第一篇:《乘法运算定律 》 教学设计范文
教学目标:
知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。
能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。培养学生观察、比较、抽象、概括等能力。培养学生的数感和符号感。
情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。
教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。
教学难点:应用乘法分配律解决实际问题。
教学工具
课件
教学过程
(一)生活引入,感知规律
1.在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。
2.爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。
3.爸爸和妈妈都爱我,这句话还可以怎样说?
4.小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。
(二)开放探究,建构规律
1.情境引入
讲本学期开学,学校要为一、二、三年级更换桌椅情况:
(课件播放),提出问题,引发学生思考:
(1)请仔细观察大屏幕:
学校为一年级更换3套桌椅共需要多少钱?
学校为二年级更换5套桌椅共需要多少钱?
学校为三年级更换6套桌椅共需要多少钱?
(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?
(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。
(4)谁愿意接着汇报?
2.第一次发现
(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。
小结:每一组算式的结果相等。
(2)我把这两个算式用等号来连接,行吗?
板书:(50+60)×3 = 50×3+60×
3(75+68)×5 = 75×5+68×
5(80+65)×6 = 80×6+65×6
3.第二次发现
(1)再观察这三组算式,还有什么发现吗?
(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?
(3)每人举出一个例子,写在纸上,然后请同桌帮助验证
汇报交流:像这样的例子还能举出一些吗?举的完吗?
4.归纳总结:
(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?
(2)请看大屏幕,你们的意思是这样吗?小声读读。
(3)有什么不懂的词吗?
5.个性化理解
(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。
根据学生回答教师板书:
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)
(3)对于乘法分配律用字母表示感觉怎么样?
(三)激活联系、应用规律。
1.请你把相等的两个算式连线。
(8+13)×4 41×(3+27)
3×(21+6)7×5 +8
41×3 +41×27 3×21 +3×6
7×(5+8)8×4 +13×
4(1)你为什么连得这么快?是计算了吗?
(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?
2.根据乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)谁愿意展示一下你填写的。有不同意见吗?
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?
(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。
3.联系旧知、同已有知识建立联系。
谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。
现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?
(四)课堂小结:
今天,学习了乘法分配律,你有什么想法?
(五)板书设计:
乘法分配律
(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
(a+b)×c = a×c+b×c
第二篇:乘法运算定律教学设计
乘法运算定律练习课
【教学内容分析】
乘法运算定律练习课,这是人教版四年级第二学期的数学教学内容,是学习了乘法运算定律后的一节练习课。
【教学目标】
1、能运用运算定律进行一些简便运算。
2、培养学生根据具体情况,选择算法发展思维的灵活性.3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
【教学重、难点】
重点:能灵活应用乘法的运算定律。
难点:乘法分配律的运用。
【教学准备】 课件 【教学过程】
一、复习导入
老师这儿有几道题,咱们比一比,看谁反应快? 课件依次出示: 12×5 5×2 35×2 25×4 125×8 再出示25×13×4 15×97+15×3 师:这么复杂的题,你们也口算的这么快,怎么算的呀?
师:你们这样想的根据是什么?
同学们的简算意识可真强。能够巧妙地利用我们学过的运算定律,这节课我们就一起运用乘法的运算定律来做一个综合练习。板书课题《乘法运算定律的练习课》
师:同学们,还记得我们学了哪几个乘法运算定律吗?用字母表示法又是怎样表示的呢?请同学来说说。(学生边说,教师边板书)
生1:我们学了有乘法交换律,用字母表示是:a×b=b×a
生2:还有乘法结合律,用字母表示是:(a×b)×c=a×(b×c)生3:还有最后一个是乘法分配律,用字母表示是:(a+b)×c=a×c+b×c或者(a-b)×c=a×c-b×c。
【设计思路:通过回顾整理学过的知识,帮助学生建立知识结构框图。】 师: 是的,乘法分配律会有两种情况,一种是两数的和乘以一个因数,我们是把这两个加数分别与这个因数相乘,再相加;另外一种是两数的差乘以一个因数,解决办法和刚才的两数和做法差不多,只是最后是相减。现在让我们一起来把这些定律读一遍吧!(教师指板书,学生朗读)
同学们,老师今天给你们设置了三个关卡,看哪个小组能顺利通关。顺利通关的小组奖励红旗一面。
【设计思路:通过有趣的情景创设,让学生对练习活动提高兴趣,保持学习的热情。】
二、第一关,基础练习。
1、下面这些算式分别用了什么乘法运算定律?
