第一篇:小鹅吃草教案
游戏名称:户外游戏——小鹅吃草
游戏目标:
1、教幼儿练习在斜高15—20厘米的斜坡上走上走下,发展幼儿平衡能力。
2、培养幼儿勇敢、不怕困难、活泼开朗的性格。
游戏准备:
1、斜高15—20厘米的长斜坡二块至四块。(用平衡木代替时,宽度不
少于25厘米)
2、在斜坡一端画上小草。
游戏玩法:
幼儿四散跟着老师边念儿歌“我们都是小白鹅,扑通扑通跳下河”边做模仿动作:小鹅走,小鹅叫,小鹅游水,小鹅理毛,小鹅转圈,小鹅捉鱼等。
分配角色,幼儿站成两路纵队扮演小鹅,教师扮演鹅妈妈,提醒“小鹅”看清“鹅妈妈”是怎样走过斜坡的。“鹅妈妈”:“小鹅,小鹅叫哦哦,摇摇摆摆走上坡,脚步走稳下了坡。”边念儿歌边示范动作。
“鹅妈妈”:“孩子们,你们走到斜坡上去吃草吧!”“小鹅”依次走上斜坡并模仿小鹅吃草的动作。“鹅妈妈”:“天黑了。小鹅快回来吧!”“小鹅”回到原处。游戏反复进行两三次。教师注意提醒幼儿上坡下坡时身体不要摇晃。
活动建议:
1、架起的木板要牢固,下坡时防止幼儿碰撞。
2、最好利用幼儿园内或附近的土坡代替架起的木板。
活动延伸:
此游戏可在户外体育活动时继续进行,或在散步时间利用自然地形练习。
第二篇:牛吃草教案
牛吃草教案
教学目的:让学生了解什么是“牛吃草”问题以及其特点;
掌握“牛吃草”问题涉及的关键的量以及求解方法;
熟练运用“牛吃草”的方法,解决“牛吃草”的一些变形问题。主要知识点:
基本特点:原草量和新草生长速度是不变的;
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
关键问题:确定两个不变的量(1、原有总草量;
2、草的生长速度)。基本公式:
①生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
②总草量=较长时间×长时间牛头数-较长时间×生长量 ③吃的天数=原有草量÷(牛头数-草的生长速度);
④牛头数=原有草量÷吃的天数+草的生长速度。例题引导:
目的:引导学生自己归纳总结出来牛吃草的特点:
引例1:有一堆干草:10头牛吃15天,问如果是25头牛,可以吃几天?(6天)
计算很简单,主要引导同学们知道把牛每天吃草量设为单位“1”。
在计算下两种情况下,总草量是否一样?(完全一样为:150)引例2:一片青草地,牧草每天都在匀速生长,18头牛吃16天,但是,27头牛吃8天,让学生算算原有草量是多少?
(老师给出算法:也是设一头牛一天吃单位1的草量)
情况1:
18*16=288,情况2:
27*8=216(提问:为什么不一样)
引导学生分析出来,草每天还要均匀生产,时间长,草就长的多,影响了牛吃的总草量,并分析出来牛吃的总草量由什么组成(可以与引例1想比较说明这点)。
即:牛吃的总草量=原有总草量+草的生长总量
草的总生长量=草的生长速度*天数 让学生求:原有总草量和草的生长速度
方法:设1头牛一天吃的草为1份,那么18头牛16天吃的就是18*16=288份,是原有的草和16天新长出来的草;27头牛8天吃的就是27*8=216份,是原有的草和8天新长出来的草。由于原有的草量不变,所以相差的288-216=72份草,是16-8=8天所长出来的,即每天长72÷8=9份(草的生长速度)。也就是说,每天要有9头牛专吃新长出来的草,总草量才不变,所以牧场上原有的草有(18-9)×16=144份(原有总草量)。(以上解答,可以画线段图,可以刚好帮助学生理解分析)追加一问:现在,如果是21头牛可以吃几天?(学生自己解答)一定强调:生长出来的草可以供牛吃,不是全部的牛吃原因草量,所有草吃光为止!
