路分析

(3):输出电压极性与电压电流波形分析

(二):负载电压、电流计算与整流二极管的选取 1:负载电压电流计算

输出电压:U2 2U2≈045U2

输出电流:ILULU0452 RLRL2:整流二极管的选取

IOM>IL URM>2U2

第三篇:单相交流调压电路课程设计

单相交流调压电路的设计

单相交流调压电路的设计 单相交流调压电路设计任务及设计目的..............................2 1.1 电路设计任务....................................................2 1.2 电路设计目的....................................................2 1.3 主电路的原理分析................................................2 1.4主电路器件的选择................................................3 2 设计方案及选择..................................................5 3 单相交流调压电路的设计..........................................5 3.1 主电路的设计....................................................5 3.2 控制电路的设计..................................................6 3.2.1触发信号的种类................................................6 3.2.2触发电路设计..................................................7 3.2.3总的电路图....................................................8 4单相交流调压电路仿真结果及结果分析...............................8 4.1 仿真结果........................................................8 4.2 结果分析.......................................................11 5 单相交流电压电路设计总电路图...................................12 总 结.........................................................13 参考文献.........................................................14 单相交流调压电路的设计 单相交流调压电路设计任务及设计目的

1.1 电路设计任务 进行设计方案的比较,并选定设计方案。2 完成单元电路的设计和主要元器件的说明。3 完成主电路的原理分析,各主要元器件的选择。4 驱动电路的设计。5 电路的仿真。1.2 电路设计目的

电力电子技术是专业技术基础课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料,选择方案,设计电路,撰写报告,制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。1.3电阻性负载的交流调压器的原理分析

其晶闸管VT1和VT2反并联连接,与负载电阻R串联接到交流电源上。当电源电压U2正半周开始时刻触发VT1,负半周开始时刻触发VT2,形同一个无触点开关。若正、负半周以同样的移相角α触发VT1和VT2,则负载电压有效值随α角而改变,实现了交流调压。移相角为α时的输出电压u的波形,如图1-1所示。

图1-1A 电阻性负载单相交流调压电路及波形图

1.4 主电路的原理分析

所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。此外,在高电压小电流或低 单相交流调压电路的设计

电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。本次课程设计主要是研究单相交流调压电路的设计。由于交流调压电路的工作情况与负载的性质有很大的关系,本次实验对阻感负载予以重点讨论。图中的2个晶闸管也可以用一个双向晶闸管代替。在交流电源u1的正半周和负半周,分别对2个晶闸管的移相控制角进行控制就可以调节输出电压。单相交流调压电路的主电路图如下图

图1-1B 单相交流调压主电路

1.5主电路器件的选择

主电路中所用到得器件比较少,主要是200V单相交流电源,2个反并联的晶闸管,还有一个阻感负载。其中2反并联的晶闸管可用一个双相晶闸管代替,阻感负载可以用一个电阻和一个电感串联,也可以用一个串联谐振代替2个反并联的晶闸管。

晶闸管的选择: 选择正反向电压

可控硅在门极无信号,控制电流Ig为0时,在阳(A)一一阴(K)极之间加(J2)处于反向偏置,所以,器件呈高阻抗状态,称为正向阻断状态,若增大UAK而达到一定值VBO,可控硅由阻断突然转为导通,这个VBO值称为正向转折电压,这种导通是非正常导通,会减短器件的寿命。所以必须选择足够正向重复阻断峰值电压(VDRM)。在阳一一阴极之间加上反向电压时,器件的第一和第三PN结(J1和J3)处于反向偏置,呈阻断状态。当加大反向电压达到一定值VRB时可控硅的反向从阻断突然转变为导通状态,此时是反向击穿,器件会被损坏。而且VBO和VRB值随电压的重复施加而变小。在感性负载的情况下,如磁选设备的整流装置。在关断的时候会产生很高的电压(∈=-Ldi/dt),如果电路上未有良好的吸收回路,此电压将会损坏可控硅器件。因此,器件也必须有足够的反向耐压VRRM。

可控硅在变流器(如电机车)中工作时,必须能够以电源频率重复地经受一定的过电压而不影响其工作,所以正反向峰值电压参数VDRM、VRRM应保证在正常使用电压峰值的2-3倍以上,考虑到一些可能会出现的浪涌电压因素,在选择代用参数的时候,只能向高一档的参数选取。

选择额定工作电流参数

可控硅的额定电流是在一定条件的最大通态平均电流IT,即在环境温度为+40℃和规定冷却条件,器件在阻性负载的单相工频正弦半波,导通角不少于l70℃的电路中,单相交流调压电路的设计

当稳定的额定结温时所允许的最大通态平均电流。而一般变流器工作时,各臂的可控硅有不均流因素。可控硅在多数的情况也不可能在170℃导通角上工作,通常是少于这一角度。这样就必须选用可控硅的额定电流稍大一些,一般应为其正常电流平均值的1.5-2.0倍。选择门极(控制级)参数

