第一篇:概率与数理统计课程教学改革探讨
概率与数理统计课程教学改革探讨
摘 要:长期以来,在财经类专业概率与数理统计课程建设中,一直存在着教学方法及考试模式等方面的问题。通过结合教学实践与理论思考,阐述了概率与数理统计教学改革的几点看法。
关键词:课堂教学;概率论与数理统计;应用能力;教学模式
概率与数理统计是实际应用性很强的一门数学学科,它在经济管理、金融投资、保险精算、企业管理、投入产出分析、经济预测等众多经济领域都有广泛的应用。概率与数理统计是高等院校财经类专业的公共基础课,它既有理论又有实践,既讲方法又讲动手能力。然而,在该课程的具体教学过程中,由于其思维方式与以往数学课程不同、概念难以理解、习题比较难做、方法不宜掌握且涉及数学基础知识广等特点,许多学生难以掌握其内容与方法,面对实际问题时更是无所适从,尤其是财经类专业学生,高等数学的底子相对薄弱,且不同生源的学生数理基础有较大的差异,因此,概率统计成为一部分学生的学习障碍。如何根据学生的数学基础调整教学方法,以适应学生基础,培养其能力,并与其后续课程及专业应用结合,便成为任课教师面临的首要任务。作为我校教学改革的一个重点课题,在近几年的教学实践中,我们结合该课程的特点及培养目标,对课程教学进行了改革和探讨,做了一些尝试性的工作,取得了较好的成效。 与实际结合,激发学生对概率统计课程的兴趣
概率论与数理统计从内容到方法与以往的数学课程都有本质的不同,因此其基本概念的引入就显得更为重要。为了激发学生的兴趣,在教学中,可结合教材插入一些概率论与数理统计发展史的内容或背景资料。如概率论的直观背景是充满机遇性的赌博,其最初用到的数学工具也仅是排列组合,它提供了一个比较简单而非常典型(等可能性、有限性)的随机模型,即古典概型;在介绍大数定律与中心极限定理时可插入贝努里的《推测术》以及拉普拉斯将概率论应用于天文学的研究,既拓广了学生的视野,又激发了学生的兴趣,缓解了学生对于一个全新的概念与理论的恐惧,有助于学生对基本概念和理论的理解。此外,还可以适当地作一些小试验,以使概念形象化,如在引入条件概率前,首先计算著名的“生日问题”,从中可以看到:每四十人中至少有两人生日相同的概率为 0.882,然后在各班学生中当场调查学生的生日,查找与前述结论不吻合的原因,引入条件概率的概念,有了前面的感性认识后学生就比较主动地去接受这个概念了。
在概率统计中,众多的概率模型让学生望而生威,学生常常记不住公式,更不会应用。而概率统计又是数学中与现实世界联系最紧密、应用最广泛的学科之一。不少概念和模型都是实际问题的抽象,因此,在课堂教学中,必须坚持理论联系实际的原则来开展,将概念和模型再回归到实际背景。例如:二项分布的直观背景为 n重贝努里试验,由此直观再利用概率与频率的关系,我们易知二项分布的最可能值及数学期望等,这样易于学生理解,更重要的是让其看到如何从实际问题抽象出概念和模型,引导学生领悟事物内部联系的直觉思维。同时在介绍各种分布模型时可以有针对性地引入一些实际问题,向学生展示本课程在工农业、经济管理、医药、教育等领域中的应用,突出概率统计与社会的紧密联系。如将二项分布与新药的有效率、射击命中、机器故障等问题结合起来讲;将正态分布与学生考试成绩、产品寿命、测量误差等问题结合起来讲;将指数分布与元件寿命、放射性粒子等问题结合起来讲,使学生能在讨论实际问题的解决过程中提高兴趣,理解各数学模型,并初步了解利用概率论解决实际问题的一些方法。 运用案例教学法,培养学生分析问题和解决问题的能力
案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。它是连接理论与实践的桥梁。我们结合概率与数理统计应用性较强的特点,在课堂教学中,注意收集经济生活中的实例,并根据各章节的内容选择适当的案例服务于教学,利用多媒设备及真实材料再现实际经济活动,将理论教学与实际案例有机的结合起来,使得课堂讲解生动清晰,收到了良好的教学效果。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。通过案例教学可以促进学生全面看问题,从数量的角度分析事物的变化规律,使概率与数理统计的思想和方法在现实经济生活中得到更好的应用,发挥其应有的作用。
在介绍分布函数的概念时,我们首先给出一组成年女子的身高数据,要学生找出规律,学生很快就由前面所学的离散型随机变量的分布知识得到分组资料,然后引导他们计算累积频率,描出图形,并及时抽象出分布函数的概念。紧接着仍以此为例,进一步分析:身高本是连续型随机变量,可是当我们把它们分组后,统计每组的频数和频率时却是用离散型随机变量的研究方法,如果在每一组中取一个代表值后,它其实就是离散型的,所以在研究连续型随机变量的概率分布时,我们可以用离散化的方法,反过来离散型随机变量的分布在一定的条件下又以连续型分布为极限,服装的型号、鞋子的尺码等问题就成为我们理解“离散”和“连续”两个对立概念关系的范例,其中体现了对立统一的哲学内涵,而分布函数正是这种哲学统一的数学表现形式。尽管在这里花费了一些时间,但是当学生理解了这些概念及其关系之后,随后的许多概念和内容都可以很轻松地掌握,而且使学生能够对数学概念有更深层次上的理解和感悟,同时也调动了学生的学习积极性和主动性,培养了他们再学习的能力。 运用讨论式教学法,增强学生积极向上的参与和竞争意识
