高一上学期数学单元测试第一册_第1章_集合与函数

时间:2019-05-15 02:42:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高一上学期数学单元测试第一册_第1章_集合与函数》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一上学期数学单元测试第一册_第1章_集合与函数》。

第一篇:高一上学期数学单元测试第一册_第1章_集合与函数

七彩教育网 http://www.xiexiebang.com

高中学生学科素质训练系列试题 高一上学期数学单元测试(1)

[原人教版] 第一册 第1章

注意事项:

1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。

2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。考试结束,试题和答题卡一并收回。

3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。

第Ⅰ卷

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。1.下列命题说法正确的是

()

A.方程x2+2x+1=0的根形成集合{-1,-1} 2x10B.{x∈R|x2+2=0}=xR|}

x30C.集合{1,3,5}与集合{3,5,1}是不同的集合

D.集合M={(x,y)|x+y=5,xy=6}表示的集合是{2,3} 2.以下四个关系:∈{0},0∈,{}{0},{0},其中正确的有 A.1个 B.2个 C.3个 D.4个 3.已知全集U={a,b,c,d,e,f,g,h},A={c,d,e},B={a,c,f},那么集合{b,g,h}等于

A.A∪B B.A∩B

C.(UA)∪(UB)

()

D.(UA)∩(UB)4.下列语句不是命题的有

()

①x2-3=0

②与一条直线相交的两直线平行吗?

③3+1=5 ④5x-3>6. A.①③④ B.①②③ C.①②④ D.②③④

5.下列命题为简单命题的是

()

七彩教育网 全国最新初中、高中试卷、课件、教案免费下载 七彩教育网 http://www.xiexiebang.com

A.5和10是20的约数 C.6是无理数

B.正方形的对角线垂直平分 D.方程x2+x+2=0没有实数根

()()6.若A、B是两个集合,则下列命题中真命题是

A.如果AB,那么A∩B=A

B.如果A∩B=B,那么AB

C.如果AB,那么A∪B=A

D.如果A∪B=B,那么BA

7.设U为全集,P、Q为非空集合,且PQU,下面结论中不正确的是

A.(UP)∪Q=U

B.(UP)∩Q=

 

()C.P∪Q=Q D.P∩(UQ)=2x48.不等式组的解集是{x|x>2},则实数a的取值范围是

3xa0 A.a≤-6 B.a≥-6 C.a≤6 D.a≥6 9.若|x+a|≤b的解集为{x|-1≤x≤5},那么a、b的值分别为

A.2,-3 B.-2,3 C.3,2 D.-3,2 10.一元二次方程ax2+bx+c=0(a≠0)有一个正根和一个负根的充要条件是

A.ab>0 B.ab<0 C.bc>0 D.ac<0 11.在如图的电路图中,“开关A的闭合”是“灯泡B亮”的________条件

A.充分非必要

B.必要非充分

C.充要

D.既非充分又非必要

12.设集合M={x|x>2},P={x|x<3,那么“x∈M或x∈P”是“x∈M∩P”的

A.充分非必要条件

C.充要条件

B.必要非充分条件

D.既不充分也不必要条件

()()

()

第Ⅱ卷

二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。

13.设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0},若S∩T={(2,1)},则a=_______,b=_______. 14.集合{(x,y)|xy=0}表示直角坐标平面上位于_______上的点的集合;集合{(x,y)|x>0,y<0

七彩教育网 全国最新初中、高中试卷、课件、教案免费下载 七彩教育网 http://www.xiexiebang.com

表示直角坐标平面上位于______点的集合;集合{(x,y)|xy<0表示直角坐标平面上位于__________的点的集合.

15.命题:“5的值不超过3”看作“非p”形式时,p为________;看作是“p或q”形式时,p为________,q为________. 16.下列命题中_________为真命题.

①“A∩B=A”成立的必要条件是“AB”,②“若x2+y2=0,则x,y全为0”的否命题,③“全等三角形是相似三角形”的逆命题,④“圆内接四边形对角互补”的逆否命题,三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。17.(12分)某地对100户农户的生活情况作了调查,交来的统计表上称:有彩电的65户,有电冰箱的84户,二者都有的53户.

(1)问彩电与冰箱至少有一种的有几户?

(2)若二者全无的只有2户,问这一统计数字正确吗?

18.(12分)已知全集U={x|-4≤x≤4,x∈Z},A={-1,a2+1,a2-3},B={a-3,a-1,a+1},且A∩B={-2},求

19.(12分)已知U={x|x2-3x+2≥0},A={x||x-2|>1},B={x|∪B,A∩(七彩教育网 全国最新初中、高中试卷、课件、教案免费下载 UB). U(A∪B).

x1≥0},求A∩B,A∪B,(x2UA)七彩教育网 http://www.xiexiebang.com

参考答案

一、选择题

1.B解析: A、C为巩固集合的概念,集合中的元素必须是互异的、无序的.∴方程x2+2x+1=0的根形成集合{-1},集合{1,3,5}与集合{3,5,1}是同一集合;B中,2x10{x|x2+2=0}=,x,(3,2)},而{2,3}=,∴两集合相等;D中,M={(2,3)x30的元素是实数,是不同集合.

2.A解析: {}是以作为元素的一个集合.

3.D解析:本题主要考查交集、并集、补集的有关概念.

4.C解析: 可以判断真假的语句(包括式子)叫做命题.其中①④在不给定变量值之前,无法判定真假;②是问句,不涉及真假.

5.C解析: 不含逻辑联结词的命题叫做简单命题,A、B是p且q的形式,D是非p的形式. 6.A解析: 由图(1)可知:A正确,C,D不正确.由图(2)可知:B不正确.

7.B解析:本题考查文氏图及集合间的关系.

8.B解析:本题考查利用数轴求两个不等式的交集. 9.B解析:本题考查含绝对值不等式|x|≤a的解法. 10.D解析: ∵a≠0,∴方程有一个正根和一个负根x1x2=11.B解析: 由“A闭合”

c<0ac<0. a“B亮”可知是B亮的必要非充分条件.

12.B解析: M∩P={x|2<x<3=,M∪P={x|x>2或x<3==R

二、填空题

七彩教育网 全国最新初中、高中试卷、课件、教案免费下载 七彩教育网 http://www.xiexiebang.com

x2axy30a113.1;1解析: 由S∩T={(2,1)},可知为方程组的解,解得.

xyb0y1b114.坐标轴

第四象限

第二或第四象限解析:本题考查坐标系中的点的集合表示.、15.5>3;5<3;5=3解析: “不超过”用“≤”表示,它的否定是“>”,“不超过”用“≤”表示时可看作“<”或“=”的复合形式.

16.②④解析: ①A∩B=AAB但不能得出AB,∴①不正确.

②否命题为:“若x2+y2≠0,则x,y不全为0”,是真命题; ③逆命题为:“若两个三角形是相似三角形,则这两个三角形全

等”,是假命题; ④原命题为真,而逆否命题与原命题是两个等价命题,∴逆否命题也为真命题.

三、解答题

17.本题考查集合的交、并运算及利用文氏图求解集合的方法.

解法一(1)(文氏图法)

设A={有彩电的农户},B={有冰箱的农户},全集U={调查的 100户农户},由题可知A∩B={53户农户}. ∴彩电冰箱至少有一种的农户有96户.

(2)若二者全无的只有2户,加上彩电冰箱至少有一种的农户,共有98户,少于100户,故这一统计数据不正确. 解法二(1)(运用公式)

(1)由题可知card(A)=65,card(B)=84,card(U)=100,card(A∩B)=53,由文氏图得card(A∪B)=card(A)+card(B)-card(A∩B)=65+84-53=96 即彩电冰箱至少有一种的农户有96户.

(2)∵card(A∪B)+2=98<card(U)=100 故这一统计数据不正确. 18.本题考查集合的运算.

解 ∵A∩B={-2},∴-2∈A 又∵a2+1>0,∴a2-3=-2 解得a=±1

(1)当a=1时,A={-1,2,-2},B={-2,0,2} 则A∩B={-2,2}与A∩B={-2}矛盾,∴a≠1.

(2)当a=-1时,A={-1,2,-2},B={-4,-2,0},A∩B={-2}符合题意

此时A∪B={-4,-2,-1,0,2} 又∵U={-4,-3,-2,-1,0,1,2,3,4} ∴U(A∪B)={-3,1,3,4}.

19.本题考查学生解不等式及利用数轴求交、并、补集的能力.