可控硅门极施加控制信号使它由阻断变成导通需经历一段时间,这段时问称开通时间tgt,它是由延迟时间td和上升时间tx组成,tr是从门极电流脉冲前沿的某一规定起(比如门极电流上升到终值的90%时起)到通态阳极电流IA达到终值的10%那瞬为止的时间隔,tr是阳极电流从l0%上升到90%所经历的时间。可见开通时间tgt与可控硅门极的可触发电压、电流有关,与可控硅结温,开通前阳极电压、开通后阳极电流有关,普通可控硅的tgt10μs以下。在外电路回路电感较大时可达几十甚至几百μs以上(阳极电流的上升慢)。在选用可控硅时,特别是在有串并联使用时,应尽量选择门极触发特征接近的可控硅用在同一设备上,特别是用在同一臂的串或并联位置上。这样可以提高设备运行的可靠性和使用寿命。如果触发特性相差太大的可控硅在串联运行时将引起正向电压无法平均分配,使tgt较长的可控硅管受损,并联运行时tgt较短的可控硅管将分配更大的电流而受损,这对可控硅器件是不利的。所以同一臂上串或并联的可控硅触发电压、触发电流要尽量一致,也就是配对使用。

在不允许可控硅有受干扰而误导通的设备中,如电机调速等,可选择门极触发电压、电流稍大一些的管子(如可触发电压VGT>2V,可触发电流IGT:>150mA)以保证不出现误导通,在触发脉冲功率强的电路中也可选择触发电压、电流稍大一点的管。在磁选矿设备中,特别是旧的窄脉冲触发电路中,可选择一些VG、IG低一些的管子,如VGT<1.5V、IGT在≤100mA以下。可减少触发不通而出现缺相运行。以上所述说明在某些情况下应对VGT和IGT参数进行选择。(以上举例对500A的可控硅参考参数)选择关断时间(tg)

可控硅在阳极电流减少为0以后,如果马上就加上正向阳极电压,即使无门极信号,它也会再次导通,假如在再次加上正向阳极电压之前使器件承受一定时间的反向偏置电压,也不会误导通,这说明可控硅关断后需要一定的时间恢复其阻断能力。从电流过O到器件能阻断重加正向电压的瞬间为止的最小时闻间隔是可控硅的关断时间tg,由反向恢复时间t和门极恢复时间t构成,普通可控硅的tg约150-200μs,通常能满足一般工频下变流器的使用,但在大感性负载的情况下可作一些选择。在中频逆转应用,如中频装置、电机车斩波器,变频调速等情况中使用,一定要对关断时间参数作选择,一般快速可控硅(即kk型晶闸管)的关断时间在10-50μs,其工作频率可达到1K-4KHZ;中速可控硅(即KPK型晶闸管)的关断时间在60-100μs,其工作频率可达几百至lKHZ,即电机车的变频频率。晶闸管工作原理 单相交流调压电路的设计

晶闸管由四层半导体(P1、N1、P2、N2)组成,形成三个结J1(P1N1)、J2(N1P2)、J3(P2N2),并分别从P1、P2、N2 引入A、G、K 三个电极,如图6.0(左)所示。由于具有扩散工艺,具有三结四层结构的普通晶闸管可以等效成如图6.0(下)所示的两个晶闸管T1(P1-N1-P2)和(N1-P2-N2)组成的等效电路。

图1-2晶闸管原理图 设计方案及选择

由于题目要求输出电压范围为0~100V,所以方案可选电阻性负载或阻感性负载。本电路采用单相交流调压器带阻感负载时的电路图如图2-1所示,在负载和交流电源间用两个反并联的晶闸管VT1,VT2相连。

图2-1 电阻负载单相交流调压电路 单相交流调压电路的设计

3.1 主电路的设计

所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。本次课程设计主要是 单相交流调压电路的设计

研究单相交流调压电路的设计。由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。图3-1分别为反电势电阻负载单相交流调压电路图及其波形。图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。在交流电源U2的正半周和负半周,分别对VT1和VT2的移相控制角 进行控制就可以调节输出电压

图3-1工作波形图

正负半周起始时刻(=0),均为电压过零时刻。在t时,对VT1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在t时,电源电压过零,因电阻性负载,电流也为零,VT1自然关断。在t时,对VT2施加触发脉冲,当VT2正向偏置而导通时,负载电压波形与电源电压波形相同;在t2时,电源电压过零,VT2自然关断。当电源电压反向过零时,由于反电动势负载阻止电流变化,故电流不能立即为零,此时晶闸管导通角的大小,不但与控制角有关,而且与负载阻抗角有关。两只晶闸管门极的起始控制点分别定在电源电压每个半周的起始点。稳态时,正负半周的相等,负载电压波形是电源电压波形的一部分,负载电流(电源电流)和负载电压的波形相似。

3.2 控制电路的设计

3.2.1触发信号的种类

晶闸管由关断到开通,必须具备两个外部条件:第一是承受足够的正向电压;第二是门极与阴极之间加一适当正向电压、电流信号(触发信号)。门极触发信号有直流信号、交流信号和脉冲信号三种基本形式。

直流信号:

在晶闸管加适当的阳极正向电压的情况下,在晶闸管门极与阴极间加适当的直流电

单相交流调压电路的设计

压,则晶闸管将被触发导通。这种触发方式在实际中应用极少。因为晶闸管在其导通后就不需要门极信号继续存在。若采用直流触发信号将使晶闸管门极损耗增加,有可能超过门极功耗;在晶闸管反向电压时,门极直流电压将使反向漏电流增加,也有可能造成晶闸管的损坏。

交流信号:

在晶闸管门极与阴极间加入交流电压,当交流电压uc=ut时,晶闸管导通。ut是保证晶闸管可靠触发所需的最小门极电压值,改变u。值,可改变触发延迟角α。这种触发形式也存在许多缺点,如:在温度变化和交流电压幅值波动时,触发延迟角不稳定,可通过交流电压u。值来调节,调节的变化范围较小(00≤α≤900)。

3脉冲信号:

