第一篇:二年级下册奥数倍数问题试题(附答案)
一.看一看、填一填
1倍(1)(黄)花是1倍,(红)花是(3)倍。
黄花: 3倍(2)(红)花比(黄)花多(2)倍。
红花:(3)红花和黄花一共是(4)倍。
二.例题:
1.学校门口摆了8盆黄花,红花的盆数是黄花的4倍。
(1)红花有多少盆?(2)红花比黄花多多少盆?(3)红花和黄花一共有多少盆?
8×4=32(盆)8×(4-1)=24(盆)8×(4+1)=40(盆)
2.动物园的猴山有大猴7只,小猴的只数比大猴的4倍多2只,小猴有多少只?
7×4+2=30(只)
3.(1)学校合唱队有男生10人,女生有40人,女生人数是男生的几倍?
40÷10=
4(2)学校合唱队有男生10人,女生比男生多30人,女生人数是男生的几倍?
(30+10)÷10=4
4.草地上有白兔、灰兔和黑兔一共20只,白兔的只数比灰兔只数的7倍多,8倍少。草地上三种颜色的小兔各有几只?
灰兔2只,白兔15只,黑兔3只
三、练习:
1.饲养小组养了7只黑兔,白兔的只数是黑兔的5倍。
(1)白兔养了多少只?(2)白兔比黑兔多多少只?(3)白兔和黑兔一共养了多少只? 7×5=35(只)7×(5-1)=28(只)7×(5+1)=42(只)
2.小丽看一本故事书,上午看了20页,下午看的比上午的2倍少8页,下午看了多少页?这一天一共看了多少页?20×2-8=32(页)20+32=52(页)
3.植树活动中二年级一班种了12棵树,二班种的比一班多1倍,二班种了多少棵树?两个班一共种了多少棵?2班:12×(1+1)=24(棵)12+24=36(棵)
4. 学校体育器材室有排球20个,足球10个,篮球的个数是排球和足球总个数的2倍,学校体育器材室一共有球多少个?(20+10)×2=60(个)60+20+10=90(个)
5. 计算机小组男生人数比女生人数的2倍少4人,男生比女生多6人。计算机小组男女生各有多少人?女:4+6=10(人)男:10+6=16(人)
女:4+6=10(人)
男:10+6=16(人)
第二篇:二年级奥数
小青把1、2、3、4、……97、98、99、100、101 放在一起,顺次排成一个多位数,123456……99100101,这个大数是几位数?
分析与解 能不能把这个大数写出来,再数一数是几位数?这个办法是可以的,就是太费时间了。
我们可以这样想:1、2、3、4、……
8、9 都是一位数,写一个一位数只用1 个数字,这样1~9 占了9 个数位。10、11、12、……
18、19 20、21、22、……
28、29……90、91、92、……98、99都是两位数,写一个两位数要用2 个数字,占两个数位。10~99 共有10×9=90 个两位数,写出这些两位数,要用2×90=180 个数字,共占去了180个数位。
100、101 是两个三位数,共占了6 个数位。
把1、2、3、……97、98、99、100、101 顺次排成的大数123456…… 99100101,共占了9+180+6=195 个数位,所以这个大数是一个195 位数。
答:这个大数是195 位数。
张小虎做一道乘法题时,把被乘数78写成了87,结果计算的乘积比原来的乘积多了45.张小虎做的乘法题,它原来的算式是几×几?
分析与解根据已知,要求原来的算式是几×几,只要求出算式中的乘数是几就可以了。
张小虎把被乘数78写成了87,比原来的被乘数多了87-78=9,那么所得的乘积必然就多出9与乘数相乘的结果。从题中知道,9与乘数相乘的结果是45,所以乘数一定是45÷9=5.由此得出原来的算式是78×5,当然,积就是390了。
答:原来的算式是78×5.比较345×347和346×346两个算式,哪个算式的乘积大?