解 ∵U={x|x2-3x+2≥0}={x|(x-2)(x-1)≥0}={x|x≥2或x≤1} 七彩教育网 全国最新初中、高中试卷、课件、教案免费下载 七彩教育网 http://www.xiexiebang.com

A={x||x-2|>1}={x|x-2>1或x-2<-1=={x|x>3或x<1=

(x1)(x2)0B=x={x|x>2或x≤1} x20由图(1)可知:A∩B={x|x>3或x<1=

A∪B={x|x>2或x≤1}

图(1)

由图(2)可知易知UA={x|2≤x≤

3或x=1} UB={x|x=2}

图(2)

由图(3)可知:(UA)∪B={x|x≥

2或x≤1}=U

图(3)

由图(4)可知:A∩(UB)=

图(4)

七彩教育网 全国最新初中、高中试卷、课件、教案免费下载

第二篇:1.1.3集合的基本运算课后练习-高一上学期必修第一册

1.1.3集合的基本运算

一、单选题

1.已知集合,则()

A.

B.

C.

D.

2.已知集合,则()

A.

B.

C.

D.

3.已知全集,集合,则()

A.

B.

C.

D.

4.已知全集,集合,则()

A.

B.

C.

D.

5.已知全集,集合,则()

A.

B.

C.

D.

6.已知集合,那么()

A.

B.

C.

D.

7.设,则()

A.

B.

C.

D.

8.已知集合,则集合等于()

A.

B.

C.

D.

9.若,,则()

A.

B.

C.

D.

10.已知集合,,则满足条件的的非空子集有()

A.个

B.个

C.个

D.个

11.设集合A={1,2,3,4},B={3,4,5},全集U=A∪B,则集合()

A.{1,2,3,5}

B.{1,2,3}

C.{1,2,5}

D.{1,2,3,4,5}

12.设集合,则()

A.

B.

C.

D.

13.已知集合,则()

A.

B.

C.

D.

14.已知集合,则()

A.

B.

C.

D.

15.已知集合,则=()

A.

B.

C.

D.

二、填空题

16.如图所示,图中的阴影部分可用集合U,A,B,C表示为_______.17.已知集合A=,B=,A∪B=_______.

18.集合A={x|2k

19._________.

20.若A={(x,y)|x>0,y∈R},B={(x,y)|x∈R,y>0},则A∪B=_____.

参考答案

1.A

因为集合,则,故选:A.2.B

∵集合A中的元素只有0,1满足集合B中的条件,∴,故选:B.3.B

解:因为集合,所以,又全集,所以,故选:B.4.A

由题意,所以.故选:A

5.B

由已知可得,因此,.故选:B.6.D

由题意.

故选:D.

7.C

根据题干得到,则.

故选:C

8.A

由题意,所以.

故选:A.

9.D

由已知条件可得,因此,.故选:D.10.A,的非空子集有个.故选:A.11.C

因为A={1,2,3,4},B={3,4,5},所以全集U=A∪B={1,2,3,4,5},A∩B={3,4},所以U(A∩B)={1,2,5}.故选:C.12.B

集合,根据集合的补集的概念得到.故答案为:B

13.A

由题意,所以,故选:A.14.D

由题设,知:.故选:D.15.A

由题意,集合,且,根据集合并集的概念及运算,可得.故选:A.16.

题干图中的阴影部分可用集合U,A,B,C表示为:.故答案为:

17.因为B={y|y=x2,x∈A}=,所以A∪B=.

故答案为:

18.{x|2

在数轴上表示集合A,B,如图:

所以A∩B={x|2

故答案为:{x|2

19.由题意知:,∴.故答案为:.20.或.由题意,知:在直角坐标系中,表示右半部分,表示上半部分,∴或.故答案为:或.

第三篇:高一上学期数学教学计划

高一上学期数学教学计划

高一上学期数学教学计划1

数学是一切科学的基础,可以说人类的每一次重大进步背后都是数学在后面强有力的支撑。以下是小编为大家整理的高一上学期数学教学计划,希望可以解决您所遇到的相关问题。

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书〃数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

高一学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的'教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

最后,希望小编整理的高一上学期数学教学计划对您有所帮助,祝同学们学习进步。

高一上学期数学教学计划2

新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下

一,指导思想

加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。

二,教材分析

本册教材具有以下几个明显的特点:

1。为学生的数学学习构筑起点

教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。

2,向学生提供现实,有趣,富有挑战性的学习素材

教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。

3,为学生提供探索,交流的时间与空间

教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。

4,展现数学知识的形成与应用过程

教科书采用“问题情境—建立模型—解释,应用与拓展”的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。

5,满足不同学生的发展需求

教科书中“读一读”给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。

三,教材的重点和难点

本册教材从内容上看,教学重点是三角形和四边形的性质定理

和判定定理的应用以及一元二次方程的应用。教学难点是对反

比例函数的理解及应用;用试验或模拟试验的方法估计一些复

杂的随机时间发生的概率。

四,教学措施:

1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。

2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。

3,关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。

4,加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。

五,时间安排

4月1日——4月20日一元二次方程

5月16日——5月31日反比例函数

6月1日——6月10日频率与概率

6月11日——7月11日复习考试

>高中数学教学计划10

本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。

一、指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的.自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学情分析及相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一上学期数学教学计划3

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

1、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

2、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

三、学情分析:

两个班均属重点班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

四、教学措施:

1、激发学生的.学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

高一上学期数学教学计划4

进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

教材分析

函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。

学情分析

学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。

教学建议

以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

教学目标

知识与技能

(1)能理解函数单调性、最值、奇偶性的图形特征

(3)单调性与奇偶性的综合题

(4)培养学生观察、归纳、推理的抽象思维能力

过程与方法

(2)渗透数形结合的数学思想进行习题课教学

情感、态度与价值观

(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

课时安排

(1)概念课:单调性2课时,最值1课时,奇偶性1课时

(2)习题课:5课时

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的`兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

六、进度安排、

集合2课时

子集、全集、补集2课时

交集、并集2课时

含绝对值的不等式解法2课时

一元二次不等式解法2课

逻辑连结词2课时

四种命题3课时

充分条件与必要条件2课时

小结与复习3课时

第一章测试题2课时

第二章函数

函数1课时

函数的表示1课时

函数的单调性2课时

反函数3课时

指数4课时

指数函数3课时

对数4课时

对数函数3课时

函数的应用举例3课时

小结与复习第3课时

第二章测试题2课时

第三章数列

数列2课时

等差数列2课时

等差数列的前n项和2课时

等比数列2课时

等比数列的前n项和2课时

研究性学习课题:2课时

小结与复习2课时

第三章测试题2课时

段考复习题4

高一上学期数学教学计划5

我们学校采用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心联合编写的全新教材。通过与旧教材进行对比,我们发现这套教材在继承了我国高中数学教科书的优良传统和基础的同时,还进行了积极的创新,充分展现了数学的美学价值和人文精神。

二、教材分析

本教材有下列几个特点:

1、教材应当注重将数学知识与实际生活联系起来,让学生能够感受到数学在日常生活中的应用和意义。通过生动活泼的呈现方式,激发学生的好奇心和求知欲,使他们对数学产生浓厚的兴趣和探索的欲望。这样的教学方式能够增强学生对数学的亲近感,激发他们主动去学习数学的热情。

2、这套教材的一个显著特点是在每一章节中都设置了“观察”、“思考”、“探索”等栏目,并通过带有问号标志的“边空”栏目,引导学生在关键时刻提出问题,培养问题意识和创新精神。教材设计者巧妙地利用这些栏目,在关键知识点上,引导学生以提问的方式思考;在数学问题解决策略的关键点上,激发学生的思维;在不同数学知识之间的联系点上,拓展学生的视野;在数学问题变式的发散点上,激发学生的探索欲望;在学生思维的最近发展区域,提出具有启发性的问题,引导学生进行数学探究活动,促使他们转变学习方式。

3、信息技术在教育中具有重要意义,它不仅是一种强大的认知工具,还能帮助学生更好地理解数学的本质。在教材编写过程中,我们积极探索如何将信息技术与数学课程有机整合,让学生能够充分利用信息技术的力量来深入学习数学知识。这种整合不仅能激发学生的学习兴趣,还能帮助他们更好地掌握数学的核心概念。