在晶闸管门极触发电路中使用脉冲信号,不仅便于控制脉冲出现时刻,降低晶闸管门极功耗,还可以通过变压器的双绕组或多绕组输出,实现信号的隔离输出。因此,触发信号多采用脉冲形式。3.2.2触发电路设计

晶闸管触发电路的作用是产生符合要求的门极触发脉冲,保证晶闸管在需要要的时刻有阻断转为导通。广义上讲,晶闸管触发电路往往还包括对其触发时刻进行控制的相位控制电路,但这里专指脉冲的放大和输出环节。晶闸管触发电路应满足下列要求:1)触发脉冲的宽度应保证晶闸管可靠导通,对反电动势负载的变流器应采用宽脉冲或脉冲列触发; 2)触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增加为器件最大触发电流的3-5倍,脉冲前沿的陡度也许增加,一般需达1-2A/us;3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极伏安特性的可靠触发区域之内;4)应有的抗干扰性能、温度稳定性及与主电路的电气隔离。

根据以上要求分析,采用KC05移相触发器进行触发电路的设计。KC05可控硅移相触发器适用于双向可控硅或两只反向并联可控硅的交流相位控制。KC05驱动电路如图3-2所示:

图3-2

KC05移相触发器构成的触发电路 单相交流调压电路的设计

3.2.3总的电路图

本次设计的总的电路图如图3-3所示系统原理图如图3-4所示

图3-3 总电路图

图3-4系统原理方框

主电路其实是比较简单的,一个均值为200V的电压源,2个反并联的晶闸管,还有一个阻感负载。触发电路的设计相对复杂,不过其实触发电路产生的触发信号也可以用2个脉冲波代替,脉冲的周期与电源的周期相同,但是2个脉冲要错开半个周期的时间,也就是0.01秒。

4单相交流调压电路仿真结果及结果分析

4.1 仿真结果

本单相交流调压电路仿真是在MATLAB软件中的simulink环境下组建的电路模型,图4-1为单相交流调压电路的模型图,图中触发脉冲g1和触发脉冲g2分别是反向并联晶闸管模块VT1,VT2的触发脉冲电路。

单相交流调压电路的设计

图4-1 单相交流电压电路仿真电路图

图4-2 a=0度时,单相交流调压电路波形

图4-3 a=30度时,单相交流调压电路波形

单相交流调压电路的设计

图4-4 a=60度时,单相交流调压电路波形

图4-5 a=90度时,单相交流调压电路波形

图4-6 a=150度时,单相交流调压电路波形

单相交流调压电路的设计

图4-7 a=180度时,单相交流调压电路波形

4.2 结果分析

上面图4-2---图4-7给出了分别为0度、30度,60度,90度、150度和180度时单相交流调压电路的纯电阻负载的电压和电流的仿真波形。

当晶闸管触发控制角=0时,U=U2,负载两端的电压U和流过其电流IRL的波形均为正弦波。当>0时,U、Irl的波形为非正弦波,控制角从0-180度范围改变时,输出电压有效值U从U2下降到0,控制角对输出电压U的移相可控区域是0---180度。把角等于0度、30度,60度,90度、150度和180度分别代入下式

U12U2sintdtU21212212sin2

56可求得

U0U2U30=U2sin00U261U234sin(26)3U2340.99U2

U60U2U90U212sin(23)2U22U230.9012sin(22)512U201U220.71U150U2 12sin(2)512U201U220.67111 单相交流调压电路的设计

U180U212sin(2)U2000

观察图4-2图4-7的仿真波形,可得到随着角增大,负载两端电压U的波形的曲线部分的宽度越来越窄,则其有效值将不断减小。

由此可知,理论分析与仿真结果是一致的。在Simulink 环境下利用电力系统模块库中的电力电子器件组建单相交流调压纯电阻电路,并对电路进行相应的理论分析和仿真实验。仿真实验结果表明,通过控制角的大小,单相交流调压电路能够得到很好的调压结果。单相交流电压电路设计总电路图如图5-1

图5-1单相交流电压电路总电路图 单相交流调压电路的设计

总 结

通过电力电子技术课程设计,我加深了对课本专业知识的理解,平常都是理论知识的学习,在此次课程设计中,真正做到了自己查阅资料、完成一个基本汇编程序的设计。在此次的设计过程中,我更进一步地熟悉了单相交流调压电路的原理以及触发电路的设计。当然,在这个过程中我也遇到了困难,通过查阅资料,相互讨论,我准确地找出错误所在并及时纠正了,这也是我最大的收获,使自己的实践能力有了进一步的提高,让我对以后的工作学习有了更大的信心。通过这次课程设计使我懂得了只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,通过这次课程设计,把以前所学过的知识重新温故,巩固了所学的知识。

通过单相半波交流电路的设计,使我加深了对整流电路的理解,让我对电力电子该课程产生了浓厚的兴趣。对于一个电路的设计,首先应该对它的理论知识很了解,这样才能设计出性能好的电路。整流电路中,开关器件的选择和触发电路的选择是最关键的,开关器件和触发电路选择的好,对整流电路的性能指标影响很大。在这次课程设计过程中,碰到的难题就是对晶闸管的相关参数的计算,因为在学习中没能很好的系统的总结晶闸管相关知识。在整个课程设计中贯穿的计算过程没能很好的把握。在今后的学习中要认真总结经验,对电力电子课程进行补充。为以后深入的学习自动化专业做铺垫。通过这次课程设计我对于文档的编排格式、原理图波有了一定的了解,这对于以后的毕业设计及工作需要都有颇大的帮助,在完成课程设计的同时我也在复习一遍电力电子技术这门课程,把以前一些没弄懂的问题基本掌握了。