分析与解比较这两个算式的乘积的大小时,不必乘出结果来,再比较积的大小。我们只要把算式变化一下,就能得出结果来。
345×347=345×(346+1)=345×346+345 346×346=(345+1)×346=345×346+346上面两式的结果中345×346的积是相等的。一个式子加上345,另一个式子加上346,那当然是加上346的大了。因此346×346的积比345×347的积大。
答:346×346的积比345×347的积大。
两个三位数相减,差是892,那么被减数与减数的各个数位上的6个数字相乘,积是多少?
分析与解两个三位数相减,差的百位数字是8,那被减数的百位数字一定是9,减数的百位数字一定是1.差的十位数字是9,那被减数的十位数字一定是9,减数的十位数字一定是0.至于个位数字是几,那就不必求出了。
由此可知,被减数、减数各个数位上的6个数字中有1个是0了,那被减数、减数各个数位上的6个数字的乘积一定是0.答:积是0.下面的算式是两个三位数相加,其和是1995.每一个□代表一个数字,那么这6个□中的数字总和是多少?
分析与解两个三位数相加,其和是1995,其中一个加数最大也不会大于999,那另一个加数最小也不会小于1995-999=996.这样就可以知道,这两个三位数的百位数字和十位数字的和一定是9×4=36.两个三位数的个位数字之和必定是15.由此得出两个三位数的6个数字之和是36+15=51答:六个数字总和是51.某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?
分析:要求还需要多少秒才能到达,必须先求出上一层楼梯需要几秒,还要知道从4楼走到8楼共走几层楼梯.上一层楼梯需要:48÷(4-1)=16(秒),从4楼走到8楼共走8-4=4(层)楼梯。到这里问题就可以解决了。
解:上一层楼梯需要:48÷(4-1)=16(秒)
从4楼走到8楼共走:8-4=4(层)楼梯
还需要的时间:16×4=64(秒)
答:还需要64秒才能到达8层。
小华、小林、小黄三人期末考试数学成绩总和为289分,已知小华比小林多8分。小林比小黄少8分,三个人各得多少分?
解答:可以知道小华和小黄的分数相同,均比小林多8分,因此小华和小黄的分数为
(289+8)÷3=99(分)小华的人数为91分
小华用压岁钱的一半买了一只新书包,又用余下的一半买了几本连环画,又用余下的一半买了一个铅笔盒,还剩4元,小华的压岁钱一共有多少元?
解答:在买铅笔盒之前小华有4×2=8(元),在买连环画前有8×2=16(元),在买新书包前有16×2=32(元)。因此小华的压岁钱有32元
一桶柴油连桶称重120千克,用去一半后,连桶称还重65千克。这桶里还有多少千克?空桶重多少?
解答:因为一半的油重:120-65=55(千克),所以桶里还有油55千克
桶的重量为120-55×2=10(千克)。
40个人扛100个沙袋,大个子每人扛三袋,小个子每人扛一袋。问:大、小个子各有多少人?
解答:大个子30人,小个子10人。
假设40人全是大个子,那么共可以扛120袋,比实际多120-100=20(袋).现在以小个子去换大个子,每换一个总人数不变,而沙袋数就要减少3-1=2(袋),因为20÷2=10(人),故小个子有10人,大个子有40-10=30(人).
同样,也可以假设100人都是小和尚,也可得到同样结果。
东东、明明两个人的平均年龄是14岁,明明、亮亮两个人的平均年龄是17岁,那么亮亮比东东大几岁?
解答:东东、明明的年龄和是:14×2=28(岁),明明、亮亮的年龄和是:17×2=34(岁),所以亮亮、东东的年龄差为:34-28=6(岁).