4、教材通过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,为学生提供了丰富多彩的数学学习内容。这些内容不仅激发了学生对数学的兴趣,还促进了他们的思维发展和创新能力的培养。通过这些设计,学生可以在探索中学习,在实践中成长,从而更好地理解数学知识,拓展数学思维,培养解决问题的能力。这种教材设计不仅关注学生的个性发展需求,也为他们提供了展示自己才华的舞台,促进了他们全面发展的可能性。

5、新教材注重引入数学史,特别是强调介绍我国在数学领域的重要贡献,以展现数学的人文、科学和文化价值。通过这样的设计,激励学生热爱祖国,增强民族自豪感。

三、教学任务与目的

1、集合是数学中的一个重要概念,用来描述具有共同特征的对象的总体。集合可以用花括号{}表示,其中包含若干元素,元素之间用逗号隔开。集合之间的关系包括相等、包含、交集、并集、差集等。函数是数学中描述变量之间依赖关系的工具,可以用集合和语言来描述。函数由定义域、值域和对应关系组成,可以通过函数图象来研究函数的性质,如单调性、(小)值、奇偶性等。17世纪前后,开普勒、伽利略、笛卡尔、牛顿、莱布尼兹、欧拉等数学家和科学家的贡献对数学的发展起到了重要作用,推动了函数概念的演变和深化。

2、了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=logax互为反函数(a0,a≠1)。通过实例,了解幂函数的概念;合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。

3、合二次函数的图象,可以通过绘制抛物线来展示。根据抛物线的开口方向和顶点位置,可以判断一元二次方程根的存在性及根的个数。当抛物线与$x$轴相交时,说明方程有实根;当抛物线与$x$轴没有交点时,说明方程无实根;当抛物线与$x$轴相切时,说明方程有唯一实根。通过观察函数图象,我们可以直观地了解方程根与函数图象的关系。利用计算器可以借助二分法求解一元二次方程的近似解。通过逐步缩小根的范围,不断逼近最终的根,可以得到较为准确的根的近似值。二分法是一种常用的求解方程近似解的方法,能够在计算机上快速高效地求解方程的根。比较指数函数、对数函数以及幂函数间的增长差异可以帮助我们理解不同函数类型的增长特性。指数函数增长迅速,对数函数增长缓慢,而幂函数介于两者之间。通过比较它们的图象和增长趋势,可以更深入地理解不同函数类型的增长规律。在社会生活中,有许多常见的函数模型被广泛应用。比如人口增长模型、物种灭绝模型、传染病传播模型等,这些模型都可以用各种函数来描述,帮助我们预测和分析现实生活中的各种现象。通过研究这些函数模型,可以更好地理解函数在实际问题中的应用和意义。

4、观察实物模型和计算机软件中大量的空间图形,认识柱、锥、台、球及其简单组合体的构造特征。能够描述这些空间图形的特征,例如柱体有两个平行且相等的底面、侧面是矩形等。能够通过绘制简单空间图形的三视图来识别立体模型,包括长方体、球、圆柱、圆锥、棱柱等的简易组合。能够使用纸张或纸板等材料制作这些模型,并能够用斜二侧法绘制它们的直观图。通过比较平行投影和中心投影绘制的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如绘制某些建筑的视图与直观图(尺寸、线条等不作严格要求,但要保持图形特征准确)。了解球、棱柱、棱锥、台的表面积和体积的计算方法(不要求背诵公式)。

5、立体几何是几何学中的一个重要分支,通过观察和实验,可以帮助我们更直观地认识空间中点、直线、平面之间的位置关系。在研究立体几何时,我们通常以长方体作为载体,通过对不同形状的图形进行观察和操作,来探讨它们之间的位置关系。通过学习立体几何,我们可以进一步了解平行和垂直关系的判定方法,以及一些基本性质。在实践中,我们可以通过观察和推理,准确地描述几何对象之间的位置关系,培养逻辑思维能力,并应用这些知识来解决一些简单的问题。立体几何不仅能帮助我们理解空间中的几何关系,还可以培养我们的推理能力和解决问题的能力。

6、在平面直角坐标系中,直线是几何中基本的图形之一。通过研究直线的几何要素,我们可以确定直线的.位置和特征。直线的倾斜角和斜率是直线的重要特征,斜率描述了直线的倾斜程度。我们可以通过代数方法来表示直线的斜率,计算两点确定的直线的斜率公式为斜率等于纵坐标的差除以横坐标的差。根据斜率的性质,我们可以判断两条直线是否平行或垂直。直线的方程有几种常见形式,包括点斜式、两点式和一般式,这些形式可以帮助我们描述直线的位置和方向。斜截式是一种特殊的一般式,与一次函数有着密切的关系。通过解方程组的方法,我们可以求解两条直线的交点坐标。此外,我们还可以利用两点间的距离公式和点到直线的距离公式来计算距离,特别是计算两条平行直线之间的距离。直线在几何中起着重要的作用,掌握直线的相关概念和方法可以帮助我们更好地理解和应用几何知识。

四、教学措施和活动

1、加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

2、高中数学新课程注重培养学生自主学习的能力,倡导学生转变学习数学的方式。学生在学习和成长过程中应扮演主导角色,教学过程应体现学生的主体地位,激发学生自主学习、自我教育和自我发展的意识和能力。改变学生的学习方式是高中数学新课程所倡导的核心理念。

3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率;

4、与学生多沟通、多交流,真正成为学生的良师益友;

5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

高一上学期数学教学计划6

一、指导思想:

(1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学情分析:

我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、

广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高

三、教学目标与要求

必修1,主要涉及两章内容:

第一章:集合

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的`表示方法;

2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3.理解补集的含义,会求在给定集合中某个集合的补集;

4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5.渗透数形结合、分类讨论等数学思想方法;

6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章:函数的概念与基本初等函数Ⅰ

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

第三章:函数的应用

函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就

是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。

1.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

2.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

必修4:主要涉及三章内容:

第一章:三角函数

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3.了解三角函数的周期性;

4.掌握三角函数的图像与性质。

第二章:平面向量

在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、减法和向量数乘的运算;

3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

第三章:三角恒等变换

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦

高一上学期数学教学计划6

(一)教学目标

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2.过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

3.情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用.

难点:弄清交集、并集的含义,认识符号之间的区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

(四)教学过程

教学环节教学内容师生互动设计意图

提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}.

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

生:集合A与B的元素合并构成C.

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,

导入新知

形成

概念

思考:并集运算.

集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

师:请同学们将上述两组实例的共同规律用数学语言表达出来.

学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

应用举例例1设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

例2设集合A = {x | –1

例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

例2解:A∪B = {x |–1

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质①A∪A = A,②A∪ = A,

③A∪B = B∪A,

④ ∪B,∪B.

老师要求学生对性质进行合理解释.培养学生数学思维能力.

形成概念自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

即A∩B = {x | x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的性质.

生:①A∩A = A;

②A∩ = ;

③A∩B = B∩A;

④A∩,A∩ .

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.

应用举例例1 (1)A = {2,4,6,8,10},

B = {3,5,8,12},C = {8}.

(2)新华中学开运动会,设

A = {x | x是新华中学高一年级参加百米赛跑的同学},

B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.

例1解:(1)∵A∩B = {8},

∴A∩B = C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为L1∩L2 = {点P};

(2)直线l1,l2平行可表示为

L1∩L2 = ;

(3)直线l1,l2重合可表示为

L1∩L2 = L1 = L2.提升学生的动手实践能力.

归纳总结并集:A∪B = {x | x∈A或x∈B}

交集:A∩B = {x | x∈A且x∈B}

性质:①A∩A = A,A∪A = A,

②A∩ =,A∪ = A,

③A∩B = B∩A,A∪B = B∪A.学生合作交流:回顾→反思→总理→小结

老师点评、阐述归纳知识、构建知识网络

课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华

备选例题

例1已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

【解析】法一:∵A∩B = {–2},∴–2∈B,

∴a – 1 = –2或a + 1 = –2,

解得a = –1或a = –3,

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

∴a = –1.

法二:∵A∩B = {–2},∴–2∈A,

又∵a2 + 1≥1,∴a2 – 3 = –2,

解得a =±1,

当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

例2集合A = {x | –1

(1)若A∩B =,求a的取值范围;

(2)若A∪B = {x | x<1},求a的取值范围.

【解析】(1)如下图所示:A = {x | –1

∴数轴上点x = a在x = – 1左侧.

∴a≤–1.

(2)如右图所示:A = {x | –1

∴数轴上点x = a在x = –1和x = 1之间.