单相交流调压电路的设计

参考文献

[1] 王兆安,刘进军.电力电子技术(第5版).北京:机械工业出版社.2009.5 [2] 陈道炼.DC-DC逆变技术及其应用。北京:机械工业出版社.2003 [3] 张乃国.电源技术.北京:中国电力出版社.1998 [4] 何希才.新型开关电源设计与应用.北京:科学出版社.2001 [5] 阮新波,严仰光.直流开关电源的软开关技术.北京:科学出版社.2000 [6] 王云亮.电力电子技术.第一版.北京.电子工业出版社.2004.8 [7] 王兆安,黄俊.电力电子技术(第4版).北京:机械工业出版社.2000 [8] 梁延贵主编.现代集成电路实用手册可控硅触发电路分册.北京:科学技术文献出版社.2002.2 [9] 刘锦波,张承慧.电机与拖动.北京:清华大学出版社.2006 [10] 林敏.计算机控制技术及工程应用.北京:国防工业出版社.2009.8 单相交流调压电路的设计

致 谢

感谢指导王老师为期一周的悉心指导,在这次设计中,使我了解了和学到了许多书本所没有的东西,扩充了自己的知识,开发了自己的思考能力,提高了自己在制作实物过程中的动手能力。比如说,WORD的应用,matlab的应用,现在终于可以很熟练的使用这个软件了,这对我以后做课程设计是有非常大的帮助的。因为必须完成课程设计,所以必须在网上,在书上找相关的资料,这让我花了大量的时间,在这些时间里,让我体会到了学习的充实的快乐,也让我在现实中把书本上的知识学习的更完善。感谢石老师可以给我这样的机会去学习,去锻炼,希望以后的学习中,会有更多这样的机会。

第四篇:单相变压器概念

上海昌日电子科技有限公司 电力谐波治理解决方案 单相变压器

上海昌日电子科技有限公司是专业制造高低压电抗器,变压器厂家,欢迎新老顾客来电咨询。变压器有:BK变压器,JBK变压器,JBK3变压器,SG变压器等,种类有 输入电抗器,输出电抗器,直流电抗器,串联电抗器,高压串联电抗器等 厂家直销 价格低,品质优。现货供应,欢迎新老顾客咨询 目录 单相变压器的意义 2 单相变压器的性能分析 3 单相变压器的局限性 4 单相变压器的应用场合 1单相变压器的意义

第一,相同容量的单相变压器比三相变压器三相变压器 的供应商用铁减少20%,用铜减少10%。尤其是采用卷铁芯结构时,变压器的空载损耗可下降15%以上,这将使单相变压器的制造成本和使用成本同时下降,从而获得最佳的寿命周期成本。

第二,在电网中采用单相供电系统,可节省导线33%~63%,按经济电流密度计算,可节约导线重量42%,按机械强度计算,可降低导线消耗66%。因此可降低整个输电线路的建设投资。这在我国地域广阔的农村和城镇的路灯照明及居民生活用电方面是很有意义的。

第三,单相变压器由于结构简单,适合大批量的现代化生产,有品质源于专业 专业电抗器供应商 www.xiexiebang.com

上海昌日电子科技有限公司 电力谐波治理解决方案 利于提高产品质量和效益。

第四,适于引入新技术、新材料、新工艺,获得技术加分,党的十六届五中全会提出把节约资源作为基本国策,“十一五”规划《纲要》进一步把“十一五”时期单位GDP能耗降低20%左右作为约束性指标。在这个大背景下,降损附加值高的新产品将大有所为。在线损理论计算时可以发现,80%的线路损失发生在20%的主干线上,因此缩短低压主干线距离,就可以大大减少低压线损,由于单相变压器重量轻,可以灵活安装在电杆上使用,便于深入负荷中心,就近降压供电,提高供电质量。一般单相变压器在小范围内供电,发生故障波及面小,利于提高供电可靠性。同时,因为单相变压器重量轻,安装维护方便,使用灵活,可以单相使用,也可以三台组成三相变压器使用。

2单相变压器的性能分析

定量分析

同容量的单相变压器损耗较 S11三相变压器损耗低。以 50 kVA为例 . D12—50单相变压器与 S11—50三相变压器指标 比较表中可 以看出.采用 D12—50单相变压器供 电比采用 S11—50三相变压器 1年可节约 电能 =10 E8 760(一Po)+8 760(尸 — 1)]=[(120 W一72 W)x8 760 h+(870 W一660 W)x8 760 hxO.3 ]×10。=586 kWh。式 中 : 1为D12—50的空载损耗 ; 为 S11—50的空载损耗 ;为 D12—50的负载损耗 ; 为 S11—50的负载损耗 ;K为变压器负载系数。

品质源于专业 专业电抗器供应商 www.xiexiebang.com

上海昌日电子科技有限公司 电力谐波治理解决方案

定性分析

采用单相变压器解决 了电压质量低的问题。为提高农网电压合格率、供 电可靠性和低压线路降损工作打下了坚实基础。也为老百姓做 了件实事。

采用单相变压器断了小业主钻政策空子、挤 占公用变压器容量的念头。让他们 自愿地 申请安装专用变压器。在一定程度上提高了供 电企业的经济效益。此外。单相变压器安装调换简便,大大缩短 了事故处理时间。变压器噪音分贝下降。有利于环保。