讨论课是由师生共同完成教学任务的一种教学形式,是在课堂教学的平等讨论中进行的,它打破了老师满堂灌的传统教学模式。师生互相讨论与问答,甚至可以提供机会让学生走上讲台自己讲述。如,在讲授区间估计方法时,就单双边估计问题我们安排了一次讨论课,引导学生各抒己见,鼓励学生大胆的发表意见,提出质疑,进行自由辩论。通过问答与辩驳,使学生开动脑筋,积极思考,激发了学生学习热情及科研兴趣,培养了学生综合分析能力与口头表达能力,增强了学生主动参与课堂教学的意识。学生的创新研究能力得到了充分的体现。这种教学模式是教与学两方面的双向互动过程,教师与学生的经常性的交流促使教师不断学习,更新知识,提高讲课技能,同时也调动了学生学习的积极性,增进师生之间的思想与情感的沟通,提高了教学效果。教学相长,相得益彰。
保险是最早运用概率论的学科之一,也是我们日常谈论的一个热门话题。因此,在介绍二项分布时,例如一家保险公司有1000人参保,每人、每年12元保险费,一年内一人死亡的概率为0.006。死亡时,其家属可向保险公司领得1000元,问:①保险公司亏本的概率为多大?②保险公司一年利润不少于40000元、60000元、80000元的概率各为多少? 保险这一类型题目的引入,通过讨论课使学生对概率在经济中的应用有了初步的了解。 运用多媒体教学手段,提高课堂教学效率
传统上一本教材、一支粉笔、一块黑板从事数学教学的情景在信息社会里应有所改变,计算机对数学教育的渗透与联系日益紧密,特别是概率论与数理统计课,它是研究随机现象统计规律性的一门学科,而要想获得随机现象的统计规律性,就必须进行大量重复试验,这在有限的课堂时间内是难以实现的,传统教学内容的深度与广度都无法满足实际应用的需要。在教学中我们可以采用了多媒体辅助手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,形成了一个全新的图文并茂、声像结合、数形结合的生动直观的教学环境,从而大大增加了教学信息量,以提高学习效率,并有效地刺激学生的形象思维。另外,利用多媒体对随机试验的动态过程进行了演示和模拟,如:全概率公式应用演示、正态分布、随机变量函数的分布、数学期望的统计意义、二维正态分布、中心极限定理的直观演示实验等,再现抽象理论的研究过程,能加深学生对理论的理解及方法的运用。让学生在获得理论知识的过程中还能体会到现代信息技术的魅力,达到了传统教学无法实现的教学效果。 改革考试方式和内容,合理评定学生成绩
应试教育向素质教育的转变,是我国教育改革的基本目标。财经类专业的概率与数理统计教学,除了在教学方法上应深入改革外,在考试环节上也需要进行改革。
考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于数学基础课程概率与数理统计的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差甚远。在过去的概率与数理统计教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习概率与数理统计课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类培养跨世纪高素质的经济管理人才是格格不入的。为此,我们对概率与数理统计课程考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出概率与数理统计课程的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用互动方式进行考核,采取灵活多样的考核形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中掌握程度和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。
实践表明,运用教改实践创新的教学模式,可以使原本抽象、枯燥难懂的数学理论变得有血有肉、有滋有味,可以激发学生的求知欲望,提高学生对课程的学习兴趣。在概率统计的教学模式上,我们尽管做了一些探讨,但这仍是一个需要继续付出努力的研究课题,也希望与更多的同行进行交流,以提高教学水平。
参考文献
[1]陈善林,张浙.统计发展史[M].上海:立信会计图书用品社,1987:119-151.
[2]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.
[3]肖柏荣.数学教学艺术概论[M].合肥:安徽教育出版社,1996.
[4]蔺云.哲学与文化视角下概率统计课的育人功能[J].数学教育学报,2002,11(2):24-26.