∴–1

例3已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B与A∩C =同时成立?

【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

由A∩B和A∩C =同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解.将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C =相矛盾,故不适合.

当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B与A∩C =,同时成立,∴满足条件的实数a = –2.

例4设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一上学期数学教学计划7

一设计思想:

函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

二教学内容分析:

本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

三教学目标分析:

知识与技能:

1结合方程根的几何意义,理解函数零点的定义;

2结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法

情感、态度与价值观:

1让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

3使学生感受学习、探索发现的乐趣与成功感

教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

四教学准备

导学案,自主探究,合作学习,电子交互白板。

五教学过程设计:

六、探索研究(可根据时间和学生对知识的接受程度适当调整)

讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

[师生互动]

师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

第五阶段设计意图:

一是为用二分法求方程的近似解做准备

二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

七、课堂小结:

零点概念

零点存在性的判断

零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

八、巩固练习(略)

小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

高一上学期数学教学计划4

教学目标:

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:子集、补集的概念

教学难点:弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程设计

(一)导入新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】(投影打出)

已知,,,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集P用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集P有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

5.,,,,,,,(笔练结合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集P的`元素.(口答)

【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作:读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

性质:① (任何一个集合是它本身的子集)

② (空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例:,可见,集合,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B的真子集,记作:(或),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1)写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2)判断下列写法是否正确

① A ② A ③ ④A A

性质:

(1)空集是任何非空集合的真子集。若A,且A≠,则A;

(2)如果,,则.

例1写出集合的所有子集,并指出其中哪些是它的真子集.

解:集合的所有的子集是,,,,其中,,是的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如R,{1} {1,2,3}

②{0}与:{0}是含有一个元素0的集合,是不含任何元素的集合。

如:{0}。不能写成={0},∈{0}

例2见教材P8(解略)

例3判断下列说法是否正确,如果不正确,请加以改正.

(1)表示空集;

(2)空集是任何集合的真子集;

(3)不是;

(4)的所有子集是;

(5)如果且,那么B必是A的真子集;

(6)与不能同时成立.

解:(1)不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确.与表示同一集合;

(4)不正确.的所有子集是;

(5)正确

(6)不正确.当时,与能同时成立.

例4用适当的符号(,)填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)设,,,则A B C.

解:(1)0 0 ;

(2) =,;

(3),∴ ;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

【练习】教材P9

用适当的符号(,)填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提问:见教材P9例子

(二)全集与补集

1.补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即

.

A在S中的补集可用右图中阴影部分表示.

性质:S( SA)=A

如:(1)若S={1,2,3,4,5,6},A={1,3,5},则SA={2,4,6};

(2)若A={0},则NA=N*;

(3) RQ是无理数集。

2.全集:

如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

注:是对于给定的全集而言的,当全集不同时,补集也会不同.

例如:若,当时,;当时,则.

例5设全集,,,判断与之间的关系.

高一上学期数学教学计划8

一、指导思想:

为了培养学生在未来成为有用的公民所必备的数学素养,我们将在九年义务教育数学课程的基础上进一步提高学生的数学能力。通过数学学习,学生将更好地适应社会发展的需要,并为个人发展和社会进步做出积极贡献。

1、通过学习数学,我们可以获得必要的数学基础知识和基本技能,理解数学概念和数学结论的本质。了解这些概念和结论产生的背景和应用,可以帮助我们体会数学思想和方法的精髓。通过各种形式的自主学习和探究活动,我们可以体验数学发现和创造的过程,感受到其中的乐趣和意义。这些学习经历不仅可以帮助我们更好地理解数学,还可以为我们后续学习打下坚实的基础。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高解决数学问题的能力,包括实际问题,培养数学表达和交流的能力,发展独立学习数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、通过学习数学,我们能够培养一种具有数学视角的思维方式,逐渐认识到数学所具有的科学、应用和文化的价值。在这个过程中,我们将形成批判性的思维习惯,尊重数学的理性精神,感受数学的美学意义。同时,我们也会逐渐意识到数学在人类历史和社会发展中的重要作用,从而进一步树立辩证唯物主义和历史唯物主义世界观。

一、教学目标:

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究函数、等差数列、等比数列的性质过程中,我们将体验到获得数学规律的艰辛和乐趣。通过分组研究合作学习,我们将学会如何有效地交流、相互评价,提高合作意识。希望大家能够积极参与,共同探索数学世界的奥秘。

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还给学生时空,还给学生课堂,还给学生探索和发现的`权利。让学生拥有自主探索和合作交流的机会,不仅可以培养他们的思维能力,还可以培养他们的数学情感、建立数学自信心,培养他们追求数学科学的精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)能力要求培养学生记忆能力

(1)通过定义和命题的总体结构教学,可以帮助学生深入理解数学概念和定理的本质特点以及它们之间的相互关系。这种教学方法能够培养学生对数学本质问题的理解,帮助他们记忆背景事实和具体数据。

(2)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

高一上学期数学教学计划9

一、制定的依据

(1)二期课改的理念:一个为本、三类课程、三维目标

(2)新数学课程标准(详见《广州市中小学数学课程标准》)

(3)三本书:课本、教参、练习册

(4)本校教研组对本学期学科的要求

二、基本情况分析

高一(3)班级中共有60名学生,其中男生占30人,女生占30人。上学期期末考试为区域统一测评,平均分为57、2分,合格率为80%,优秀率为5%,低分率为15%。另一个班级中有65名学生,男生有32人,女生有33人。上学期期末考试为区域统一测评,平均分为49、8分,合格率为75%,优秀率为3%,低分率为22%。

从上学期期末统测来看,我班的学生在数学学习上可以说既有优势也有不足。优势是:

1、有潜力;

2、师生关系比较融洽,互相信任,配合默契。

存在的不足是:

1、聪明有余,而努力不足;

2、男生聪明,上课积极,但不够勤奋、踏实;认真,但上课效率不高,学得不够灵活。

3、从期末统测来看,差生的比重大;

4、个别学生懒惰成性,学习态度、学习习惯极差;

5、平时学习不够用心,自觉,专心思考、钻研的时间太少;

6、一些同学学习成绩起伏大,不稳定;

7、一些好学生满足现状,骄傲自满,思想放松,导致成绩退步;

8、学习兴趣,动力,上进心不足。

三、本学期力争达到的目标

1、完成三类课程的教学任务。基础性课程要扎扎实实,夯实基础;拓展性课程要适当延伸和补充,进一步提高学生的能力和水平;研究性课程要重过程,不重结果,培养学生自主学习,探索研究的习惯与品质。

2、完成新数学课程标准规定的教学目标。

3、进一步规范学生的学习习惯(包括预习、上课、作业、复习等)。

4、转化学困生,提高成绩。有些学生成绩总是上不去,以为不是块读数学的料,久而久之,产生放弃数学,讨厌数学的心理。由此,我在学习中,要多方面激发其学习兴趣,耐心指导,不断激励。让其感受到成功的喜悦,增强自信心,让其喜欢数学,找到学习数学的乐趣。

5、一手提高优秀率,一手减少不及格人数,力争班与班之间无明显差距。

四、具体措施

1、根据期末统测结果显示,学困生的比例较高,而优秀率相对较低。为了应对这种情况,我们需要实施分层教学。对于学困生,我们应重点让他们反复练习基础题和常规题,以增强他们对数学学习的信心和兴趣。对于优秀学生,应避免无谓失分,注重培养数学思维、方法和能力,为高三阶段的学习打下坚实基础。总的来说,学困生仍需加强基础训练,反复练习已学过的题目。同时,也不能忽视对高分学生的培养,可以给予他们一些有挑战性的课外题目,并定期检查、批改和解答疑惑。通过重视学困生和优秀生的`培养,全面提升整体学习水平。

2、提高教学质量,要抓好课堂教学这一主阵地。根据课程标准,教参,切实落实教学目标,做到全面不遗漏,要以考纲为标准。另外,每节课要安排必要的练习时间,多安排随堂测试是有好处的。试题讲解时要突出方法,突出思考、分析过程,要暴露学生解题过程中思维、概念、计算等方面的错误,对学生的错误要有针对性的矫正,补偿。不就题讲题,注意适当的变式。帮助学生掌握解题的方法,积累解题经验,课后要引导学生进行反思、订正,以加深对概念的理解,方法的掌握。

3、学生在期末统测中表现出明显的应用能力不足,这反映了他们在阅读审题和数学建模方面的不足。教师应该在日常教学中培养学生的这些能力,让他们熟悉一些实际问题背景,并掌握解决这些问题所需的数学知识。