1.兄弟二人的年龄之和是25岁,四年后,哥哥比弟弟大5岁,今年哥哥 岁,弟弟 岁.解题思路:在年龄问题中,两人的年龄差是不变的量,在这道题中,兄弟两人相差5岁是不变的量,如果哥哥小5 岁就和弟弟一样大,总数变为25-5=20(岁)相当于弟弟年龄的2倍,可以先求出弟弟的,相应再求哥哥的,或者弟弟大5岁就和哥哥相同,总数变为 25+5=30(岁)相当于哥哥年龄的2倍,可以求出哥哥的,再求弟弟的.解法一:25-5=20(岁)
20÷2=10(岁)
10+5=15(岁)
答:弟弟10岁,哥哥15岁.大白兔和小灰兔共采摘了蘑菇160个。后来大白兔把它的蘑菇给了其它白兔20个,而小灰兔自己又采了10个。这时,大白兔的蘑菇是小灰兔的5倍。问:原来大白兔和小灰兔各采了多少个蘑菇?
解答:(160-20+10)÷(5+1)=25(个)
25-10=15(个)
160-15=145(个)
【小结】这道题是和倍应用题,因为有“和”、有“倍数”。但这里的“和”不是 160,而是160-20+10=150,“1倍”数却是“小灰兔又自己采了10个后的蘑菇数”。线段图如下:
根据和倍公式,小灰兔现有蘑菇(即“1倍”数)
(160-20+10)÷(5+1)=25(个),故小灰兔原有蘑菇25-10=15(个),大白兔原有蘑菇
160-15=145(个)。妈妈今年的年龄比儿子的年龄大27岁,2年前妈妈的年龄是儿子的年龄的4倍。儿子今年的年龄是多少岁?妈妈的年龄是多少岁?
儿子今年的年龄是11岁,妈妈的年龄是38岁.因为妈妈与儿子的年龄差是不变的,2年前妈妈的年龄是儿子的4倍,则年龄差(27)是儿子年龄的4-1=3倍,这年儿子的年龄是27÷(4-1)=9(岁)。
儿子现在的年龄是27÷(4-1)=9(岁).+2=11岁
妈妈现在的年龄是11+27=38(岁)
在一个正六边形的环上插上花,每边插20支,最少要插多少支?
解答:114支。
要求最少插的的数目,所以六个角上都应该插一支花.封闭图形,支数等于段数.每边20-1=19(段),六边19×6=114(支).红红、聪聪和颖颖都戴着太阳帽去参加野炊活动,他们戴的帽子一个是红的,一个是黄的,一个是蓝的。只知道红红没有戴黄帽子。聪聪既不戴黄帽子,也不戴蓝帽子,请你判断红红、聪聪和颖颖分别戴的是什么颜色的帽子
红红(红
蓝)
聪聪(红)
由此得知红红(蓝)聪聪(红)颖颖(黄)明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?
[分析]“多8元”与“多4元”两者相差8-4=4(元),每个人要多出8-7=1(元),因此就知道,共有4÷1=4(人),蛋糕价钱是 8×4-8=24(元).
第三篇:初一奥数题(附答案)44SJHISJSTI
已知-+8与4的和是单项式,求的值.已知+xy=12,xy+=15 求
-(x+y)(x-y)的值? 初一奥数题
2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围. 4.设(3x-1)7=a7x7+a6x6+„+a1x+a0,试求a0+a2+a4+a6的值.
6.解方程2|x+1|+|x-3|=6. 8.解不等式||x+3|-|x-1||>2.
10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.
11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短? 13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.
14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE. 15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB. 16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求
17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.
18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.
19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸? 21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有
23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
24.求不定方程49x-56y+14z=35的整数解.
25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴. 问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152? 27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?
29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度. 30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少? 32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益? 34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲? 35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;(3)求新合金中含锰的重量范围.
参考答案
2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以 原式=-b+(a+b)-(c-b)-(a-c)=b.
3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.
4.分别令x=1,x=-1,代入已知等式中,得 a0+a2+a4+a6=-8128.
10.由已知可解出y和z 因为y,z为非负实数,所以有 u=3x-2y+4z
11.所以商式为x2-3x+3,余式为2x-4 12.小柱的路线是由三条线段组成的折线(如图1-97所示).
我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)
显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.
13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又 ∠AOD+∠DOB=∠AOB=180°,所以 ∠COE=90°.
因为 ∠COD=55°,所以∠DOE=90°-55°=35°. 因此,∠DOE的补角为 180°-35°=145°.