[5]陈嫣,涂荣豹.关于随机性数学意识的培养[J].数学教育学报,2002,11(2):27-29.
第二篇:概率与数理统计学习心得
概率与数理统计学习心得
概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。对于作为电子通信专业的我,其日后的帮助也是很大的。
这门课程给我最深刻的体会就是这门课程很抽象,很难以理解,初学时,就算觉得理解了老师的讲课内容,但是一联系实际也会很难以应用上,简化不出有关所学知识的模型。后来经过老师的生动现实的实例分析,逐渐对这门课程有了新的认识。首先,这门课程给我带来了一种新的思维方式。前几章的知识好多都是高中大学讲过的,接触下来觉得挺简单,但是后面从大数定理及中心极限定理就开始是新的内容了。我觉得学习概率论与数理统计最重要的就是要学习书本中渗透的一种全新的思维方式。统计与概率的思维方式,和逻辑推理不一样,它是不确定的,也就是随机的思想。这也是一个人思维能力最主要的体现,整个学习过程中要紧紧围绕这个思维方式进行。这些都为后面的数理统计还有参数估计、检验假设打下了基础。
概率论与数理统计不仅在自然科学中发挥重要作用,实证的方法就是基于数据分析整理并推理预测,而且在社会实践中发挥着重要的不可替代的作用,这是因为 1.人类活动的各个领域都不同程度与数据打交道,都有如何收集和分析数据的问题,因此概率论与数理统计学的理论和方法,与人类活动的各个领域都有关联。
2.组成社会的单元——人、家庭、单位、地区等,都有很大的变异性、不确定性,如果说,在自然现象中尚有一些严格的、确定性的规律,在社会现象中则绝少这规律,因此更加依靠从概率论与数理统计的角度去考察。
概率论与数理统计的发展方向是更加实用,基于多元函数、通过建立数学模型来分析解决问题,理论更加严密,应用更加广泛,发展更加迅速。
通过老师的教学,使我初步了解了概率论与数理统计的基本概念和基本理论,知道了处理随机现象的基本思想和方法,有助于培养自己解决实际问题的能力和水平。
第三篇:概率论与数理统计课程教学大纲
《概率论与数理统计》课程教学大纲
(2002年制定 2004年修订)
课程编号:
英 文 名:Probability Theory and Mathematical Statistics 课程类别:学科基础课 前 置 课:高等数学
后 置 课:计量经济学、抽样调查、试验设计、贝叶斯统计、非参数估计、统计分析软件、时间序列分析、统计预测与决策、多元统计分析、风险理论
学 分:5学分 课
时:85课时 修读对象:统计学专业学生 主讲教师:杨益民等
选定教材:盛骤等,概率论与数理统计,北京:高等教育出版社,2001年(第三版)
课程概述:
本课程是统计学专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。由于其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。本课程是统计专业学生打开统计之门的一把金钥匙,也是经济类各专业研究生招生考试的重要专业基础课。本课程由概率论与数理统计两部分组成。概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。包括数理统计的基本概念、参数统计、假设检验、非参数检验、方差分析和回归分析等。教学目的:
通过本课程的学习,要求能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布、二维随机变量的和分布、顺序统计量的分布。理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。了解大数定律和中心极限定量的内容及应用,熟悉数据处理、数据分析、数据推断的各种基本方法,能用所掌握的方法具体解决所遇到的各种社会经济问题,为学生进一步学习统计专业课打下坚实的基础。教学方法:
本课程具有很强的应用性,在教学过程中要注意理论联系实际,从实际问题出发,通过抽象、概括,引出新的概念。由于本课程是研究随机现象的科学,学生之前从未接触过,学习起来会感到难度较大,授课时应突出重点,讲清难点。要使学生明白,本课程主要研究哪些方面的问题,从何角度、用何原理和方法进行研究的,是怎样研究的,得到哪些结论,如何用这些方法和结论处理今后遇到的社会经济问题。在教育中要坚持以人为本,全面体现学生的主体地位,教师应充分发挥引导作用,注意随时根据学生的理解状况调整教学进度。授课要体现两方面的作用:一是为学生自学准备必要的理论知识和方法,二是激发学生学习兴趣,引导学生自学。在教学中要体现计算机辅助教学的作用,采用多媒体技术,提高课堂教学的信息量。通过课堂计算机演示实验,帮助学生加深对概念的理解。每次课后必须布置较大数量的思考题和作业,并加强课外辅导和答疑。
各章教学要求及教学要点
第一章 概率论的基本概念
课时分配:13课时 教学要求:
1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算。
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、减法公式、全概率公式,以及贝叶斯公式。
3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。教学内容:1、2、3、4、5、6、随机试验、随机事件与样本空间。
事件的关系与运算、完全事件组。
概率的概念、概率的基本性质、概率的基本公式。等可能概型(古典概型)、几何型概率。条件概率、全概率公式、贝叶斯公式。
事件的独立性、独立重复试验。
思考题:
1、事件A表示三个人对某问题的回答中至少有一人说“否”,B表示三个人对某问题的回答都说“是”。试问:事件AB、AB各表示什么涵义?