4、期末统测中选择题普遍得分不高,应引起我们的重视,工作计划

《高一数学教学计划》由于选择题只有答案,所以解答选择题的策略是:合理、迅速、检验,要善于转化,避免机械套用公式、定理和“小题大做,舍近求远,简单问题复杂化”的不良习惯。另外,由填空题的错误表达和解答题的计算粗心、考虑不全面而造成的无谓失分,导致了分数上不去和好学生考不出高分。所以,为保证得到该得的分数,要求必须认真审题,明确要求,弄清概念,思考全面,正确表达。

5、注重讲练结合。要多安排课堂练习,当堂检测。当日作业,周练,月考要及时安排时间进行讲评。平时要注意练习的有效性(适当题量,恰当难度,精选精练),规范书写,认真批改,及时讲评,反馈矫正(建立错题集,进行再认识)。坚决反对只练不讲,只讲不练。评讲中要针对学生的错因进行分析,找出存在的问题,有针对性地加以弥补缺漏,发现问题要跟踪到题,跟踪到人。本次统测中许多试题平时讲过,练过,考过,但错误仍然很多,值得我们重视与反思。

五、保障措施和可行性

1、关爱学生,严格要求,用情实现师与生的沟通,用景实现教与学的融合;

2、加强基础知识、基本技能、基本方法的教学和基本能力的培养,精心组织教学内容,难度要适当,要追求最有效的训练,要清楚哪些学生需要哪些训练,切实注重部分学生的补差和提高,关注全体学生的学,基本教学要求要有效落实到位;

3、知识之间的联系和综合是学习过程中至关重要的一部分。在学习的过程中,我们不仅要注重吸收单一知识点,更要关注不同知识点之间的关联和联系,以及它们在实际应用中的综合。只有建立起知识之间的联系,才能更好地理解和运用所学内容。为了加强知识之间的联系和综合,我们需要不断更新自己的学习方式和方法。可以尝试从不同角度去理解和探索知识,比如通过阅读、实践、讨论等多种方式。同时,也要注重层次推进,逐步深入学习,从表面的认知逐渐深入到对知识本质的理解,形成系统化的学习框架。此外,反思和总结也是加强知识联系和综合的重要环节。在学习过程中,我们要不断思考所学知识的应用场景和实际意义,以及与其他知识的关联。通过反思和总结,可以加深对知识的理解,形成更为完整和系统的知识结构。教与学的方式也要多样化,可以尝试采用讨论、实践、案例分析等多种教学方式,激发学生的学习热情和潜力。只有通过多样化的教学方式,才能更好地激发学生的学习兴趣,提高他们的学习效果。综上所述,加强知识之间的联系和综合是学习过程中必不可少的一环。通过不断更新学习方式,注重反思总结,以及多样化教与学的方式,我们能够更好地理解和运用所学知识,为未来的发展打下坚实的基础。

4、激发兴趣,重视过程教学,重视错误分析型学习;

5、我们注重培养学生的开放性思维和研究能力,重视主观评判性问题的学习,探讨新颖的题型,真正提升学生的数学素养,培养他们的数学能力。

6、结合二期课改新课程标准、教参,我们将深入研讨教学内容的核心,通过集体备课的形式,制定出优质的教学方案。我们将结合教材要求和学生实际情况,设计出符合教学目标和要求的典型例题、练习题、周练题、章考题、月考题,以提高教学质量和学生学习效果。

7、加大课堂教改力度,培养学生的自主学习能力。

8、加强课外辅导,利用中午和晚间休息时间辅导学生答疑解惑、找学生谈话等等。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

9、学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是学生检验学习效果和掌握程度的重要环节。每次考试后,我们要认真进行分析,找出学生在知识点掌握、解题技巧、思维能力等方面存在的问题,并针对性地指导学生进行纠错。只有通过不断的练习、分析和纠错,学生才能真正理解知识,提高学习成绩。

10、学生除配套练习册外,每人订一本《一课一练》作为补充练习,并要求每周写学习感悟与学习疑惑,每人准备一本错题本收集错题。

六、总目标达成度与现阶段教学目标达成度的相关分析

本学期我们要着重提高课堂效率,同时注重培养良好的学习习惯和规范,提高作业质量。我们要认真对待学习中的细节问题,确保学习的有效性。此外,我们要努力避免不及格的情况发生,并帮助那些因为无谓失分而导致分数波动的同学稳定下来,以进一步提高优秀率。

目前,我班目前面临的挑战和困难还有很多,但幸运的是学生们的学习状态一直很好。我和全班学生都会尽最大努力,争取在本学期取得更大的进步和收获。希望我们能共同克服困难,共同进步。

七、课堂教学改革与创新、信息技术的应用与整合

1、结合二期课改,我们将学习方式从“接受式学习”转变为“主动式学习”和“启发式学习”,让学生从“要我学”变为“我要学”。此外,我们还将积极开展拓展性课程和研究性课程,培养学生的创新精神和实践能力,激发他们的学习兴趣和动力。

2、加强基础训练,但要避免“题海”战术,要精讲精练,举一反三,突出方法,总结经验,采取变式训练,专题训练等多种方式。

3、针对本学期三角公式多的特点,设计一些学生学习支持材料,如公式默写表,公式背诵口诀,公式记忆方法,公式小卡片等。

4、借助“TI图形计算器”强大的图形功能以及多媒体教学设备,制作精美课件,辅助教学,使教学内容更加形象直观,通俗易懂。

5、利用“Bb”系统建设e课堂,建设网络学习包。

6、写数学感悟或一周问题,与学生进行书面讨论交流,答疑解惑,给予学法指导。

7、对不同层次的学生进行分层辅导,分层补充课外练习。

8、进行数学演讲,了解数学史,写写数学周记等,提升学生的数学素养与兴趣。

高一上学期数学教学计划10

一、教学思想:

为了培养学生在未来成为有用的公民所必备的数学素养,我们将在九年义务教育数学课程的基础上进一步提高学生的数学能力。通过数学学习,学生将更好地适应社会发展的需要,并为个人发展和社会进步做出积极贡献。

1、通过学习数学,我们可以获得必要的数学基础知识和基本技能,理解数学概念和数学结论的本质。了解这些概念和结论产生的背景和应用,可以帮助我们体会数学思想和方法的精髓。通过各种形式的自主学习和探究活动,我们可以体验数学发现和创造的过程,感受到其中的乐趣和意义。这些学习经历不仅可以帮助我们更好地理解数学,还可以为我们后续学习打下坚实的基础。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高解决数学问题的能力,包括实际问题,培养数学表达和交流的能力,发展独立学习数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,培养学习数学的信心,养成坚持不懈的学习态度和科学精神。具有广阔的数学视野,逐步领悟数学的科学、应用和文化价值,培养批判性思维,推崇数学的理性精神,感受数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所采用的教材是经过精心设计的高中数学教材,旨在传承我国数学教育的优良传统,同时注重知识的继承、引进、发展和创新。这套教材具有基础扎实、符合时代潮流、典型范例鲜明、易于接受等特点。

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的.运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、当我们谈论数学时,常常会想到一些有趣的故事和情境。比如,想象一下,你正在参加一个数学游戏节目,主持人突然向你提出一个数学难题:如果有5个苹果,你拿走了3个,你手中还剩下几个苹果?通过简单的减法运算,你很快就能得出答案是2个苹果。这个简单的例子展示了数学在我们生活中的应用,也让我们感受到数学的趣味性和实用性。除了日常生活中的应用,数学还有许多深奥的理论和方法,比如著名的费马大定理、黄金分割等。这些数学概念和结论不仅让我们惊叹于人类智慧的奇妙,也启发我们探索数学的更多奥秘。因此,让我们一起走进数学的世界,探索其中的乐趣和挑战,用心感受数学的魅力,相信你会被数学的无穷魅力所吸引,愿意深入了解和学习更多关于数学的知识。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生学习兴趣是教育工作者的重要任务之一。通过设计丰富多彩的数学活动、讲述生动有趣的故事、呈现引人入胜的课堂内容、设定合理的学习要求以及与学生进行深入的交流,可以有效地激发学生对学习的热情。这些方法可以帮助学生树立起学习的信心,提高他们的学习兴趣,从而在主观能动性的作用下取得进步和提高。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、通过加强培养学生的逻辑思维能力,可以提升他们解决实际问题的能力,同时培养和提高学生的自学能力,养成他们善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