117×3 + 117×7=117×(3 + 7)
()
15×
5×
4=1
5×
(5
×4)
()
35×46=46×35
()(4+5)
×
a=
4×
a + 5
×a
()
(请学生回答,教师演示课件答案)
生1:第一小题是用了乘法分配律。
师:请全班同学为他评价做对了吗?那第二小题呢? 生2:这题是用了乘法结合律。…… 师:请同学们继续看第一关里的第二个题目,你能填上正确的运算符号和数吗?可以先在自己的练习题本上做一做。2.填一填,在○里填上适当运算符号,在“()”里填上适当的数:(1)()×12=()×30
(2)a×4 + 6×a=()×(○)
(3)(3)85×(100-2)=85×()○85×()
(4)(4)13×25×4=13×(×)
生1:第一题应该是30×12=12×30,这是根据乘法交换律。
生2:这题是用乘法分配律解决,应该是a×4+6×a= a×(4 + 6)……
【设计思路:通过基础题的练习,让学生增强了学习的自信心,从而更有兴趣做以下的练习】
师:同学们,我们第一关的题目顺利通过了,每组的同学都能积极举手回答问题,所以全部组都通关。
三、第二关,提升练习
1、运用乘法运算定律进行简便计算:
(1)2×29×5
(2)13×52 + 13×48
(3)(40-4)×25(4)25×12
(5)78×99 师:请同学们在练习本上自主完成(教师巡视指导)
(投影学生的题目解题情况,集体修订)
师小结:同学们,通过这一题,我们不难发现乘法交换律、结合律都是只有乘法,是同级运算,而乘法分配律是有两个不同的运算符号,是不同级的运算,也就是混合运算。
【设计思路:帮助学生体会到运用定律进行简便计算时,要看清楚算式的特点与数据的特点。】
师:好了,同学们接下来再看看第二关里的第2个题目,请判断对或错:
2、我是小法官:对的打“√”,错的打“×”。
(1)3
5×
16=16
×35
()(2)110×(20+9)=110×20+9
()12×
4×
4×
13= 4
×(12 + 13)
()
×
101=78
×(100 + 1)
()
师:请问第一小题对还是错呢?
生1:第一小题是对的,因为交换两个因数的位置,积是不变的,这是运用了乘法交换律,所以是做对的。
师:这位同学解释得很清楚,掌声鼓励,那下一题呢?请同学来说说。生2:这题是错的,右边应该还要9×110。……
【设计思路:通过判断对错,有助于学生能够避免对相关运算定律的混淆。】
四、第三关,实践运用
师:同学前面两个关卡题目,让我们对乘法的运算定律,有了更深的了解,下面我们运用这些知识解决我们的实际问题吧!(课件出示题目)1:向阳小学有32个班,每班有30人,在一次为希望工程,平均每人捐款5元,向阳小学共捐款多少元?
2:两车同时从甲市开往乙市,小轿车平均每小时行93千米。客车平均每小时行73千米。4小时后,两车相距多少千米?(用两种方法解答)。
师:同学们,当我们进行解决问题的时候需要注意做到什么呢?
