第一篇:2017-2018学年福州黎明中学高一数学必修1集合与函数概念单元测试
2017-2018学年福州黎明中学高一数学集合与函数概念单元测试
一、选择题(本题共6小题,每小题6分,共36分)
1.设集合M4,5,6,7,8,集合N3,5,7,8,那么MN=()A.3,4,5,6,7,8
B.5,8
C.3,5,7,8
D.4,5,6,8 2.若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()。
A.{x|2 B.{x|x≤1} C.{x|2≤x<3} D.{x|x>2} 3.函数y1xx的定义域为() A.xx 1B.xx0 C.xx1或x0 D.x0x1 4.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的有() A.①②③④ B.①②③ C.②③ D.② 5.若全集U={0,1,2,3},且∁uA={1,2},则集合A的真子集共有()A.3个 B.5个 C.7个 D.8个 6.若集合M={(x,y)|x+y=0}, N={(x,y)|x2+y2=0, x∈R,y∈R},则有()A.M∪N=M B.M∪N=N C.M∩N=M D.M∩N=ϕ 二、填空题(本大题3小题,每小题6分,共18分) 7.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=____________.8.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜欢,则喜爱篮球运动但不喜爱乒乓球运动的人数为_________________.9.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么称k是A个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有____________个.三、解答题(本大题3题,共46分,解答应写出文字说明,证明过程或演算步骤) 10.(本题满分14分)已知集合A={-3,a+1,a2},B={a-3,2a-1,a2+1},A∩B={-3}. (Ⅰ)求实数a的值; (Ⅱ)写出集合A的所有非空真子集. 11.(本题满分14分)设U={x|x≤4},A={x|-1≤x≤2},B={x|1≤x≤3}. 求: (Ⅰ)(CUA)∪B; (П)(CUA)∩(CUB). 12.(本题满分18分)已知函数求值: (1)已知函数f(x)x22ax1在[-1,2]上的最大值为4,求a的值.(2)求函数yx(xa)在区间[-1,a]上的最大值. 2017-2018学年福州十五中学高一集合与函数概念 一、选择题(每题3分,共30分) 1.若集合M={-1,0,1},集合N={0,1,2},则M∩N=()A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} 2.集合A={-1,0,1}的子集中,含有元素0的子集共有()A.2个 B.4个 C.6个 D.8个 3.下列函数中与yx图象相同的一个是() x2A.y(x) B.yx C.y D.yx2 x2334.设函数f(x)2x3,g(x2)f(x),则g(x)的表达式是()A.2x 1B.2x1 C.2xD.2x7 5.集合Axx2,集合Bxx<a,如果A∩B=∅,你们a的范围是()A.a 2B.a2 C.a2 D.a2 6.下列图形中表示函数图象的是() 7.设f(x)是定义在R上的一个函数,则函数F(x)f(x)f(x)在R上一定是()A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 8.如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是() A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最大值是-5 D.减函数且最小值是-5 24]上是减函数,f(x)x2(a1)x2在(,9.如果函数那么实数a取值范围是() A.a≤-3 B.a≥-3 C.a≤5 D.a≥5 10.函数y=f(x)的定义域为R且f(1)=0,若对于任意给定的不等实数x1,x2,不等式(x1−x2)[f(x1)−f(x2)]<0恒成立,则不等式f(1−x)<0的解集为()1 A.(−∞,0) B.(−∞,1) C.(0,+∞) D.(1,+∞) 二、填空题(每题4分,共28分)11.yx4的定义域为_______________________.x512.f(x)x21,x02x,x>0,则f(f(3))__________________.13.已知f(12x)3x1,则f(3)_______________.14.若f(x)(a1)x4(b3)x3bx2是偶函数,其定义域为(a6,2a),则a_________,b=__________.15.已知f(x2)x2x,则f(x)的解析式为__________________________.16.函数y2x1的值域为___________________________.x317.已知函数y2x5,x{xN1x4},则函数的值域为_____________________.三、解答题(共42分) 218.已知A{a2,(a1),a23a3},若1∈A,求实数a的值.(8分) 219.已知集合A{xx2x30},B{xm1x2m7}(Ⅰ)当m=1时,求集合A∩B,;(Ⅱ)若满足A∪B=B,求实数m的取值范围。(8分) 20.已知函数f(x)是定义在R上的偶函数,已知当x≤0时,f(x)=x2+4x+3. (1)求函数f(x)的解析式; (2)画出函数f(x)的图象,并写出函数f(x)的单调递增区间;(3)求f(x)在区间[-1,2]上的值域. 21.已知函数f(x)2x1x1,(1)判断f(x)在区间(-1,+∞)上单调性,并证明;(求函数[1,3]上的最小值和最大值。(10分) 2)22.已知函数f(x)是奇函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.23.已知关于x的方程:x2+2(a−1)x+2a+6=0,(1)若方程有两个实根,求实数a的范围; (2)设函数f(x)=x2+2(a−1)x+2a+6,x∈[−1,1],记此函数的最大值为M(a),最小值为N(a),求M(a)、N(a)的解析式。 3eud教育网 http://百万教学资源,完全免费,无须注册,天天更新! 新人教A版必修一教案系列 第一章集合与函数概念 一.课标要求: 本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁 性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,对变量数学的认识.1..2.不同的具体问题,感受集合语言的意义和作用.3纳的逻辑思维能力.4.5, 培养学生从具6..7.能使用.8.学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10.通过具体实例,了解简单的分段函数,并能简单应用.11.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.3eud教育网 http://教学资源集散地。可能是最大的免费教育资源网! 13.通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二.编写意图与教学建议 1.教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力.教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,.2.Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念.