高一上学期数学教学计划11

一、指导思想

根据学校工作计划,我们将以贯彻新课程理念,推动课程改革为中心,认真落实教育教学工作精神。我们的目标是培养学生的创新精神和实践能力,促进学生个性的全面发展。我们将开展教学改革实验,探索学科教学新模式,打造具有校本特色的教学模式,不断提升教师自身素质。在数学教育方面,我们将加大力度推进数学教育的发展,努力提升我校数学教育的水平。

二、基本情况分析

1、183班共54人,男生25人,女生29人;本班相对而言,数学尖子生约4人,中上等生约36人,差生约14人。

2、184班共54人,男生23人,女生31人;本班相对而言,数学尖子生约5人,中上等生约34人,差生约15人。

三、教材分析

1、教材内容:数学必修三:统计、算法初步。

数学必修四:三角函数、向量及其应用及和、差、倍、分三角公式及其应用。

2、算法思想是现代人应具备的一种数学素养;统计与算法在现代生活中使用相当广泛;三角函数是中学数学的最重要的基本概念,它是描述周期现象的重要数学模型,在数学和其他的领域中有着重要的作用。是进一步学习高等数学的基础;向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,有着极其丰富的实际背景。

3、三角函数是数学中的重要概念,它们描述了角度与直角三角形的边长之间的关系。常见的三角函数包括正弦函数、余弦函数和正切函数,它们都具有周期性变化的特点。通过三角函数,我们可以描述许多自然现象和物理规律,如波动、振动等,同时也可以在工程技术中得到广泛的应用。通过学习三角函数的基本性质和应用实例,我们可以更好地理解周期变化规律,并应用于实际问题的解决中。

4、学习三角恒等变化时,我们需要掌握其基本思想和方法,通过理解和运用三角恒等变化的原理,培养我们的推理能力和计算能力。三角恒等变化是一种重要的数学工具,能够帮助我们解决各种三角形相关的问题,对于数学学习和实际问题的解决都具有重要的作用。

5、教材关键:理解概念,熟练、牢固掌握三角函数的图像及性质;数形结合,灵活理解向量的含义及能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

6、不好意思,我无法修改该内容。如果您需要其他帮助或有任何问题,请随时告诉我。我会尽力提供帮助。

四、教学要求

1、了解算法的初步知识和几个典型的算法案例;使学生体会算法的基本思想、基本特征。

2、了解最基本的获取样本数据的方法,学会几种从样本数据中的提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。

3、了解概率的含义、计算概率的方法及概率在实际中的应用。

4、通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律问题中的作用。

5、向量丰富是数学中一个重要的概念,它可以帮助我们更好地理解空间中的运动和变化。平面向量是向量丰富的一种表达方式,通过平面向量的运算,我们可以更加直观地描述和解决数学和物理中的问题。掌握向量的语言和方法,可以提高我们的计算能力,更好地解决实际问题。

6、在学习三角恒等变化的过程中,学生将掌握基本的思想和方法,并逐渐培养推理能力和运算能力。通过探索三角恒等式的变化规律,学生能够体会到三角恒等变化在解决问题中的重要作用,进而提高数学问题的解决效率和准确性。

五、教学措施

1、老师们要密切配合,共同准备本周的教学内容。首先确定本周要讲授的知识点,然后一起分析每节课的难点和重点。针对难点,每个人提出自己的教学方案,进行比较,找出最适合学生掌握的方法。对于重点知识,要明确重点在哪里,找出典型例题,并深入分析解题思路。希望老师们能够共同努力,提高备课质量,为学生的`学习效果提供更好的保障。

2、本节课的教学目标和要求:通过本节课的学习,学生能够掌握如何利用三角函数的性质解决实际问题;能够灵活运用三角函数的相关知识解决相关问题;能够培养学生的逻辑思维和问题解决能力。教学重点难点:三角函数的性质及其应用;利用三角函数解决实际问题的能力。教学方法和手段:讲授、示范、引导、讨论。

教学过程:

1、导入:通过一个实际问题引入三角函数的应用,激发学生学习的兴趣。

2、讲解三角函数的性质及其应用,包括正弦定理、余弦定理等。

3、通过示例演示如何利用三角函数解决实际问题,引导学生思考。

4、学生进行练习,巩固所学知识。

5、总结本节课的重点内容,强化学生对知识的理解和掌握。

小结反思:通过本节课的学习,学生对三角函数的应用有了更深入的理解,提高了解决实际问题的能力。同时,也培养了学生的逻辑思维和问题解决能力。练习和板书设计:设计一些应用题让学生进行练习,如计算某个角的正弦值、余弦值等;板书内容包括三角函数的性质、正弦定理、余弦定理等。

高一上学期数学教学计划12

一、具体目标:

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的`历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学

二、本学期要达到的教学目标

1.双基要求:

在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

2.能力培养:

能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

3. 思想教育:

三、进度授课计划及进度表(略)

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中一年级上学期数学教学计划,希望大家喜欢。

高一上学期数学教学计划13

本学期担任xx班的数学教学工作,学生共有66人,大部分学生学习习惯好,学习目标明确、勤奋、主动,学习动力足,少数同学质疑“学习是否有用”;另外,少数学生不能正确评价自己,这给教学工作带来了一定的难度,在学习中取得长足的进步,必须要引导他们,摆正学习态度,让他们体会到学习的乐趣,学习给他们带来的成就感,提高他们学习的积极性,还要不断的鼓励他们,培养他们良好的学习习惯。

1、由数学活动、故事等等,通过分析问题的.方法的教学,提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

2、注意从实例出发,从感性提高到理性,提供生活背景,通过动手建立几何模型,让学生体会数学就在身边,培养学数学用数学的意识。

3、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

4、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

5、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

6、通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

7、加强知识的横向联系,培养学生的数形结合的能力。

8、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

第四篇:高一上学期数学教学计划

高一上学期数学教学计划1

(一)教学目标

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2.过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

3.情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用.

难点:弄清交集、并集的含义,认识符号之间的区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

(四)教学过程

教学环节 教学内容 师生互动 设计意图

提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}.

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

生:集合A与B的元素合并构成C.

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,

导入新知

形成

概念

思考:并集运算.

集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

师:请同学们将上述两组实例的共同规律用数学语言表达出来.

学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

例2 设集合A = {x | –1

例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

例2解:A∪B = {x |–1

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质 ①A∪A = A, ②A∪ = A,

③A∪B = B∪A,

④ ∪B, ∪B.

老师要求学生对性质进行合理解释. 培养学生数学思维能力.

形成概念 自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的'交集;记作A∩B,读作A交B.

即A∩B = {x | x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

生:①A∩A = A;

②A∩ = ;

③A∩B = B∩A;

④A∩ ,A∩ .

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

应用举例 例1 (1)A = {2,4,6,8,10},

B = {3,5,8,12},C = {8}.

(2)新华中学开运动会,设

A = {x | x是新华中学高一年级参加百米赛跑的同学},

B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

例1 解:(1)∵A∩B = {8},

∴A∩B = C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

(2)直线l1,l2平行可表示为

L1∩L2 = ;

(3)直线l1,l2重合可表示为

L1∩L2 = L1 = L2. 提升学生的动手实践能力.

归纳总结 并集:A∪B = {x | x∈A或x∈B}

交集:A∩B = {x | x∈A且x∈B}

性质:①A∩A = A,A∪A = A,

②A∩ = ,A∪ = A,

③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

老师点评、阐述 归纳知识、构建知识网络

课后作业 1.1第三课时习案 学生独立完成 巩固知识,提升能力,反思升华

备选例题

例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

【解析】法一:∵A∩B = {–2},∴–2∈B,

∴a – 1 = –2或a + 1 = –2,

解得a = –1或a = –3,

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

∴a = –1.

法二:∵A∩B = {–2},∴–2∈A,

又∵a2 + 1≥1,∴a2 – 3 = –2,

解得a =±1,

当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

例2 集合A = {x | –1

(1)若A∩B = ,求a的取值范围;

(2)若A∪B = {x | x<1},求a的取值范围.

【解析】(1)如下图所示:A = {x | –1

∴数轴上点x = a在x = – 1左侧.

∴a≤–1.

(2)如右图所示:A = {x | –1

∴数轴上点x = a在x = –1和x = 1之间.