生1:要先认真读清楚题目。
生2:要分析数量关系。
生3:要注意写出准确单位和答题要完整。……(学生解答,教师巡视指导,并共同修订)
【设计思路:调动学生原有的知识和经验,发现并提出问题,进而解决问题。让学生在解决问题中感受数学的应用价值,体验学习数学的乐趣。】
五、归纳小结
今天我们一起对乘法运算定律进行了整理和复习。计算时一定要先仔细审题,观察运算符号,再观察数的特征,能简算的,就选择合理的方法,正确运用定律简便计算。不能简便的就按运算顺序来计算。今天的优胜小组是雄鹰小组,红旗奖励他们,大家掌声鼓励!这节课你有什么感受和收获? 【设计思路:通过鼓励学生说出感受和收获,进一步明确这节课所学的内容,并帮助学生对课堂知识进行梳理。】
【作业】完成书本练习题作业
板书设计:
乘法运算定律的复习
乘法交换律:a×b=b×a 乘法结合律:a×(b×c)=(a×b)×c 乘法分配律:(a+b)×c=a×c+b×c
(a-b)×c=a×c-b×c
第三篇:乘法运算定律教学设计
乘法运算定律教学设计
教学内容:P24——25例
5、例6。教学目标
1.引导学生探究和理解乘法交换律、乘法结合律,能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:理解乘法交换律、乘法结合律,能运用运算定律进行一些简便运算。教学难点:
1.能灵活运用乘法结合律解决简单的实际问题,提高计算能力。2.能用自己的语言描述乘法交换律,并会用字母表示。教具学具:多媒体课件 教学过程
创设情境,生成问题
1、旧知复习:
(1)师:我们已经学习了两条加法运算定律,同学们还记得吗?谁能说一说?什么是加法交换律,用字母应该怎样表示?加法结合律呢?
(2)学习加法运算定律时采用的教学思路是怎样的? 引导学生思考、回答:
教师板书:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
2、引入新课:回答的真不错~!今天我们来学习新的运算定律
3、教师谈话引出情景:一 引入新课
环境保护对于人类是非常重要的,我们总是要力所能及的保护地球,保护环境。植树就是一项非常有意义的事,大家都参加过植树活动吗?看光明小学的同学们,正在植树呢。我们一起去看看吧(出示主题图)
看,这就是他们热火朝天植树活动的现场。从图上你发现了哪些数学信息?根据这些数学信息你能提出哪些数学问题?让学生充分发言,根据学生的回答老师板书3个问题:(1)负责挖坑、种树的一共有多少人?(2)一共要浇多少桶水?
(3)一共有多少名同学参加了这次植树活动?
教师说明:这节课我们先来解决前两个问题。引导学生看第一个问题:负责挖坑、种树的一共有多少人?应该怎样列式? 指名列式,并说明列式依据。教师板书:4×5和25×4 探索交流、乘法交换律:(1)探究、发现问题:
师:4×25和25×4得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(引导学生回答,明确:4×25=25×4)(2)举例验证:
师问:你还能举出类似的例子吗?
(指名举例,教师板书:如,35×2=2×35 60×30=30×60)概括规律: a、总结定律:
师问:从以上几组算式中你能发现什么,能用自己的话说出你发现的规律吗?
提醒学生由加法交换律的总结思路想,总结好后说给同桌听。汇报得出结论,板书定律:交换两个因数的位置,积不变。b、定律命名:
师问:这个规律叫什么名字呢?
学生可能马上说出:乘法交换律,再让学生说是怎么想到的。c、用字母表示定律:
师谈话:请用你喜欢的方式表示乘法交换律,看谁的方法既简单又清楚。学生很容易想到:用字母表示:a×b=b×a,对学生的表现给予肯定,板书公式:a×b=b×a 让学生判断:这里的a 与b可以是哪些数?(任意数)(4)乘法交换律的应用:
教师提问:以前我们什么时候用过乘法交换律?引导学生回忆:做乘法验算时。
完成“做一做”前两道,指名板演,订正。教师谈话:用这个定律时该注意什么?(数不能变化,运算符号不能错)
三、教学乘法结合律:
师;下面我们解决第2个问题:一共要浇多少桶水?
