第一篇:高一数学《函数的概念(微课)》教学设计
高一数学《函数的概念(微课)》教学设计
高一数学《函数的概念(微课)》教学设计
课 题函数的概念
时 间7分至8分
教 学目 标
1.知识目标: 正确理解现阶段函数的概念,理解定义域的概念
2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。
3.情感目标: 渗透数学来源于生活,运用于生活的思想。
重 点让学生理解现阶段函数的概念,定义域的概念。
难 点用函数模型去研究生活中简单的事物变化规律时,如何确定定义域.学 情
分 析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。
教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。
信息化教学资源
1.动画设计《世界在不断的变化》
2.专业录频软件;
3.视频后期处理软件;
4.QQ;
5.其它图片、背景音乐。
课前准备 复习初中数学函数概念
教 学 过 程
环节设计:教 师 活 动、学 生 活 动、设 计 意 图
环节一创设情境
兴趣导入首先让学生观看视频《世界在不断的变化》
老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。
1看视频。2听老师解说,函数是研究世界变化规律的数学模型之一。3了解函数的作用,对函数产生兴趣。
通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。
在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.用一个生活实例加深对知识的理解。
实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x进行方便的运算。
在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提.所以我们重新定义函数,将自变量x的取值范围用集合D来表示.函数的定义:
在某一个变化的过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应环节三 知识总结(1)函数的概念。
(2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。
学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。
环节四实例检测
实例: 文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数.要求学生把做题结果拍成照片,发到邮箱,及时反馈.学生练习,并把做题结果拍成照片,发到我的邮箱,并通过QQ与学生进行交流实例巩固今天学习的函数概念。
第二篇:函数概念教学设计
函数的概念
一.教材分析
函数是数学中最重要的概念之一,且贯穿在中学数学的始终,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,结合教学课程标准与学生的认知水平,函数的第一课应以函数概念的理解为中心进行教学。
二、学情分析
从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一 “集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。
从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。
三、教学目标
知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号f(x)的意义。
过程与方法:在教师设置的问题引导下,学生通过自主学习交流,反馈精讲、当堂训练,经历函数概念的形成过程,渗透归纳推理的数学思想,发展学生的抽象思维能力。
情感态度价值观:在学习过程中,学会数学表达和交流,体验获得成功的乐趣,建立自信心。
四、教学难重点 重点:理解函数的概念;
难点:概念的形成过程及理解函数符号y = f(x)的含义。
[重难点确立的依据]:函数的概念抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在和函数的概念及函数符号的理解与运用上。
从多个角度创设多个问题情境,组织学生围绕重点自主思考,让学生自主、合作探索,体会函数概念的本质从而突破难点。
五、教法与学法选择
充分尊重学生的主体地位,让学生在教师设置的问题的引导下、通过自主学习等环节自主构建知识体系,自主发展数学思维,教师采用问题教学法、探究教学法、交流讨论法等多种学习方法,充分调动学生的积极性。
六、教学过程设计 引入
现实世界是充满变化的,函数是描述变化规律的重要数学模型,也是数学的基本概念,也是基本思想,另外函数的概念也是不断发展的。引出课题
问题提出
1.请回忆在初中我们学过那些函数?(学生回答老师补充)
2、回忆初中函数的定义是什么? 一般地,设在一个变化过程中有两个变量x、y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
知识探究一 函数
给定两个非空的数集A,B,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都有唯一确定的数f(x)与之对应,那么就把对应关系f叫做定义在集合A上的函数记作f:A→B 或y=f(x),x∈A.其中,x叫做自变量,与x值相对应的f(x)值叫做函数值.x的取值范围称为定义域,函数值f(x)的取值范围称为值域.定义理解一——y=f(x)1.x是自变量,它是法则所施加的对象。
2.f是对应法则,它可以是解析式,可以是表格,也可以是图像。
3.y=f(x)表示y是x的函数,不是f与x的乘积。f(x)只是函数值,f才是函数,()表示f对自变量x作用。
定义理解二——唯一确定
通过三个例子和学生共同总结出:
1.函数中每个x与y的对应关系,可以是一对一,也可以是多对一,但不能是一对多,即y是唯一确定的
2.A中元素不能剩,B中元素可以剩下。
定义理解三——定义域值域
根据定义,函数是两个数集A,B间的对应关系
自变量的集合A叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域.例如:A={0,1,2},B={0,2,4,5},f:A→B f(x)=2x
定义域为{0,1,2},值域为{0,2,4} 从而共同探究出:值域是集合B的子集
函数的三要素:
定义域、对应关系、值域;
函数的值域由函数的定义域和对应关系所确定; 定义域相同,对应关系完全一致,则两个函数相等.f(x)=3x+1与f(t)=3t+1是同一个函数.x2f(x)=x与f(x)=不是同一个函数.x然后和学生共同探究常见的已学函数的定义域和值域:
知识探究二 区间
(设a, b为实数,且a
(1){x|x ≤-1或5 ≤ x<6}(2){x|x ≥9}(3){x|1 (5){x|x≥0且x≠1} 练习作业:把常见的函数的定义域和值域用区间表示.七、小结 1.用集合的语言描述函数的概念 2.函数的三要素 3.用区间表示数集 八、作业 1.P28 练习1,2 2.P34习题2-1A组:1,2 教案:§1.2.1函数的概念 教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看 成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段 更注重函数模型化的思想. 教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要 数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关 系在刻画函数概念中的作用; (2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、引入课题 1.复习初中所学函数的概念,强调函数的模型化思想; 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系; 4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关 系. 二、新课教学 (一)函数的有关概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function). 记作:y=f(x),x∈A. 