采用单相变压器解决城乡结合部的居民用 电题,投资不大,改造快捷。采用集束导线等新材料、新工艺,美化了环境,受到居 民普遍欢迎。

3单相变压器的局限性

首先,单相变压器由于电压单一,只能应用于照明或小型电机,应用范围具有局限性。而我国农村因有副业和作坊,不能广泛推广,即使用,也只是作为三相供电制度的补充使用。在顺平供电公司,单相变压器得到应用,一是应用于深山区,居民分散,用电负荷小,基本没有动力应用,可大大减少线路投资;二是应用于路灯。其次,是单相变压器所引起的引高压进负荷中心容易受到人们的抵制。现在人们法制观念提高,对于居住环境的关心也非常重视,没有哪个业主愿意电业部门在门前树根“旗杆”,上面挂有变压器,带有高压电,并且还发出噪音。同时,现在的房地产商人只要求电力方便,他们却不愿意自己的蓝图里出现电力设施的影子。一是怕电磁辐射,二是怕危险,三是怕影响景观。现在电力部门收费到品质源于专业 专业电抗器供应商 www.xiexiebang.com

上海昌日电子科技有限公司 电力谐波治理解决方案 户,线路损失是电力部门的事情,业主与开发商没有义务为电力部门提供方便。4单相变压器的应用场合 单相变压器主要适用于以下场所:

①对于城乡结合部居民生活用 电.可视情况采用 1户或几户共用 1台单相变压器的方式供电;

②对于郊区及集镇小工业等较 为发达地区.可采用单相变压器和三相变压器共存的方式 .单相变压器用于供居 民生活用 电,三相变压器供工业用电;

③对于路灯、大型广告牌等不需要三相供电的负荷,采用单相变压器供电;

④对于农村零散单相用 户.采用就地安装单相变压器方式.可解决电压质量低的问题;⑤县城郊区拆迁安置房基本为一户一楼,采用单相变压器,施工方便,布置合理。

上海昌日电子科技有限公司是专业制造高低压电抗器,变压器厂家,欢迎新老顾客来电咨询。变压器有:BK变压器,JBK变压器,JBK3变压器,SG变压器等,种类有 输入电抗器,输出电抗器,直流电抗器,串联电抗器,高压串联电抗器等 厂家直销 价格低,品质优。现货供应,欢迎新老顾客咨询

品质源于专业 专业电抗器供应商 www.xiexiebang.com

第五篇:单相正弦波逆变电源的设计课程设计

单相正弦波逆变电源的设计正文

第1章

概述

任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整正弦波逆变电源是连续控制的线性正弦波逆变电源

。这种传统正弦波逆变电源技术比较成熟,并且已有大量集成化的线性正弦波逆变电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点、但其通常都需要体积大且笨重的工频变压器与体积和重量都不得和很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调节器整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。在近半个多世纪的发展过程中,正弦波逆变电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛的应用,正弦波逆变电源技术进入快速发展期。

正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此正弦波逆变电源具有重量轻、体积小等优点。另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V±10%,而正弦波逆变电源在电网电压在110~260V范围变化时,都可获得稳定的输出阻抗电压。正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具有深远的意义。

目前市场上正弦波逆变电源中功率管多采用双极型晶体管,开关频率可达几十千赫;采用MOSFET的正弦波逆变电源转抽象频率可达几百千赫。为提高开关频率,必须采用高速开关器件。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感及变压器的尺寸,而且还能够抑制干扰,改善系统的动态性能。因此,高频化是正弦波逆变电源的主要发展方向。高可靠性——正弦波逆变电源的使用的元器件比连续工作电源少数十倍,因此提高的可靠性。从寿命角度出发,电解电容、光耦合器及排风扇等器件的寿命决定着电源的寿命。所以,要从设计方面着眼,尽可能使较少的器件,提高集成度。这样不但解决了电路复杂、可靠性差的问题,也增加了保护等功能,简化了电路,提高了平均无故障时间。正弦波逆变电源的发展从来都是与半导体器件及磁性元件等的发展休戚相关的。高频化的实现,需要相应的高速半导体器件和性能优良的高频电磁元件。发展功率MOSFET、IGBT等新型高速器件,开发高频用的低损磁性材料,改进磁元件的结构及设计方法,提高滤波电容的介电常数及降低其等串联电阻等,对于正弦波逆变电源小型化始终产生着巨大的推动作用。

总之,人们在正弦波逆变电源技术领域里,边研究低损耗回路技术,边开发新型元器件,两者相互促进并推动着正弦波逆变电源以每年过两位数的市场增长率向小型、薄型、高频、低噪声以及高可靠性方向发展。

第2章

设计总思路

2.1总体框架图

滤波电路

逆变电路

输入315V直流电

驱动电路

UC3842脉宽调制电路

输出220V交流电

误差比较

图1

总体框图

此次课程设计要求输入315V直流,输出220V交流,主电路采用单相桥式逆变电路,对高频开关器件常用PWM波控制,要产生正弦波可采用SPWM控制方法,通过控制电力电子器件MOSFET的关断来控制产生交变正弦波电压。控制电路主要实现产生SPWM波,设计要求选用UC3842电流控制型PWM控制器产生控制脉冲。而UC3842实质上是通过输入的两路波进行比较,输出比较后形成的脉冲波,鉴于UC3842的这一特征,可以通过输入正弦漫头波和锯齿波进行比较得到所需的正弦波控制脉冲。正弦波产生器的设计有多种方法,本次课程设计采用555定时器多谐振电路产生方波经过滤波产生正弦波的方法作为正弦波产生器,再经过整流,使之成为正弦漫头波。锯齿波的产生电路比较简单,可以直接利用UC3842内部提供的谐振器加入外围电阻电容产生。此外电路要求输出的正弦波幅度可调,此时就需要使加入的正弦波漫头波幅值可调,此可以通过一加法器使之与设置电压相叠加产生电压可变的正弦电压。