2、社会经济现象是否只分成确定性现象和随机现象?“某天的天气状况”是否属于这两类现象?试举出至少三种不属于这两类现象的社会经济现象。
3、随机事件与集合的对应关系是怎样的?
4、对立事件和不相容事件有何区别?
5、全概率公式和贝叶斯公式有何区别,各自能解决什么问题?
6、“小概率事件”是否不会发生?
7、“概率为零的事件”是否必然是不可能事件?
第二章 随机变量及其分布
课时分配:10课时 教学要求:
1、理解随机变量及其概率分布的概念;理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。
2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。
3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,)、指数分布及其应用。
5、根据自变量的概率分布求其简单函数的概率分布。
2教学内容:1、2、3、4、5、随机变量及其分布函数的概念及其性质。离散型随机变量及其分布律。连续型随机变量及其概率密度。常见随机变量的概率分布。
随机变量的函数分布。
思考题:
1、引入随机变量的意义何在?如何用微积分的工具来研究随机试验?
2、分布函数有哪些性质?
n3、离散型随机变量的分布律有哪些性质?若有一组数pi0,且i1它们是不是某pi1.2,个离散型随机变量的概率分布?
4、二项分布何时取得极大值?其极大值是什么?
5、什么类型的实际问题可以用二项分布来研究?如何解决二项分布的计算问题?
6、什么类型的实际问题可以用泊松(Poisson)分布来研究?
7、指数分布的密度函数在不同的教材上有不同的定义,它们的区别何在?
8、连续型随机变量的概率密度有哪些性质?
9、正态分布N(μ,)与标准正态分布的分布函数之间有何联系?如何利用标准正态分布来计算正态分布N(μ,)落在某个区间的概率?
10、什么是正态分布的“3法则”?如何利用“3法则”来研究实际问题?
11、若随机变量X的密度函数不单调,如何求Yf(X)密度函数?
第三章 多维随机变量及其概率分布
课时分配:12课时 教学要求:
1、理解二维随机变量的概念、理解二维随机变量的联合分布的概念、性质及两种基本形式:离散型联合概率分布,边缘分布和条件分布;连续型联合概率密度、边缘密度和条件密度。会利用二维概率分布求有关事件的概率。
2、理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。
3、掌握二维均匀分布,了解二维正态分布的联合概率密度,理解其中参数的概率意义。
4、会求两个随机变量的简单函数(和、顺序统计量)的分布。教学内容:
1、二维随机变量及其概率分布。
2、二维离散型随机变量的概率分布、边缘分布和条件分布。
3、二维连续型随机变量的概率密度、边缘密度和条件密度,常用二维随机变量的概率分布。
4、随机变量的独立性和相关性。
5、两个随机变量函数的分布。思考题: 221、二维随机变量概率分布和相应的两个一维随机变量的概率分布间有何联系?
2、如何用一张概率分布表同时表示二维随机变量的联合分布律、边缘分布律?能否同时表示两个条件分布律?
3、二维均匀分布的联合概率密度与一维均匀分布的概率密度有何共性?如何由此推出三维及n维随机变量的联合概率密度?
4、二维正态分布的联合概率密度和相应的两个一维正态分布的概率密度间有何联系?
5、二维正态分布的联合概率密度各参数的涵义是什么?何时相应的两个一维正态分布是相互独立的?
6、如何确定条件密度表达式的函数定义域?
7、设某离散型随机变量与某连续型随机变量是相互独立的,如何求它们的和分布?
8、哪些独立随机变量具有可加性?
9、随机变量的独立性与事件的独立性有何区别?
第四章 随机变量的数字特征
课时分配:12课时 教学要求:
1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,并会运用数字特征基本性质计算具体分布的数字特征,掌握常用分布(如0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布等)的数字特征。
2、会根据随机变量的概率分布求其函数的数学期望;会根据二维随机变量的概率分布求其函数的数学期望。
3、了解切比雪夫不等式及其应用。教学内容:
1、随机变量的数学期望(均值)、随机变量函数的数学期望。
2、方差、标准差及其性质,切比雪夫(Chebyshev)不等式。
3、协方差、相关系数及其性质。
4、矩、协方差矩阵。思考题:
1、数学期望和方差的统计意义是什么?
2、如何求一维与二维随机变量函数的期望?
3、写出0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布的数学期望和方差。
4、数学期望和方差有哪些重要性质?其中哪些性质需要“相互独立”这一前提条件?