讲解,先去掉9头牛吃新长出来的草,剩下的吃原有的草,可以吃144÷(21-9)=12天。总结:
这类总量不断变化的问题就是英国大数学家牛顿提出的“牛吃草”问题,也有人称之为“牛顿问题”。(所以不是马吃草)特点:①原草量②新草生长速度是不变的 解题思路说明:
(1)解牛吃草问题,一般是先求出每天新长出来的草量,它是通过对比两种不同吃法而得出的;
(2)求出每天新长出来的草量之后,可以让一些牛专吃新长出来的草,剩下的牛吃原有的草,可根据后一种吃法求出原有的草量;
(3)在所求的问题中,让一些牛专吃新长出来的草,剩下的牛吃原有的草,易求出吃的天数。可以给出公式:
①生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
②总草量=较长时间×长时间牛头数-较长时间×生长量 ③吃的天数=原有草量÷(牛头数-草的生长速度);
④牛头数=原有草量÷吃的天数+草的生长速度(可以在出一问说明或者条件反过来说明)。
巩固:牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?
例2:一艘木船发生了漏水事故,水匀速的涌入。3人淘40分钟可以把水淘完,5人淘,20分钟可以把水淘完。现在由6人把水淘完,需要多长时间? 【分析与解答】
分析:从表面上看,本题中没有牛吃草,但是因为总的水量不断改变,我们把“水”看作“草”,涌入的水就相当于新长出来的草,船内原来已漏进的水就相当于原有的草,人淘水就相当于牛吃草,所以本题的实质也是牛吃草的问题,解法与例1相似。
设1人1分钟淘的水量为1份,那么3人40分钟淘的水是3×40=120份,5人20分钟淘的水量是5×20=100份,这两次所淘的水量中都包括原来已经漏进的水量和从开始淘到淘完这段时间内又涌入的水量,所以相差的120-100=20份水是40-20=20分钟涌入的,所以每分钟涌入的水量为20÷20=1份。显然,1人专淘涌入的水,原有的水量不变。因此,原有的水量为(3-1)×40=80份。
现在,要求6人几分钟把水淘完,先让1人专淘涌入的水,剩下的人淘原有的水,可以淘80÷(6-1)=16分钟。例3:某电影院在检票前若干分钟就开始排队,每分钟来的观众人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。现在要使队伍10分钟消失,那么需要同时开几个检票口? 【分析与解答】
分析:等待检票的观众人数在变化,“观众”相当于“草”,“检票口”相当于“牛”,所以本题实质上也是一道牛吃草的问题。总的草量相当于观众总人数,即开始检票前已经在排队的原有观众和检票开始后新来的观众。
设1个检票口1分钟检票的观众人数为1份,那么4个检票口30分钟通过的人数为4×30=120份,5个检票口20分钟通过的人数为5×20=100份,说明在30-20=10分钟内新来的观众人数为120-100=20份,所以每分钟新来观众为:(4×30-5×20)÷(30-20)=2份
显然,让2个检票口检新来的观众,等待的队伍人数不变,其余的检票口检原有的观众,原有观众为:(4-2)×30=60份。
现在,要在10分钟内检完票,使观众不再排队等候,应让2个检票口专检新来的观众,以使原有人数不变,原有人数从其他检票口10分钟通过,所以共需要的检票口为: 60÷10+2=8个。例4:自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级?
分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题。
上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度。男孩5分钟走了20×5= 100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级。由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级)。
解:自动扶梯每分钟走
(20×5-15×6)÷(6—5)=10(级),自动扶梯共有(20+10)×5=150(级)。答:扶梯共有150级。
例
5、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头牛吃10天? 分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量。
设1头牛1天吃的草为1份。20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草。由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份)。
由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天。练习与巩固
1.一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周或供30头牛吃5周,问可供42头牛吃几周?
2.有一水池,池底有泉水不断涌出。用10部抽水机20时可以把水抽干;用15部同样的抽水机,10时可以把水抽干。那么,用25部这样的抽水机多少小时可以把水抽干?