让学生观察主题图,提问:要解决这个问题必须先求什么?要几步?怎样列算式? 让学生独立列式解答。
小组讨论:小组同学之间互相比较选择的算法是否相同,组长作好不同算法记录。汇报交流,根据学生回答老师板书两种算法:(25×5)×2 25×(5×2)
比较两种算法的异同,明确(25×5)×2=25×(5×2)
2、举例验证:
让学生自己再举几个例子填到课本25页,汇报板书学生举的例子。教师出示:观察下面每组的两个算式,它们有什么关系?(15×4)×10 ○ 15×(4×10)(125×8)×5 ○ 125×(8×5)学生计算后,指名回答,明确是相等关系。
3、小组合作学习,概括规律:
让学生观察以上所有算式,回忆加法结合律的总结思路,小组同学之间讨论:你发现了什么规律? 讨论这个规律的命名和字母表示方法。
最后汇报交流,板书:乘法结合律:(a×b)×c=a×(b×c)让学生说说运用乘法结合律时注意问题。
4、加法交换律和乘法交换律、加法结合律和乘法结合律的比较 教师提问:比较所学的四个定律,你发现了什么?学生小组讨论后汇报。教师出示:交换律是两个数相加、相乘的规律,即换加(因)数的位置,和(积)不变;结合律是三个数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
四、回顾整理:
这节课通过同学们的观察与思考,自己发现并总结出了乘法交换律结合律,乘法结合律,今后同学们做题时,要仔细观察题目特点,更准确更简便地把题目计算出来。
第四篇:乘法运算定律教学设计
乘法运算定律
教学目标
1.引导学生探索和理解乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学重点:乘法交换律、结合律和分配律的学习。教学难点:乘法交换律、结合律和分配律在计算中的应用。教学过程
第一课时
一
引入新课
环境保护对于人类是非常重要的,我们总是要力所能及的保护地球,保护环境。植树就是一项非常有意义的事,大家都参加过植树活动吗?看看小明的同学们,正在植树呢。我们一起去看看吧
二、新课学习
看他们热火朝天的植树真辛苦啊。你能提出什么数学问题吗? 学生交流、汇报,教师选择记录。乘法交换律
首先我们就来解决这个问题,负责挖坑、种树的一共有多少人? 一共有25组,每组有4个人负责抬水、浇树。那么可以怎样列式呢?
25×4○4×25 观察这两个算式,你发现了什么?
也就是说25×4和4×25的结果是一样的,都是100.那也就是说这两个算式可以用等号连接
25×4=4×25 你还能写出类似的算式吗?
例如:86×4=4×86,100×33=33×100 观察这些算式,你能用一句话说一说这个规律吗?
让学生用自己的语言说一说,主要是说的清楚,理解规律,不要求一字不差。教师总结:交换两个因数的位置,积不变。这个规律是不是听起来很耳熟,你能给它起个名字吗? 这就是乘法交换律。你能用字母表示吗?
a×b=b×a
三、巩固练习
(1)26×8=()×()(2)56×()=35×()
四、课堂总结
说一说今天你有什么收获
第二课时
一、引入新课
接下来我们来解决另外一个问题:一共要浇多少桶水?
二、新课学习
一共有25组,每组要植树5棵,每棵树要浇水2桶。那么可以怎样列式呢?
25×5×2 请你算一算,看看谁的方法比较巧妙。观察这两个算式,你发现了什么?
也就是说无论先计算那两个数的积,最后的结果是一样的,那也就是说这两个算式可以用等号连接。
(25×5)×2=25×(5×2 但是在不改变运算结果的前提下,有时候改变运算顺序会让我们的计算变得简便。你还能写出类似的算式吗? 例如:
观察这些算式,你能用一句话说一说这个规律吗?
让学生用自己的语言说一说,主要是说的清楚,理解规律,不要求一字不差。教师总结:先乘前两个数,或者先乘后两个数,积不变。你能给这个规律起个名字吗?