∴–1

例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一上学期数学教学计划2

数学是一切科学的基础,可以说人类的每一次重大进步背后都是数学在后面强有力的支撑。以下是小编为大家整理的高一上学期数学教学计划,希望可以解决您所遇到的相关问题。

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的'数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书〃数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

高一学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

最后,希望小编整理的高一上学期数学教学计划对您有所帮助,祝同学们学习进步。

高一上学期数学教学计划3

一、教材分析(结构系统、单元内容、重难点)

必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;

第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;

第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;

必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;

第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;

第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;

第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;

二、学生分析(双基智能水平、学习态度、方法、纪律)

较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

三、教学目的要求

1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

3、理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的`二元线性规划问题。

4、几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

四、完成教学任务和提高教学质量的具体措施

积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

高一上学期数学教学计划4

一 设计思想:

函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

二 教学内容分析:

本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的.个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

三 教学目标分析:

知识与技能:

1。结合方程根的几何意义,理解函数零点的定义;

2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法

情感、态度与价值观:

1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

3。使学生感受学习、探索发现的乐趣与成功感

教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

四 教学准备

导学案,自主探究,合作学习,电子交互白板。

五 教学过程设计:

六、探索研究(可根据时间和学生对知识的接受程度适当调整)

讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

[师生互动]

师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

第五阶段设计意图:

一是为用二分法求方程的近似解做准备

二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

七、课堂小结:

零点概念

零点存在性的判断

零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

八、巩固练习(略)

小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

高一上学期数学教学计划5

进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

教材分析

函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的.形成过程,习题课教学以具体技巧、方法作为辅助练习。

学情分析

学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。

教学建议

以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

教学目标

知识与技能

(1)能理解函数单调性、最值、奇偶性的图形特征

(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性

(3)单调性与奇偶性的综合题

(4)培养学生观察、归纳、推理的抽象思维能力

过程与方法

(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念

(2)渗透数形结合的数学思想进行习题课教学

情感、态度与价值观

(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

课时安排

(1)概念课:单调性2课时,最值1课时,奇偶性1课时

(2)习题课:5课时

高一上学期数学教学计划6

本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。

一、指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学情分析及相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的.适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一上学期数学教学计划7

一.指导思想:

(1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二.学情分析:

我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面: 1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、

广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。 此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高

三、教学目标与要求

必修1,主要涉及两章内容:

第一章:集合

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3.理解补集的含义,会求在给定集合中某个集合的补集;

4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5.渗透数形结合、分类讨论等数学思想方法;

6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章:函数的概念与基本初等函数Ⅰ

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的'重要数学模型;

第三章:函数的应用

函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就

是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。

1.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

2.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

必修4:主要涉及三章内容:

第一章:三角函数

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3.了解三角函数的周期性;

4.掌握三角函数的图像与性质。

第二章:平面向量

在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、减法和向量数乘的运算;

3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

第三章:三角恒等变换

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦

高一上学期数学教学计划8

一、具体目标:

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学

二、本学期要达到的教学目标

1.双基要求:

在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

2.能力培养:

能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的`进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

3. 思想教育:

三、进度授课计划及进度表(略)

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中一年级上学期数学教学计划,希望大家喜欢。

高一上学期数学教学计划9

教学目标 :

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:子集、补集的概念

教学难点 :弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程 设计

(一)导入 新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】(投影打出)

已知 , , ,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集P用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集P有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

5. , , , , , , , (笔练结合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作: 读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

性质:① (任何一个集合是它本身的子集)

② (空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例: ,可见,集合 ,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2) 判断下列写法是否正确

① A ② A ③ ④A A

性质:

(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

(2)如果 , ,则 .

例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

解:集合 的`所有的子集是 , , , ,其中 , , 是 的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

如: {0}。不能写成 ={0}, ∈{0}

例2 见教材P8(解略)

例3 判断下列说法是否正确,如果不正确,请加以改正.

(1) 表示空集;

(2)空集是任何集合的真子集;

(3) 不是 ;

(4) 的所有子集是 ;

(5)如果 且 ,那么B必是A的真子集;

(6) 与 不能同时成立.

解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确. 与 表示同一集合;

(4)不正确. 的所有子集是 ;

(5)正确

(6)不正确.当 时, 与 能同时成立.

例4 用适当的符号( , )填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)设 , , ,则A B C.

解:(1)0 0 ;

(2) = , ;

(3) , ∴ ;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

【练习】教材P9

用适当的符号( , )填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提问:见教材P9例子

(二) 全集与补集

1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即

.

A在S中的补集 可用右图中阴影部分表示.

性质: S( SA)=A

如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

(2)若A={0},则 NA=N*;

(3) RQ是无理数集。

2.全集:

如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

例如:若 ,当 时, ;当 时,则 .

例5 设全集 , , ,判断 与 之间的关系.

高一上学期数学教学计划10

新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下

一,指导思想

加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。

二,教材分析

本册教材具有以下几个明显的特点:

1。为学生的数学学习构筑起点

教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。

2,向学生提供现实,有趣,富有挑战性的学习素材

教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。

3,为学生提供探索,交流的时间与空间

教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。

4,展现数学知识的形成与应用过程

教科书采用“问题情境—建立模型—解释,应用与拓展”的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。

5,满足不同学生的.发展需求

教科书中“读一读”给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。

三,教材的重点和难点

本册教材从内容上看,教学重点是三角形和四边形的性质定理

和判定定理的应用以及一元二次方程的应用。教学难点是对反

比例函数的理解及应用;用试验或模拟试验的方法估计一些复

杂的随机时间发生的概率。

四,教学措施:

1、根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。

2、加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。

3、关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。

4、加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。

五,时间安排

4月1日——4月20日一元二次方程

5月16日——5月31日反比例函数

6月1日——6月10日频率与概率

6月11日——7月11日复习考试

第五篇:高一上学期数学教学计划

高一上学期数学教学计划

高一上学期数学教学计划1

数学是一切科学的基础,可以说人类的每一次重大进步背后都是数学在后面强有力的支撑。以下是小编为大家整理的高一上学期数学教学计划,希望可以解决您所遇到的相关问题。

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书〃数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的'语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

高一学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

最后,希望小编整理的高一上学期数学教学计划对您有所帮助,祝同学们学习进步。

高一上学期数学教学计划2

新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下

一,指导思想

加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。

二,教材分析

本册教材具有以下几个明显的特点:

1。为学生的数学学习构筑起点

教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。

2,向学生提供现实,有趣,富有挑战性的学习素材

教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。

3,为学生提供探索,交流的时间与空间

教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。

4,展现数学知识的形成与应用过程

教科书采用“问题情境—建立模型—解释,应用与拓展”的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。

5,满足不同学生的发展需求

教科书中“读一读”给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。

三,教材的重点和难点

本册教材从内容上看,教学重点是三角形和四边形的性质定理

和判定定理的应用以及一元二次方程的应用。教学难点是对反

比例函数的理解及应用;用试验或模拟试验的方法估计一些复

杂的随机时间发生的概率。

四,教学措施:

1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。

2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。

3,关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。

4,加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。

五,时间安排

4月1日——4月20日一元二次方程

5月16日——5月31日反比例函数

6月1日——6月10日频率与概率

6月11日——7月11日复习考试

>高中数学教学计划10

本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。

一、指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的`基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学情分析及相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一上学期数学教学计划3

教学目标 :

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:子集、补集的概念

教学难点 :弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程 设计

(一)导入 新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】(投影打出)

已知 , , ,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集P用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集P有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

5. , , , , , , , (笔练结合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作: 读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

性质:① (任何一个集合是它本身的子集)

② (空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例: ,可见,集合 ,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2) 判断下列写法是否正确

① A ② A ③ ④A A

性质:

(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

(2)如果 , ,则 .

例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

如: {0}。不能写成 ={0}, ∈{0}

例2 见教材P8(解略)

例3 判断下列说法是否正确,如果不正确,请加以改正.

(1) 表示空集;

(2)空集是任何集合的.真子集;

(3) 不是 ;

(4) 的所有子集是 ;

(5)如果 且 ,那么B必是A的真子集;

(6) 与 不能同时成立.

解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确. 与 表示同一集合;

(4)不正确. 的所有子集是 ;

(5)正确

(6)不正确.当 时, 与 能同时成立.

例4 用适当的符号( , )填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)设 , , ,则A B C.

解:(1)0 0 ;

(2) = , ;

(3) , ∴ ;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

【练习】教材P9

用适当的符号( , )填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提问:见教材P9例子

(二) 全集与补集

1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即

.