主电路和控制电路的一些中间环节都是需要滤波的,由于产用SPWM控制,主电路的谐波成分较少,可以通过简单的RC无源滤波。控制电路中的方波要变成较为标准的正弦波,要滤去的谐波成分就要多得多,可以采用有源滤波,且可以通过积分环节使方波变成比较好的正弦波。

由于设计出来的电路是作为电源用的,对电源电流、电压检测就显得非常有必要了,可以通过从电源负载取出电流信号作为UC3842的关断信号,从而实现主电路的限流作用。要实现电流、电压的稳定,则可以通过取出的电流、电压信号与控制电路构成闭环控制来实现。为了不至使电路结构过于复杂,只设计了简单的电压反馈环使电压基本能跟随给定维持恒定。

2.2设计的原理和思路

图2

正弦波逆变电源的组成框图

该电路采用他励式,2管双推动输出脉宽调制方式输出电压为220V,输出电流2A,有欠压、过压和过流等多重保护功能。

第3章

主电路设计

3.1

SPWM波的实现

3.1.1

PWM固定频率的产生

PWM波形产生原理图如图3.1.1所示

图3.1.1

PWM波的产生电路图

PWM固定频率是由SG3525芯片产生。SG3525芯片的资料见如下:

管脚说明:

引脚1:误差放大反向输入

脚9:PWM比较补偿信号输入端

引脚2:误差放大同向输入

引脚10:外关断信号输入端

引脚3:振荡器外接同步信号输入端

引脚11:输出A

引脚4:振荡器输出端

引脚12:信号地

引脚5:振荡器定时电容接入端

引脚13:输出级偏置电压接入端

引脚6:振荡器定时电祖接入端

引脚14:输出端B

引脚7:振荡器放电端

引脚15:偏置电源输入端

引脚8:软启动电容接入端

引脚16:基准电源输出端

图中11与14脚输出两路互补的PWM波,其频率由与5、6管脚所连的R、C决定。PWM频率计算式如下:f=1/[C5(0.7R15+3R16)],调节6端的电阻即可改变PWM输出频率。同时,芯片内部16脚的基准电压为5.1V采用了温度补偿,设有过流保护电路,5.1V反馈到2端同向输入端,当反向输入端也为5.1V时,芯片稳定,正常工作。若两端电压不相等,芯片内部结构自动调整将其保持稳定。

在脉宽比较起的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化,由于结构上有电压环河电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,目前比较理想的新型控制器。R和C设定了PWM芯片的工作频率,计算公式为T=(0.67*RT+1.3*RD)*CT

。再通过R13和C3反馈回路。构成频率补偿网络。C6为软启动时间设定电容。

3.1.2

SPWM波的原理

在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲宽度也最大,脉冲间隔最小,反之正弦值较小时,脉冲宽度也小,脉冲间的间隔较大。这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减少,成为正弦波脉宽调制。

3.1.3

SPWM调制信号的产生

要得到正弦电压的输出,就要使逆变电路的控制信号以SPWM方式控制功率管的开关,所得到的脉冲方波输出再经过滤波就可以得到正弦输出电压。通过SG3525来实现输出正弦电压,首先要得到SPWM的调制信号,而要得到SPWM调制信号,必须得有一个幅值在l~3

5V,按正弦规律变化的馒头波,将它加到SG3525脚2,并与锯齿波比较,就可得到正弦脉宽调制波实现SPWM的控制电路框图如图3.1.3(a)所示,实际电路各点的波形如图3.1.3(b)所示。

误差信号

基准电压

加法器

整流电路

滤波电路

调制电路

基准方

SG3525

时序电路

图3.1.3(a)

SPWM波控制电路框图

图3.1.3(b)

SPWM电路主要节点波形

由图3.1.3(a)

图3.1.3(b)可知,基准50Hz的方波是由555芯片生成的,用来控制输出电压有效值和基准值比较产生的误差信号,使其转换成50Hz的方波,经过低频滤波,得到正弦的控制信号。

3.2

保护电路模块

该系统是由直流边交流,弱点变为强电。故对系统进行必要的安全保护是必须的,在对系统进行调试时必须要注意安全。系统除了芯片本身具有的保护措施外,还对系统进行了专门的保护,具体如下。

3.2.1过电流保护

过电流保护采用电流互感器作为电流检测元件,其具有足够快的响应速度,能够在IGBT允许的过流时间内将其关断,起到保护作用。

如图3.2.1所示,过流保护信号取自CT2,经分压、滤波后加至电压比较器的同相输入端,如图2.4所示。当同相输入端过电流检测信号比反相输入端参考电平高时,比较器输出高电平,使D2从原来的反向偏置状态转变为正向导通,并把同相端电位提升为高电平,使电压比较器一直稳定输出高电平。同时,该过电流信号还送到SG3525的脚10。当SG3525的脚10为高电平时,其脚11及脚14上输出的脉宽调制脉冲就会立即消失而成为零。

图3.2.1

过电流保护电路

3.2.2空载保护电路的设计

空载检测电路如图3.2.2所示。是用电流互感器检测电流输出,当没有电流输出时,使三极管Q8截止,从而使RS-CK为高电平,停止输出SPWM波。8s后,再输出一组SPWM波,若仍为空载,则继续上述过程。若有电流输出则Q8导通,使得RS-CK为低电平,连续输出SPWM波形,逆变电路正常工作。