3.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。如果同时开放3个检票口,那么40分钟检票口前的队伍恰好消失;如果同时开放4个检票口,那么25分钟队伍恰好消失。如果同时开放8个检票口,那么队伍多少分钟恰好消失?
4.两位顽皮的孩子逆着自动扶梯的方向行走。在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端。问:该扶梯共多少级?
5.由于天气逐渐变冷,牧草上的草每天以均匀的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?
第三篇:牛吃草教案
牛吃草问题
教学目的:让学生了解什么是“牛吃草”问题以及其特点;
掌握“牛吃草”问题涉及的关键的量以及求解方法;
教学难点:推导解决牛吃草问题的方法和过程 基本特点:原草量和新草生长速度是不变的;
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
一、例题引导:
目的:引导学生自己归纳总结出来牛吃草的特点:
课前热身:“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”
引导学生知道把牛每天吃草量设为单位“1”。
如果我们把“一堆草”换成“一片正在生长的草地”。算法还一样吗?
提问:为什么不一样?
引导学生分析出来,草每天还要均匀生产,时间长,草就长的多,影响了牛吃的总草量,并分析出来牛吃的总草量由什么组成。
揭示:这类总量不断变化的问题就是英国大数学家牛顿提出的“牛吃草”问题,也有人称之为“牛顿问题”。(播放课件)特点:原草量、新草生长速度是不变的
二、新授
讲解例1 一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在匀速生长)解题思路说明:
(1)牛吃草问题,一般是先求出每天新长出来的草量,它是通过对比两种不同吃法而得出的;
(2)求出每天新长出来的草量之后,可以让一些牛专吃新长出来的草,剩下的牛吃原有的草,可根据后一种吃法求出原有的草量;
(3)在所求的问题中,让一些牛专吃新长出来的草,剩下的牛吃原有的草,求出吃的天数。公式:
牛头数=原有草量÷吃的时间+草的生长速度
练习:一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天?(生独立完成,展示讲解)
讲解例2:有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?
这道题和上一题相比,有什么异同?
让生算出新生草和原有草,引导学生得出吃的时间的算法。吃的时间=原有草量÷(牛头数-草的生长速度);
练习:一只船发现漏水时,已经进了一些水了,水是匀速进入船内,如果10人淘水的话,3小时可以淘完;如果是5人淘水的话,8小时可以完成。如果要求2小时淘完,要安排多少人淘水?
引导学生说一说这一题为什么可以看做牛吃草问题。我们把“水”看作“草”,涌入的水就相当于新长出来的草,船内原来已漏进的水就相当于原有的草,人淘水就相当于牛吃草,所以本题的实质也是牛吃草的问题。
三、总结与练习
总结牛吃草问题的特点,总结解题步骤。步骤:
①生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
②总草量=较长时间×长时间牛头数-较长时间×生长量 ③吃的时间=原有草量÷(牛头数-草的生长速度);
④牛头数=原有草量÷吃的时间+草的生长速度。练习巩固2题,生独立完成。
第四篇:牛吃草问题教案
牛吃草问题
牛吃草问题量的关系:
例1:一片草地长满了匀速生长的牧草,可供10头牛吃20天,15头牛吃10天,问可供25头牛吃多少天? 1:先求每天新生长的草量: 2:再求这片草地原有的草量: 3:最后求可供25头牛吃几天: 【学以致用】
1、一片牧草,每天生长的速度相同,这片牧草可供10头牛吃20天,或供15头牛吃10天,问可供30头牛吃多少天?
2、有一片牧场,已知牛27头,6天把草吃尽,牛23头,9天把草吃尽,如果有牛21头,几天能把草吃尽?
3、一片牧场长满草,每天匀速生长,这片牧场可供5头牛吃8天,或供14头牛吃2天,问可供10头牛吃几天?
4、有三块草地长满了草,每公顷草量都相同且每天匀速生长,第一块草地有10公顷,可供220只羊吃10天,第二块草地有12公顷,可供240只羊吃14天,第三块草地16公顷,可供380只羊吃多少天?