5、切比雪夫不等式的表达式是什么?它的证明过程中关键步骤是什么?它在处理实际问题中有何作用?
6、方差与协方差的实用计算公式是什么?
7、不相关与相互独立之间的关系是怎样的?若随机变量X与Y不相关,它们是否必然相互独立?若随机变量X与Y是正态分布,结论怎样?
8、若随机变量X与Y的相关系数r=0,是否说明X与Y之间没有关系?举例说明之。
9、事件A与B的相关系数是如何定义的?写出其定义式。
10、n维正态分布有哪些重要性质?
第五章 大数定律和中心极限定理
课时分配:4课时 教学要求:
1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)。
2、了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布的中心极限定理)。教学内容:
1、几乎处处收敛、依概率收敛、依分布收敛。
2、切比雪夫大数定律、伯努利大数定律、辛钦(Khinchine)大数定律。
3、棣莫弗-拉普拉斯(De Moivre-Laplace)定理、列维-林德伯格(Levy-Lindberg)定理。思考题:
1、几乎处处收敛、依概率收敛、依分布收敛之间的关系是怎样的?
2、切比雪夫大数定律、伯努利大数定律、辛钦(Khinchine)大数定律成立的条件是什么,它们之间的差别是什么?
3、哪个大数定律可以用来说明频率的稳定性?试说明之。
4、棣莫弗-拉普拉斯定理和列维-林德伯格定理之间的关系是怎样的?
5、如何用列维-林德伯格定理来近似求独立同分布随机变量的和分布?
第六章 样本及抽样分布
课时分配:6课时 教学要求:
1、理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。
2、了解 分布、t分布和F分布的概念及性质,了解分位数的概念并会查表计算。
3、了解正态总体的某些常用抽样分布。教学内容:
1、总体、个体、简单随机样本、统计量、样本均值、样本方差和样本矩。
2、 分布、t分布和F分布,分位数,正态总体的常用抽样分布。思考题:
1、总体和随机变量之间有何关系?
2、什么是简单随机样本?
3、数理统计中所说样本空间和随机变量X的样本空间是否同一概念?
4、为何能用样本观察值推断总体的状况?它依据的原理是什么?
5、什么叫统计量?常用的统计量有哪些?
6、 分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。
7、t分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。
8、F分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。2229、随机变量的上侧分位数和双侧分位数是怎样定义的?如何通过查表求标准正态分布、 分布、t分布和F分布的分位数?
210、关于正态总体的样本均值、样本方差有何重要结论?
第七章 参数估计
课时分配:8课时 教学要求:
1、理解参数的点估计、估计量与估计值的概念。
2、掌握矩估计法(一阶、二阶矩)和最大似然估计法。
3、了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性。
4、了解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间。教学内容:
1、点估计的概念、估计量与估计值。
2、矩估计法、最大似然估计法。
3、估计量的评选标准。
4、区间估计的概念。
5、单个正态总体的均值和方差的区间估计。
6、两个正态总体的均值差和方差比的区间估计。
7、(0-1)分布参数的区间估计。
8、单侧置信区间。思考题:
1、参数估计主要处理在社会经济中遇到的什么类型的问题?
2、矩估计法的优点和缺陷各是什么?
3、最大似然估计法依据的原理是什么?
4、写出一般情况下最大似然估计法的解题步骤。这个步骤对服从均匀分布的总体是否适用?如何用最大似然估计法对服从均匀分布的总体进行点估计?
5、估计量有哪几个评选标准?其中最基本的标准是什么?
6、为何要进行参数的区间估计?它与点估计相比有何优越性?
7、写出确定参数的置信区间的一般步骤。
8、单个正态总体均值的区间估计用到哪几种抽样分布?
9、单个正态总体方差的区间估计用到哪种抽样分布?
10、两个正态总体的均值差的区间估计用到哪几种抽样分布?
11、两个正态总体方差比的区间估计用到哪种抽样分布?
第八章 假设检验
课时分配:7课时 教学要求:
1、理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2、了解单个及两个正态总体的均值和方差的假设检验,会用公式进行单边及双边假设检验。
3、了解分布拟合检验和秩和检验概念与步骤。教学内容:
1、显著性检验。
2、单个及两个正态总体的均值和方差的假设检验。
3、假设检验的两类错误,样本容量的选取。
4、区间估计与假设检验之间的关系。
5、分布拟合检验。
6、秩和检验。思考题:
1、假设检验分为哪两种类型?
2、假设检验主要处理在社会经济中遇到的什么类型的问题?
3、假设检验依据的原理是什么?
4、确定双边假设检验与单边假设检验的原则是什么?
5、对单边假设检验如何确定备择假设?
6、写出显著性检验的一般步骤。
7、单个正态总体均值的假设检验用到哪几种抽样分布?它和区间估计有何异同?