图3.2.2

空载检测电路图

3.2.3浪涌短路保护电路的设计

浪涌电路保护电路原理图如图3.2.3。此电路图是短路保护,用0.1欧的电阻对电压进行采样,通过470千欧电阻得到电流,并使这电流通过光电耦合器,当电流过高时使得SPWM波不输出,关闭IGBT形成保护。故障排除后光电耦合器输出关断,逆变器正常工作。

图3.2.3

浪涌短路保护电路原理图

第4章

单元控制电路设计

4.1

DC-AC电路设计

由前面论证已经明确采用全控桥式逆变电路。其中各桥臂通断由SPWM波控制的IGBT完成。

系统采用SG3525来实现SPWM控制信号的输出,该芯片其引脚及内部框图如图4.1所示。

图4.1

SG3525引脚及内部框图

直流电源Vs从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5

V基准电压。+5

V再送到内部(或外部)电路的其它元器件作为电源。

振荡器脚5须外接电容GT脚6须外接电阻RTo振荡器频率f由外接电阻RT和电容CT决定,f=1.1

8/RCTo逆变桥开关频率定为l0kHz,取GT=O.22μF,RT=5

kΩ。振荡器的输出分为两路,一路以时钟脉冲形式送至双稳态触发器及两个或非门;另一路以锯齿波形式送至比较器的同相输入端,比较器的反向输入端接误差放大器的输出。误差放大器的输出与锯齿波电压在比较器中进行比较,输出一个随误差放大器输出电压高低而改变宽度的方波脉冲,再将此方波脉冲送到或非门的一个输入端。或非门的另两个输入端分别为双稳态触发器和振荡器锯齿波。双稳态触发器的两个输出互补,交替输出高低电平,将PWM脉冲送至三极管V1及V2的基极,锯齿波的作用是加入死区时间,保证V1及V2不同时导通。最后,V1及V2分别输出相位相差180°的PWM波。

4.2

PWM驱动模块

4.2.1

驱动电路的设计

驱动电路的设计既要考虑在功率管需要导通时,能迅速地建立起驱动电压,又要考虑在需要关断时,能迅速地泄放功率管栅极电容上的电荷,拉低驱动电压。具体驱动电路如图2.7所示。

图4.2.1

驱动电路

其工作原理是:

(1)当光耦原边有控制电路的驱动脉冲电流流过时,光耦导通,使Q1的基极电位迅速上升,导致D2导通,功率管的栅极电压上升,使功率管导通;

(2)当光耦原边无控制电路的驱动脉冲电流流过时,光耦不导通,使Q1的基极电位拉低,而功率管栅极上的电压还为高,所以导致Q1导通,功率管的栅极电荷通过Q1及电阻R3速泄放,使功率管迅速可靠地关断。

当然,对于功率管的保护同样重要,所以在功率管源极和漏极之间要加一个缓冲电路避免功率管被过高的正、反向电压所损坏。

4.2.2

TDS2285产生PWN波

SPWM的核心部分采用了张工的TDS2285单片机芯片,用其产生为功率主板产生占空比变化的矩形波,通过H桥产生所需的正弦波。U3,U4组成时序和死区电路,末级输出用了4个250光藕,H桥的二个上管用了自举式供电方式,这样做的目的是简化电路,可以不用隔离电源,该模块原理图如图4.2.2(a)所示:

图2-2-1

2.2.1

PWN波的产生

(1)、该模块中是由TDS2285芯片产生PWM波,TDS2285的芯片各管脚资料如图2-2-2:

图4.2.2(a)

PWM驱动电路图

1.该模块所采用的是TDS2285芯片,其管脚如图4.2.2(b)所示

图4.2.2(b)

TDS2285管脚图

2.该模块中TDS2285芯片的工作原理图4.2.2(c)如:

图4.2.2(c)

TDS2285产生PWM波

该芯片的6、7管脚生成交流电正、负半周调制波输出引脚,输出SPWM脉冲,其频率有接在2、3管脚间的晶振来决定。9脚为故障报警输出端,通常驱动一蜂鸣器,同时配合5脚LED的状态,当蓄电池电压输入出现过压或低压时,该蜂鸣器随LED指示灯每隔1秒报警一次,当出现交流过流或者短路时,该蜂鸣器随LED指示灯每隔0.5秒报警一次。13脚为检测蓄电池电压,当13脚的电压超过3V或低于1V时,逆变停止工作,并进入欠压或过压故障状态。通过外接蓄电池上分压来实现。10脚为交流电压稳压反馈输入,实时检测功率主板输出的交流正弦波输出电压变动范围,并作调整输出达到稳定输出电压的目的。

第5章

系统调试

5.1

测试使用的仪器

序号

名称、型号、规格

数量

数字示波器

UT70A数字万用表

函数信号发生器

5.2

输出功率与效率的测试

输出功率的定义:即为电源把其输入功率转换为有效输出功率的能力。

测试框图如下图所示。

先如图布置好测试电路后,进行如下步骤调试:

1.各电路输出电压、电流测量同时进行。

2.开启所有设备、记录输入功率数值及各点输出电压,电流值。

3.计算输入功率Pi=Ui*Ii,输出功率值Po=Uo*Io.4.效率n=Po/Pi*100%,Pi为输入。

5.3

过流保护的测试

定义:当输出电流大于设定保护值时,系统自动关闭输出,形成过流保护。当输出电流小于设定保护值时,系统自动恢复正常工作状态。

测试方法:如图18所示。在输出端接入3个串联10欧电阻作为负载,通过短路其中的一个或两个来模拟过流情况发生。观察系统是否进行过流保护。

图18

过流保护测试框图

测试结果与分析:逆变过程中,过流保护装置在电流大于设定保护值时关闭输出,并在恢复正常时又打开输出。所以过流保护装置正常工作。

5.4

空载待机功能测试

(1)