要充分体现这种直 3.贯穿到以后的数学学习中.4.和数学中的广泛运用,.在教学中,一定要循序渐进,从繁到难,5..6.分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.7.教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维规律,有利于学生对函数概念学习的连续性.8.教材加强了函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.9.为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生实际,合理地取舍.三.教学内容及课时安排建议 本章教学时间约13课时。 1.1 集合4课时 1.2 函数及其表示4课时 1.3 函数的性质3课时 实习作业1课时 复习1课时 第二章 函数 §2.1 函数 教学目的:(1)学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 一 函数的有关概念 1.函数的概念: 设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数(function). 记作: y=f(x),x∈A. 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意: ○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x. 2. 构成函数的二要素: 定义域、对应法则 值域被定义域和对应法则完全确定 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 二 典型例题 求解函数定义域值域及对应法则 课本P32 例1,2,3 求下列函数的定义域 14x2 F(x)= F(x)= x/x/x1 F(x)=111x F(x)=x24x5 巩固练习P33 练习A中4,5 说明:○1 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○2 函数的定义域、值域要写成集合或区间的形式. 2.判断两个函数是否为同一函数 ○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习: ○1 判断下列函数f(x)与g(x)是否表示同一个函数 (1)f(x)=(x1)0 ;g(x)= 1 (2)f(x)= x; g(x)=x2 (3)f(x)= x;f(x)=(x1)(4)f(x)= | x | ;g(x)= 2x2 三 映射与函数 教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;(2)结合简单的对应图示,了解一一映射的概念. 教学重点难点:映射的概念及一一映射的概念. 复习初中已经遇到过的对应: 1. 对于任何一个实数a,数轴上都有唯一的点P 和它对应; 2. 对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应; 3. 对于任意一个三角形,都有唯一确定的面积和它对应; 4. 某影院的某场电影的每一张电影票有唯一确定的座位与它对应; 5. 函数的概念. 映射 定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B 为从集合A 到集合B 的一个映射(mapping).记作“f:A→B”。象与原象的定义与区分 一一对应关系: 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,就称这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。(结合P35的例7解释说明) 说明:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思? 包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。 例题分析:下列哪些对应是从集合A 到集合B 的映射? (1)A={P | P 是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应; (2)A={ P | P 是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x 是圆},对应关系f:每一个三角形都对应它的内切圆; (4)A={x | x 是新华中学的班级},B={x | x 是新华中学的学生},对应关系f:每一个班级都对应班里的学生. 思考:将(3)中的对应关系f 改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A 是从集合B 到集合A 的映射吗? 四 函数的表示法 教学目的:(1)明确函数的三种表示方法; (2)通过具体实例,了解简单的分段函数,并能简单应用; 教学重点难点:函数的三种表示方法,分段函数的概念及分段函 数的表示及其图象. 复习:函数的概念; 常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法. (一)典型例题 例 1.某种笔记本的单价是5 元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x). 分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略)注意: ○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2 解析法:必须注明函数的定义域; ○3 图象法:是否连线; ○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 例 3.画出函数y = | x | . 解:(略) 巩固练习: P41练习A 3,6 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系. 五 分段函数 定义: 例5讲解 练习P43练习A 1(2),2(2) 注意:分段函数的解析式不能写成几个不同的方程,而写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况. 教案:§1.2.1函数的概念 教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看 成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段 更注重函数模型化的思想. 教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要 数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关 系在刻画函数概念中的作用; (2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、引入课题 1.复习初中所学函数的概念,强调函数的模型化思想; 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系; 4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关 系. 二、新课教学 (一)函数的有关概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function). 记作:y=f(x),x∈A.第二篇:2017-2018学年福州十五中学高一集合与函数概念
第三篇:高一数学集合与函数的概念
第四篇:高一数学必修1函数教案
第五篇:高一数学《函数的概念》教案