8、单个正态总体方差的假设检验用到哪种抽样分布?它和区间估计有何异同?
9、两个正态总体均值差的假设检验用到哪几种抽样分布?它和区间估计有何异同?
10、两个正态总体方差比的假设检验用到哪几种抽样分布?它和区间估计有何异同?
11、什么叫施行特征函数?如何用它来描述犯“取伪”错误的概率?
12、对单边及双边假设检验,为同时控制犯两类错误的概率,其必要样本容量应取多大?分别写出其表达式。
13、假设检验和区间估计之间的差别何在?
14、 拟合检验法、偏度、峄度检验法、秩和检验法各自适用于检验什么问题?如何提出原假设?
第九章
方差分析和回归分析
课时分配:9课时 教学要求:
1、了解方差分析的基本思想,试验因素和水平的意义。
2、掌握平方和的分解,会作出方差分析表。
3、了解回归分析的基本思想。
4、掌握一元线性回归,了解可化为线性回归的一元非线性回归和多元线性回归。
5、了解线性相关性检验和利用回归方程进行预测和控制。教学内容:
1、单因素和双因素试验的方差分析。
2、一元线性回归、非线性回归、多元线性回归。思考题:
1、方差分析主要处理在社会经济中遇到的什么类型的问题?
2、写出方差分析的一般步骤。
23、如何进行平方和的分解?总偏差平方和、误差平方和、效应平方和的统计特性怎样?它们的自由度之间有何关系?
4、回归分析主要处理在社会经济中遇到的什么类型的问题?
5、如何用最小二乘法求一元线性回归方程的系数?
6、相关系数与回归系数间有何关系?
7、如何将特殊的非线性回归转化为线性回归?
8、如何用回归方程进行预测与控制?
复习、机动:4课时
附录:参考书目
1、茆诗松等,《概率论与数理统计》,中国统计出版社,2000
2、苏均和,《概率论与数理统计》,上海财经大学出版社,1999
3、华东师范大学数学系编,《概率论与数理统计》,中国科学技术大学出版社,1992
4、复旦大学数学系编,《概率论》(第一、二册),人民教育出版社,1979
5、唐象能、戴俭华,《数理统计》,机械工业出版社,1994
6、[俄]A.A.史威斯尼科夫等,《概率论解题指南》,上海科学技术大学出版社,1981
7、周复恭等,《应用数理统计学》,中国人民大学出版社,1989
8、[印度]C.R.劳,《线性统计推断及其应用》,科学出版社,1987
9、郑德如,《相关分析和回归分析》,上海人民出版社,1984
10、吴喜之,《非参数统计》,中国统计出版社,1999
11、Vendables, W.N.& Ripley.B.D.,《Modern Applied Statistics with S-plus》,Springer-Verlag,New York,1997
12、张尧庭,《定性资料的统计分析》,广西师范大学出版社,1991
13、[美]戴维.R.安德森等,《商务与经济统计》,机械工业出版社,2000
执笔人: 杨益民 2004年5月 审定人: 管于华 2004年5月 院(系、部)负责人: 钱书法 2004年5月
第四篇:概率与数理统计 2011年7月试题及答案
全国2011年7月自学考试概率论与数理统计
(二)课程代码:02197
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.设A={2,4,6,8},B={1,2,3,4},则A-B=()A.{2,4} B.{6,8} C.{1,3}
D.{1,2,3,4} 解:称事件“A发生而B不发生”为事件A与事件B的差事件,记作AB
说的简单一些就是在集合A中去掉集合AB中的元素,故本题选B.2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为(A.15 B.14 C.13
D.
解:从10件产品中任取4件,共有C410种取法;若4件中没有次品,则只能从8件正品中取,共有C48;
4本题的概率PC8C48765109871C.103,故选3.设事件A,B相互独立,P(A)0.4,P(AB)0.7,,则P(B)=()A.0.2 B.0.3 C.0.4
D.0.5 解:A,B相互独立,PABPAPB,所以PABPAPBPABPAPBPAPB,代入数值,得0.70.4PB0.4PB,解得PB0.5,故选D.4.设某试验成功的概率为p,独立地做5次该试验,成功3次的概率为()A.C35 B.C35p3(1p)2 C.C35p3
D.p3(1p)2
解:X~Bn,p定理:在n重贝努力实验中,设每次检验中事件A的概率为p0p1,则事件A恰好发生k次的概率
PknkCknp1pnk,k0,1,2,...n.本题n5,k3,所以P33253C5p1p,故选B.)