例2:博物馆开门前就有参观的观众排队等候,每分钟来参观的人数一样多,打开4道门让人们进馆参观,30分钟就不再有排队的现象,打开5道门时,20分钟就不再有排队的现象,如果同时打开7道门,需要几分钟不再有排队的现象? 1:先求每分钟进来的观众量: 2:原来排队的观众量:
3:同时打开7道门,需要几分钟: 【学以致用】
1、一水池有一根进水管,有若干根抽水管,进水管不断进水,若用24根抽水管抽水,6小时可以把池中的水抽干,若用21根抽水管抽水,8小时可将池中的水抽干,那么用16根抽水管多少小时可将水池中的水抽干?
2、某火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票,一个检票口每分能让25人检票进站,如果只有一个检票口,检票开始8分后就没有人排队,如果有两个检票口,那么检票后多少分就没有人排队?
3、画展9时开门,但早有人来排队等候入场,从第一个观众来到时起,每分钟来的观众人数一样多,如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队,那么第一个观众到达的时间是几点?
例3:一个水塘原有水量一定,有流水每天均匀的流入池塘内,用5台抽水机20天可以抽干,用6台同样的抽水机15天可以抽干,若要6天抽干,需要多少台同样的抽水机?
1:水塘每天流入的水量: 2:水塘原有水量:
3:需要多少台同样的抽水机: 【学以致用】
1、一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光,那么想用4天时间把这块草地的草吃光,需要多少只羊?
2、有一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时船内已经进了一些水,如果用12个人淘水,3小时可以淘完,如果只有5个人淘水,要10小时才能淘完,现在想2小时淘完,需要多少人?
3、饲料厂除原有的一批饲料外,每天都生产相同数量的饲料供应周围的养鸡场,现在用5辆汽车拉厂里的饲料10天可以拉完,如果再增加7辆汽车,3天可以拉完,现在要求在2天内拉完所有的饲料,需要多少辆汽车?
4、某海港货场不断有外洋轮船卸下货物,又不断用汽车把货物运走,如果用9辆汽车,12小时可以清场,如果用8辆汽车,16小时可以清场,该场开始只用3辆汽车,10小时后增加了若干辆,再过4小时就已清场,那么后来增加的汽车是多少辆?
第五篇:鹅鹅鹅教案
鹅鹅鹅教案
打招呼:小朋友们,早上好!我是王老师!请问小朋友,早餐有没有吃鸡蛋?鸡蛋营养又健康,多吃就能长的高高的。有一个问题把我难住了,我不会,看小朋友们会不会,能不能帮到我。除了鸡和鸭会下蛋,还有什么动物会下蛋?恐龙,鹅。如果猜不出可以给点提示(我要给大家分享一首好听的歌曲。)放音乐。多么好听的音乐啊!出示 鹅的图片。引导幼儿认识鹅。我们来看一下鹅长的什么样。平板出示图片:
鹅的嘴巴是什么形状,什么颜色?红色的 它的叫声是什么样的?放鹅叫声。鹅的叫声好好听啊,就像唱歌一样好听。鹅的脖子是短短的,还是长长的?鹅伸着弯曲的脖子,叫出声音就像唱歌一样好听。(好,请你大声跟我念:曲项向天歌)
鹅的羽毛是……色的,翅膀上的羽毛也是白色的。当它张开翅膀的时候会不会飞起来?飞楼飞下水(带动作),它白色的翅膀是漂浮在水面上,还是被水淹住了?(那好,请你大声跟我念:白毛浮绿水)鹅的脚掌是什么形状的?什么颜色的?鹅会不会游泳?它用脚掌波着水就前进了。(请你大声跟我念:红掌拨清波)接下来,让我们来整体学一下。集体跟读古诗三遍。
发美术填色纸,让小朋友给鹅涂色。重点是嘴巴,脚掌,羽毛。绿水。涂好之后,对照着纸,跟老师读诗。会背为止。请幼儿起立。学习肢体动作。学会后跟着音乐边唱边做动作。作业:回到家给爸爸妈妈讲讲大白鹅,是什么样子的!