这就是乘法结合律。也就是说把能够让计算变得简便的两个数先结合起来相乘,再乘第三个数,这样就能算的又对又快。你能用字母表示吗?(a×b)×c=a×(b×c)
三、巩固练习怎样简便怎样算
17×25×4 125×29×8
四、课堂总结
这节课你学到了什么?有什么收获?和大家交流一下
第三课时
一、引入新课
还记得们知道了乘法的那些运算律吗?谁来说一说。乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)学习今天我们来继续探究乘法的运算律,看看是不是还有什么新的规律。
二、新课学习
还是来解决植树时的一个问题:一共有多少名同学参加了这次植树活动? 一共有25组,每组里4个人挖坑种树,2个人抬水浇水。那么可以怎样列式呢?请你算一算,看看谁的方法比较巧妙。
教师巡视,然后挑出做法比较典型的学生汇报。全班讨论(4+2)×25和4×25+2×25的相同于不同之处 一共有25组,每组里4个人挖坑种树,2个人抬水浇水。那么可以怎样列式呢?请你算一算,看看谁的方法比较巧妙。
教师巡视,然后挑出做法比较典型的学生汇报。全班讨论(4+2)×25和4×25+2×25的相同于不同之处
三、巩固练习
播放课件:乘法的分配律和结合律——由北京国之源软件技术有限公司提供
四、课堂总结
我们学习了乘法的交换律、结合律还有分配律,合理应用这些规律会让计算变得简便
第五篇:乘法运算定律教学设计
第二节乘法运算定律
第1课时 乘法交换律和乘法结合律
教学目标:
1.引导学生探索和理解乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重难点:
重点:乘法交换律、结合律的学习。难点:乘法交换律、结合律在计算中的应用。教学过程:
一、复习导入(课件展示)
在上节课中,我们学习了关于加法的一些运算定律,哪位同学可以带大家回顾一下。1.一共有多少个五角星?
★ ★ ★ ★ ★
★ ★ ★ ★ ★ 5 × 5 = 25(个)问学生乘法定义,★ ★ ★ ★ ★ 求几个相同加数的和的简便运算,★ ★ ★ ★ ★ 叫做乘法。
★ ★ ★ ★ ★ 2.口算
× 5 = 35 × 2 = 23 × 2 = 2 × 54 = 16 × 5= 25 × 6=(板书:乘法运算定律
(一))
二、探究新知 1.乘法交换律
★负责挖坑种树的一共多少人? 4 × 25 = 100(人)25 × 4 = 100(人)
从这里我们可以知道: 4 × 25 = 25 × 4 左右都是“×” 左边=右边
那么,老师举个例子,同学们来说一说: × 8 = 8 × 25 105 × 23 = 23 × 105 46 × 9 = 9 × 46 24 × 776 = 776 × 24 从这里我们可以看出这个式子左右两边是相等的,两个因数也是相等的,这样我们可以总结出一个什么规律?
生1:两个因数相乘,可以交换因数的位置。生2:它们交换位置结果不变。
课件展示:两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。
那么,我们用字母可以怎么表示? 学生总结a × b = b × a(课件展示)★开小火车练习(课件展示练习题)
35×102 47×101 25×44 98×37 87×199 25×199 2.乘法结合律
通过学习我们知道了乘法交换律,那么你还有什么问题想要了解的?
★一共要交浇多少桶水? 学生举手回答:(课件展示)
(25 × 5)× 2 25 ×(5× 2)=125 × 2 =25 × 10 =250(桶)=250(桶)观察这三组算式,你有什么发现?
生:数字一样,结果一样,括号位置不一样......数字的位置没有改变,计算的顺序稍微变了,积没变。所以我们可以这样写:(25 × 5)× 2 = 25 ×(5× 2)结合我们前边学习的乘法交换律谁来总结一下这两个式子的规律?
学生总结:三个数相乘,先将前两个数相乘或者先乘后两个数,积不变。这叫做乘法结合律。(课件展示)那谁能用字母表示一下?
生:(a × b)× c =a ×(b× c)(课件展示)
★(25×4)×6 8×(7×25)(25×115)×4
30×(6×7)(a×b)×c 125×(8×40)3.练习课本第27页练习题。
三、总结
今天我们学习了关于乘法的哪些运算定律?(学生回答)那么我们学习乘法交换律和结合律的目的是什么?(计算简便)那在今后我们遇到乘法计算题的时候,我们是不是可以运用乘法交换律和结合律使我们计算更加简便呀!
四、板书
乘法运算定律
(一)乘法交换律:两个数相乘,交换两个因数的位置,积不变。
a × b = b × a 乘法结合律:三个数相乘,先将前两个数相乘或者先乘后两个数,积不变。
(a × b)× c =a ×(b× c)