5.设随机变量X服从[0,1]上的均匀分布,Y=2X-1,则Y的概率密度为()
A.f(y)12,1y1,Y
B.f1,Y(y)1y1,0,其他,0,其他,C.f1,0y1,Y(y)2
D.f1,0y1,Y(y)0,其他,0,其他,解:X~U0,1,f11,0x1,Xx100,其他,由y2x1,解得x12y1,其中y1,1即hy122y12,hy12,由公式ffXhyhy,y1,1Yy
0,其他.,得f111fXy,y1,1112,y1,11Yy222,y1,120,其他.0,其他.0,其他.故选A.6.设二维随机变量(X,Y)的联合概率分布为()
则c= A.1 B.1126
C.1
D.143
解:X,Y的分布律具有下列性质:①Pij0,i,j1,2,...②Pij1.ij由性质②,得1116411212c141,解得c16,故选B.7.已知随机变量X的数学期望E(X)存在,则下列等式中不恒成立....的是()A.E[E(X)]=E(X)B.E[X+E(X)]=2E(X)C.E[X-E(X)]=0
D.E(X2)=[E(X)]2 解:X的期望是EX,期望的期望值不变,即EEXEX,由此易知A、B、C均恒成立,故本题选D.2
8.设X为随机变量E(X)10,E(X2)109,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤
()
A.C.1434
B.D.
518
10936解:DXEX切比雪夫不等式:2EX96221091009,PXEX14DX2 ;所以PX106,故选A.9.设0,1,0,1,1来自X~0-1分布总体的样本观测值,且有P{X=1}=p,P{X=0}=q,其中0
)A.1/5 C.3/5 解:矩估计的替换原理是:用样本均值35x估计总体均值35ˆXx,EX,即E
B.2/5 D.4/5 本题EX1p0qp,xˆ,所以p,故选C.10.假设检验中,显著水平表示()A.H0不真,接受H0的概率 C.H0为真,拒绝H0的概率
解:显著水平B.H0不真,拒绝H0的概率 D.H0为真,接受H0的概率
拒真,表示第一类错误,又称即P拒绝H0H0为真,故选C.二、填空题(本大题共15小题,每小题2分,共30分)
请在每小题的空格中填上正确答案。错填、不填均无分。
11.盒中共有3个黑球2个白球,从中任取2个,则取到的2个球同色的概率为________.解:PC3C2C522225.12.有5条线段,其长度分别为1,3,5,7,9,从这5条线段中任取3条,所取的3条线段能拼成三角形的概率为________.解:C510,其中能够成三角形的所以P0.3.33,7,9,5,7,9共3种,情况有3,5,7,13.袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为________.3
解:设A甲取到黄球由全概率公式,得,A甲取到白球,B乙取到黄球,则
PBPAPBAPAPBA205019493050204925.14.掷一枚均匀的骰子,记X为出现的点数,则P{2 0xC其它32x15.设随机变量X的概率密度为f(x)80,则常数C=________.解:1c380xdx218x3c018c,所以c2.316.设随机变量X服从正态分布N(2,9),已知标准正态分布函数值Φ(1)=0.8413,则P{X>5}=________.52X2解:PX5P110.1587.3317.设二维随机变量(X,Y)的联合概率分布为 则P(X>1)=________.解:PX1PX20.20.10.3.18.设二维随机变量(X,Y)服从区域D上的均匀分布,其中D为x轴、y轴和直线x+y≤1所围成的三角形区域,则P{X COV(X,Y)=________.解:EXY***8271927321123.22.设随机变量X~B(200,0.5),用切比雪夫不等式估计P{80 78.t/2(n)23.设随机变量t~t(n),其概率密度为ft(n)(x),若P{|t|t/2(n)},则有ft(n)(x)dx________.24.设,分别是假设检验中犯第一、二类错误的概率,H0,H1分别为原假设和备择假设,则P{接受H0|H0不真}=________.解:第二类错误,又称取伪,故本题填β.2225.对正态总体N(,),取显著水平a=________时,原假设H0∶=1的接受域为0.9(n1)52n(1S)220.05n(.1)解:显著水平为,自由度为n1的卡方检验的拒绝域为0,2n11--22n1,,所以本题220.05,0.1.三、计算题(本大题共2小题,每小题8分,共16分) 26.设某地区地区男性居民中肥胖者占25%,中等者占60%,瘦者占15%,又知肥胖者患高血压病的概率为20%,中等者患高血压病的概率为8%,瘦者患高血压病的概率为2%,试求:(1)该地区成年男性居民患高血压病的概率; (2)若知某成年男性居民患高血压病,则他属于肥胖者的概率有多大? 解:设A肥胖者,B中等者,C瘦者,D患高血压PA0.25,PB0.6,PC0.15,PDA0.2,PDB0.08,PDC0.02,,则 1.