教案:§1.2.1函数的概念 教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想. 教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、引入课题 1.复习初中所学函数的概念,强调函数的模型化思想; 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系; 4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系. 二、新课教学 (一)函数的有关概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function). 记作: y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”○; 函数符号○“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2. 构成函数的三要素: 定义域、对应关系和值域 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. (由学生完成,师生共同分析讲评)4.一次函数、二次函数、反比例函数的定义域和值域讨论 (二)典型例题 1.求函数定义域 课本P20例1 解:(略)说明: 函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○2 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指○能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. ○巩固练习:课本P22第1题 2.判断两个函数是否为同一函数 课本P21例2 解:(略)说明: 构成函数三个要素是定义域、○对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)两个函数相等当且仅当它们的定义域和对应关系完全一致,○而与表示自变量和函数值的字母无关。 巩固练习: 1 课本P22第2题 ○2 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? ○(1)f(x)=(x -1)0;g(x)= 1(2)f(x)= x; g(x)= x2 (3)f(x)= x 2;f(x)=(x + 1)2(4)f(x)= | x | ;g(x)= (三)课堂练习 求下列函数的定义域(1)f(x)x2 x|x|(2)f(x)111x (3)f(x)(4)f(x)(5)f(x)x24x5 4x2 x1x26x10 (6)f(x)1xx31 三、归纳小结,强化思想 从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。 四、作业布置 课本P28习题1.2(A组)第1—7题(B组)第1题 『高中数学·必修1』6456989.doc2.1 函数的概念 杜淑芳(2010-8-8) 课题:§1.2.1函数的概念 教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想. 教学目的: 知识与技能:(1)掌握函数的概念,学会用函数的定义描述各类函数; (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解构成函数的要素,会求一些简单函数的定义域和值域; (3)掌握区间的概念,学会正确使用“区间”的符号表示函数的定义域与值域; 过程与方法: (1)经历从实例中概括出“函数”定义的过程,培养抽象概括的能力;(2)经历本节课的学习,学会运用函数解决问题; 情感、态度与价值观: 理解函数模型化的思想.教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、复习引入 1.复习初中所学函数的概念,强调函数的模型化思想; 初中函数的概念:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就说 y是x的函数.学过的函数: 正比例函数:ykx常数k0 一次函数:ykxb常数k0 反比例函数:ykx常数k0 二次函数:yaxbxc常数a0 2——————————————第 1 页(共 5页)—————————————— 『高中数学·必修1』6456989.doc2.1 函数的概念 杜淑芳(2010-8-8) 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 3.根据课本引例,回答下面问题:自变量与因变量的取值范围分别是什么?请用集合表示.在ppt上或者黑板上将学生的回答列出来: 自变量 因变量 取值范围 (引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;) 二、探究新知 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function). 记作: y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain); 与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). (红色字体定义中的关键字,讲课时应该对学生进行强调,讲解)注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”○; 函数符号○“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2. 构成函数的三要素: 定义域、对应关系和值域 补充练习: ——————————————第 2 页(共 5页)—————————————— 『高中数学·必修1』6456989.doc2.1 函数的概念 杜淑芳(2010-8-8) 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 4.一次函数、二次函数、反比例函数的定义域、对应关系和值域分别是什么?(由学生完成,师生共同分析讲评) 三、巩固反思 1.求函数定义域: 课本P20例1 解:(略) 说明: (1)确定函数的定义域两步骤: ○1题目中的已知限制条件,或者问题的实际背景确定,如果课前三个实例; ○2 使只给出的解析式y=f(x),有意义的实数的集合;(3)函数的定义域、值域要写成集合或区间的形式. 2.巩固练习:课本P22第1题 (请两位同学上讲台做题,完成后师生共同点评) 3.构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相——————————————第 3 页(共 5页)—————————————— 『高中数学·必修1』6456989.doc2.1 函数的概念 杜淑芳(2010-8-8) 等(或为同一函数) 判断函数是否相等: 课本P21例2 解:(略)说明: 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。4.巩固练习: 课本P22第2题 ○2 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? ○(1)f(x)= x; g(x)= x2 (2)f(x)= x 2;f(x)=(x + 1)2(3)f(x)= | x | ;g(x)= ③求下列函数的定义域(1)f(x)1x|x|111x2x2 (2)f(x) (3)f(x)(4)f(x)(5)f(x)(6)f(x) 四、x4x5 4xx122 x6x10 1xx31 归纳小结,强化思想 ——————————————第 4 页(共 5页)—————————————— 『高中数学·必修1』6456989.doc2.1 函数的概念 杜淑芳(2010-8-8) 运用函数模型解决问题:引例 函数的概念: 函数三要素: 从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。 五、作业布置 课本P28习题1.2(A组)第1—7题(B组)第1题 六、板书设计 函数的概念 例题 思考与作业 概念: 函数三要素: 确定定义域两步骤: 函数相等: ——————————————第 5 页(共 5页)——————————————第三篇:高一数学《函数的概念》教案
第四篇:高一数学《函数的概念》教案
第五篇:数学教学设计_1.2.1函数的概念