定义:当无负载接入时,系统关闭输出进入待机模式。当有负载接入时,系统进入正常工作状态。

(2)

测试方法:接入负载后断开负载,观察系统输出状态。

(3)

结果与分析:输出端负载断开5s后系统进入待机状态,此时无输出。再次接入负载,系统就开始进入逆变工作状态。

5.5

输出电压范围测试

(1)

定义输出电压的最大值最小值。

(2)

测试方法:调节电压反馈贿赂的参数,观察输出电压大小。

(3)

测试结果:接入300欧的电阻调节Rp3,输出电压在8~12V之间。

结果分析

经过测试以后题目的基本要求都已经完成,各项性能指标都较好的实现在输出功率稳定时效率达到了93%。同时该电路还具有短路保护,空载保护,过流保护的功能。

第6章

总结

刚刚拿到课程设计的题目时真不知道从哪里开始动手,课题名称里的芯片根本就没听说过。通过上网查找资料,弄清楚了它的功能,才真正开始了设计。但这个东西包括了几个部分,所以一定要把握好它的整体设计思路,在其框架之下,对各部分的单元电路进行分析和设计,最后经过电路的修改,参数的确定,将各个部分连接起来,形成总的电路图。

课程设计虽然大家的课题不是完全一样的,但是大家之间的团队合作还是很重要的,有些地方自己一个人看不明白,通过和同学之间的讨论最终弄明白,这是一个很有趣的过程,我相信通过这次的课程设计我们大家之间对于电力电子的学习取得了更加大的进步。

这次实习我学到了很多。在摸索该如何设计电路使之实现所需功能的过程中,培养了我的设计思维,增加了实际操作能力。在体会设计的艰辛的同时,更让我体会到成功的喜悦和快乐。

通过这两个星期的课程设计,从开始任务到查找资料,到设计电路图,到最后的实际接线过程中,我学到了课堂上学习不到的知识。上课时总觉得所学的知识太抽象,没什么用途,现在终于认识到了它的重要性。平时上课老师讲的内容感觉都听明白了,但真正到了用的时候却不怎么会用了,经过这次课程设计才知道,要真正学好一门课程,并不是把每一章的内容搞懂就行了,而是要将每一章的内容联系起来,融会贯通,并能够应用到实践中去.通过这次课程设计,我学到了不少新知识、新方法、新观点。这次设计不但锻炼了我的学习能力、分析问题与解决问题的能力,同时也锻炼了我克服困难的勇气和决心。

还有本次课程设计最重要的是加强了我的动手能力,平时学习的时候只是片面的认识和照搬书本上的知识,书本知识在实际应用的时候会出现很大的偏差,理论联系实际才是真正的学习之道。要在实际运用的时候结合实际的环境,具体的分析,解决问题,这才是这次课程设计对于我最重要的意义。

附录

总电路图

下载单相思的古诗句word格式文档
下载单相思的古诗句.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    单相半波整流电路教案(合集五篇)

    单相半波整流电路教案.txt爱情是彩色气球,无论颜色如何严厉,经不起针尖轻轻一刺。一流的爱人,既能让女人爱一辈子,又能一辈子爱一个女人! 本文由俺村俺最穷na贡献 doc文档可......

    单相桥式整流滤波电路教案

    单相桥式整流滤波电路教案 我在给12级汽修班讲解整流滤波电路时,发现同学们不太理解工作原理。 刚开始是这样讲的: 1. 简单介绍二极管的单向导电性,然后画出桥式整流电路的原理......

    单相双值电容电动机接线图总结

    单相双值电容电动机接线图总结 单相双值电容电动机接线图: 一、引出六根线:分别是主线2根,副线2根,离心开关2根(判断离心开关两根线的方法是阻止为0),大电容与离心开关串联后接副线......

    基于SG3525设计单相正弦波SPWM逆变电源

    摘 要 本论文所需单相正弦波SPWM逆变电源的设计采用了运算放大器、二极管、功率场效应管、电容和电阻等器件来组成电路。 逆变电源是一种采用电力电子技术进行电能变换的装......

    第2章单相交流电路复习练习题含答案

    第2章复习练习题一、填空1.纯电容交流电路中通过的电流有效值,等于加在电容器两端的电压除以它的容抗。2.在RLC串联电路中,发生串联谐振的条件是感抗等于容抗。3.确定正弦量的三......

    单相桥式整流说课稿[最终定稿]

    《单相桥式整流电路》说课 自我介绍: 各位专家评委,大家好,我叫杨树军,今天我说课的题目是单相桥式整流电路,说课的内容主要分为以下六个方面:教材分析、学情分析、教学目标、教学......

    单相正弦交流电路公开课教案(精选合集)

    【课题】 1.2.1正弦交流电基本概念 【课时】 1课时 【教学目标】 1、掌握正弦交流电的基本概念。 2、了解正弦量的三要素。 【教学重点】 正弦交流电的三要素。 【教学难点......

    机械式单相电能表常见故障的分析与处理

    机械式单相电能表常见故障的分析与处理 1.电能表转盘不转 (1)故障原因:①电能表电压元件无电压,检查电压回路引线、连接片是否按紧。②电压元件烧坏断路。③电流线圈烧断。④......