A在S中的补集 可用右图中阴影部分表示.

性质: S( SA)=A

如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

(2)若A={0},则 NA=N*;

(3) RQ是无理数集。

2.全集:

如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

例如:若 ,当 时, ;当 时,则 .

例5 设全集 , , ,判断 与 之间的关系.

高一上学期数学教学计划4

一 设计思想:

函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

二 教学内容分析:

本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

三 教学目标分析:

知识与技能:

1。结合方程根的几何意义,理解函数零点的定义;

2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3。结合几类基本初等函数的`图象特征,掌握判断函数的零点个数和所在区间 的方法

情感、态度与价值观:

1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

3。使学生感受学习、探索发现的乐趣与成功感

教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

四 教学准备

导学案,自主探究,合作学习,电子交互白板。

五 教学过程设计:

六、探索研究(可根据时间和学生对知识的接受程度适当调整)

讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

[师生互动]

师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

第五阶段设计意图:

一是为用二分法求方程的近似解做准备

二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

七、课堂小结:

零点概念

零点存在性的判断

零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

八、巩固练习(略)

小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

高一上学期数学教学计划5

一、学情分析

经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学目标

态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。

四、教材分析

第二十六章、二次函数

本章主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。

第二十七章、相似

本章主要是通过探究相似图形尤其是相似三角形的`性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。

第二十八章、锐角三角函数

本章主要是探究直角三角形的三边关系,三角函数的概念及特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。

第二十九章、投影与视图

本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。

五、方法措施

1、从学生实际情况出发,认真钻研教材教法,精心设置教学情境和教学内容,做到层次分明,帮助学生理清思路,建立数学严密的数学逻辑推理能力。

2、搞好单元测试工作,做好阅卷分析,发现问题及时纠正,同时加大课后对学生的辅导力度。

3、向有经验的老教师学习,针对近年中考命题趋势,制定详细而周密的复习计划,备好每一节复习课,力求全面而又突出重点。

4、帮助学生建立良好的数学解题作答习惯,向学生传授必要的作答技巧和适应中考的能力。

六、课时安排

九年级下册新授课程控制在4个星期内,剩余时间用于复习。

高一上学期数学教学计划6

一.指导思想:

(1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的.美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二.学情分析:

我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面: 1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、

广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。 此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高

三、教学目标与要求

必修1,主要涉及两章内容:

第一章:集合

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3.理解补集的含义,会求在给定集合中某个集合的补集;

4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5.渗透数形结合、分类讨论等数学思想方法;

6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章:函数的概念与基本初等函数Ⅰ

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

第三章:函数的应用

函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就

是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。

1.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

2.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

必修4:主要涉及三章内容:

第一章:三角函数

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3.了解三角函数的周期性;

4.掌握三角函数的图像与性质。

第二章:平面向量

在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、减法和向量数乘的运算;

3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

第三章:三角恒等变换

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦

高一上学期数学教学计划7

一、具体目标:

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的`自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学

二、本学期要达到的教学目标

1.双基要求:

在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

2.能力培养:

能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

3. 思想教育:

三、进度授课计划及进度表(略)

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中一年级上学期数学教学计划,希望大家喜欢。

高一上学期数学教学计划8

进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

教材分析

函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。

学情分析

学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。

教学建议

以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

教学目标

知识与技能

(1)能理解函数单调性、最值、奇偶性的.图形特征

(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性

(3)单调性与奇偶性的综合题

(4)培养学生观察、归纳、推理的抽象思维能力

过程与方法

(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念

(2)渗透数形结合的数学思想进行习题课教学

情感、态度与价值观

(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

课时安排

(1)概念课:单调性2课时,最值1课时,奇偶性1课时

(2)习题课:5课时

高一上学期数学教学计划9

(一)教学目标

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2.过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

3.情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用.

难点:弄清交集、并集的含义,认识符号之间的区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

(四)教学过程

教学环节 教学内容 师生互动 设计意图

提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}.

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

生:集合A与B的元素合并构成C.

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,

导入新知

形成

概念

思考:并集运算.

集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

定义:由所有属于集合A或集合B的元素组成的`集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

师:请同学们将上述两组实例的共同规律用数学语言表达出来.

学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

例2 设集合A = {x | –1

例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

例2解:A∪B = {x |–1

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质 ①A∪A = A, ②A∪ = A,

③A∪B = B∪A,

④ ∪B, ∪B.

老师要求学生对性质进行合理解释. 培养学生数学思维能力.

形成概念 自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

即A∩B = {x | x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

生:①A∩A = A;

②A∩ = ;

③A∩B = B∩A;

④A∩ ,A∩ .

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

应用举例 例1 (1)A = {2,4,6,8,10},

B = {3,5,8,12},C = {8}.

(2)新华中学开运动会,设

A = {x | x是新华中学高一年级参加百米赛跑的同学},

B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

例1 解:(1)∵A∩B = {8},

∴A∩B = C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

(2)直线l1,l2平行可表示为

L1∩L2 = ;

(3)直线l1,l2重合可表示为

L1∩L2 = L1 = L2. 提升学生的动手实践能力.

归纳总结 并集:A∪B = {x | x∈A或x∈B}

交集:A∩B = {x | x∈A且x∈B}

性质:①A∩A = A,A∪A = A,

②A∩ = ,A∪ = A,

③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

老师点评、阐述 归纳知识、构建知识网络

课后作业 1.1第三课时习案 学生独立完成 巩固知识,提升能力,反思升华

备选例题

例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

【解析】法一:∵A∩B = {–2},∴–2∈B,

∴a – 1 = –2或a + 1 = –2,

解得a = –1或a = –3,

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

∴a = –1.

法二:∵A∩B = {–2},∴–2∈A,

又∵a2 + 1≥1,∴a2 – 3 = –2,

解得a =±1,

当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

例2 集合A = {x | –1

(1)若A∩B = ,求a的取值范围;

(2)若A∪B = {x | x<1},求a的取值范围.

【解析】(1)如下图所示:A = {x | –1

∴数轴上点x = a在x = – 1左侧.

∴a≤–1.

(2)如右图所示:A = {x | –1

∴数轴上点x = a在x = –1和x = 1之间.

∴–1

例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

下载高一上学期数学单元测试第一册_第1章_集合与函数word格式文档
下载高一上学期数学单元测试第一册_第1章_集合与函数.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一上学期数学工作总结

    高一上学期数学工作总结高一上学期数学工作总结 篇19月份的开学季,我成了一名高一年级的数学老师,现在仍记得走在校园里那份忐忑,兴奋的心情,路过的学生的一声声问好,这一切也让......

    高一上学期数学教学计划

    教学计划 一、指导思想: 使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1.获得必要的数学基......

    高一数学集合与函数的概念

    3eud教育网 http://百万教学资源,完全免费,无须注册,天天更新!新人教A版必修一教案系列 第一章集合与函数概念 一. 课标要求: 本章将集合作为一种语言来学习,使学生感受用集合表示......

    2017-2018学年福州黎明中学高一数学必修1集合与函数概念单元测试

    2017-2018学年福州黎明中学高一数学集合与函数概念单元测试 一、选择题(本题共6小题,每小题6分,共36分) 1. 设集合M4,5,6,7,8,集合N3,5,7,8,那么MN= A.3,4,5,6,7,8 B.5,8 C.3,5,7,8D.4,5,6,8......

    高一上学期数学教学工作总结

    2013—2014学年古浪五中高一学期 数学教学工作总结 古浪五中 张子杰 时间过得真快,转眼间高一上学期的工作就结束了。 回想起这学期的工作,我感受颇多。这学期,我担任了高一(7)班......

    高一上学期数学教学工作总结

    时间过得真快,转眼间高一上学期的工作就结束了。 今天,能有幸在这里和大家一起交流心得,我要非常感谢学校的领导和高一年级的全体老师对我工作的大力支持和帮助,特别要感谢我们......

    高一上学期数学教学总结

    高一(上)数学教育教学总结 时间过得真快,转眼间高一上学期的工作就结束了。现总结如下: 一、对学生严格要求,培养良好的学习习惯和学习方法 学生在从初中到高中的过渡阶段,往往会......

    高一上学期数学教学工作总结

    高一数学教学工作总结 (2010-2011上学期)高一组 李国成本学期我担任高一9,10两班的数学教学,完成了必修1 、 4的教学。本学期教学主要内容有:集合与函数的概念,基本初等函数,函数......