14.如图1-99所示.因为BE平分∠ABC,所以 ∠CBF=∠ABF,又因为 ∠CBF=∠CFB,所以 ∠ABF=∠CFB. 从而 AB‖CD(内错角相等,两直线平行).
由∠CBF=55°及BE平分∠ABC,所以 ∠ABC=2×55°=110°. ① 由上证知AB‖CD,所以 ∠EDF=∠A=70°,②
由①,②知 BC‖AE(同侧内角互补,两直线平行).
15.如图1-100所示.EF⊥AB,CD⊥AB,所以 ∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以 ∠BEF=∠BCD(两直线平行,同位角相等). ①又由已知 ∠CDG=∠BEF. ② 由①,② ∠BCD=∠CDG. 所以 BC‖DG(内错角相等,两直线平行).
所以 ∠AGD=∠ACB(两直线平行,同位角相等).
16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),① 又在△ABC中,∠B=∠C,所以 ∠A+∠B+∠C=∠A+2∠C=180°,所以 由①,②
17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以 又 S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以 S△EFGD=3S△BFD.
设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以 S△CEG=S△BCEE,从而 所以 SEFDC=3x+2x=5x,所以 S△BFD∶SEFDC=1∶5.
18.如图1-102所示.
由已知AC‖KL,所以S△ACK=S△ACL,所以
即 KF=FL. +b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.
21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).
22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75. 于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25. 所以 故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•52 23.设凳子有x只,椅子有y只,由题意得 3x+4y+2(x+y)=43,即 5x+6y=43.
所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.
24.原方程可化为 7x-8y+2z=5.
令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是 而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是
把t的表达式代到x,y的表达式中,得到原方程的全部整数解是
25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,„,由乘法原理,男、女各有 8×7×6×5×4×3×2×1=40320 种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.
(2)逐个考虑结对问题.
与男甲结对有8种可能情况,与男乙结对有7种不同情况,„,且两列可对换,所以共有 2×8×7×6×5×4×3×2×1=80640 种不同情况.
26.万位是5的有4×3×2×1=24(个). 万位是4的有 4×3×2×1=24(个).
万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个: 34215,34251,34512,34521. 所以,总共有 24+24+6+4=58 个数大于34152.
27.两车错过所走过的距离为两车长之总和,即 92+84=176(米).
设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有 解之得
解之得x=9(天),x+3=12(天). 解之得x=16(海里/小时).
经检验,x=16海里/小时为所求之原速.
30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得 解之得
故甲车间超额完成税利 乙车间超额完成税利
所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).
31.设甲乙两种商品的原单价分别为x元和y元,依题意可得 由②有
0.9x+1.2y=148.5,③ 由①得x=150-y,代入③有 0.9(150-y)+1.2y=148.5,解之得y=45(元),因而,x=105(元).
32.设去年每把牙刷x元,依题意得
2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即 2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以 x=1.4(元).
若y为去年每支牙膏价格,则y=1.4+1=2.4(元).
33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则 y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)
=-200(x2-2x+1)+200+1600 =-200(x-1)2+1800.
所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.
34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以 0.4(25+x)=0.6x,解之得x=50分钟.于是
左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.
35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:
x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最
而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.
第四篇:小学二年级下册数学奥数知识点讲解第9课《整数的拆分》试题附答案
小学二年级下册数学奥数知识点讲解第9课《整数的拆分》试题附答案
答案
二年级奥数下册:第九讲 整数的拆分习题解答
第五篇:小学六年级奥数工程问题提高题(附答案)
小学六年级奥数工程问题提高题(附答案)
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
1.解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1 x=10
答:甲乙最短合作10天
3.解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2 又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
答案是15棵
算式:1÷(1/6-1/10)=15棵
6.答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。
7.解: 由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3 时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1 解得x=6
8.答案为6天
9.答案为40分钟。
解:设停电了x分钟
根据题意列方程
1-1/120*x=(1-1/60*x)*2 解得x=40