由全概率公式,得PDPAPDAPBPDBPCPDC0.250.20.60.080.150.020.1010.27.设随机变量X在区间[-1,2]上服从均匀分布,随机变量 1,X0Y0,X0,1,X0求E(Y),D(Y).5 解:fX13,-1x2,;PX022100,其他,3dx3;PX00,对于连续性随机变量X,去任一指定的实数值x的概率都等于0,即PXx0.PX001113dx3;由题意可知,随机变量Y是离散型随机变量,且PY1PX023;PY0PX00,PY1PX013,所以EY12230113123;EY122301131,DYEY2EY211989.四、综合题(本大题共2小题,每小题12分,共24分)28.设随机变量X的概率密度函数为 f(x)k(x1),1x1, 0,其它.求(1)求知参数k;(2)概率P(X>0); (3)写出随机变量X的分布函数.解:由1111kx1dxkx2x2k,得k1;-12121PX0112x1dx121x2x30 2;040,x-1,FX1x12,1x1,41,x1.29.设二维随机变量(X,Y)的概率密度为 f(x,y)Cxy2,0x1,0y10,其它 试求:E(X);E(XY);X与Y的相关系数xy.(取到小数3位) 解:由1Cxdxydy0012121121310Cxdx02116C,得C6.EX6xdxydy2xdx0023;;1EX261010xdxydy2xdx00133121312EY6xdxydy034;EY12;620xdxydy01435;EXY6x2dx0011ydy23DXEXDYEY22EX212;23183212EY33;5480122335110;CovX,YEXYEXEYXYDXDYCovX,Y110 4802.191.五、应用题(本大题共1小题,10分) 30.假定某商店中一种商品的月销售量X~N(,2),,2均未知。现为了合理确定对该商品的进货量,需对,2进行估计,为此,随机抽取7个月的销售量,算得,x65.143,S11.246,试求的95%的置信区间及2的90%的置信区间.(取到小数3位)(附表:t0.025(6)=2.447.t0.05(6)=1.943 22220.025(6)14.449.0.05(6)12.595.0.975(6)1.237.0.95(6)1.635) 解:先求的95t62.447,200的置信区间:0.05,0.025,n27,n16,的公式,得x65.143,S11.246,把以上数据代入下面SS,xtn175.544.xtn154.742,nn22再求的902200的置信区间:21--0.1,0.05,n16,S11.246,2的公式,得 612.595,2261.635,把以上数据代入下面22n1Sn1S,2260.249,464.119.n1n11--22 概率统计教学改革探索与实践 段滋明 陈美蓉 中国矿业大学理学院,江苏,徐州 221116 摘要:概率统计是研究随机现象统计规律性的一门课程,应用极其广泛。分析了目前教学中存在的主要问题,从教学理念、教学内容、教学方式及考核形式等方面对课程的教学改革进行了探讨,指出了应加强学生应用能力和创新能力的培养。 关键词:概率统计,教学改革,创新教育 概率统计是高校理工科各专业开设的一门重要的数学基础课程,主要从数量方面研究随机现象的统计规律,其理论与方法已广泛地应用于许多科学领域和国民经济各个部门,它在科学技术与人类实践活动中都发挥了独特的作用。通过概率统计课程的学习,学生能掌握基本的研究随机现象的思维方式,对培养学生的数学思维能力、科学创新精神和理论联系实践能力等方面有着不可替代的作用。因此探索与实践概率统计的教学改革非常重要。1 目前教学中存在的不足 1)教学方式相对滞后 作为全校工科专业重要的基础课,概率统计的教学基本上采取统一教学内容、统一进度、统一辅导答疑、统一考试的方式进行。过于统一的要求限制了教师在教学活动中的自主性和灵活性,教学的目的往往只针对最后的统一考试,教学过程中只是简单地把知识灌输给学生,强调对解题能力的训练,忽视了学生对知识理解和应用的掌握,忽视了对学生创新能力的培养。课堂讲授中,经常先复习已学过的内容,再讲授新的内容,整堂课中学生一直处于被动学习的状态,调度不起学生学习的热情。这样的教学方式不仅不能挖掘学生的学习能力,反而使得教学效果越来越差。另外,在概率统计的课堂教学中,许多教师长期以来一直采取板书的教学形式,没有及时的使用多媒体等现代化的教学手段。即使已经使用多媒体等工具的教师,也往往只是把教学内容简单地组织在幻灯片上面,解放了课堂的板书而已,没有体现出现代化教育手段的优越性。 2)教学效果逐渐下降 随着数十年来高校的持续扩招,我国高等教育的培养目标已经由精英教育转变为大众化教育。招生规模的急剧扩大以及地区教育的差异,使得学生整体质量普遍下降,个人素质层次不齐,他们的学习基础和接受新知识的能力相比以前的同学有所下降,这就给大学的教学活动特别是作为基础课的概率统计的教学增加了一定的难度。一些基础较差的学生,对数学课程本有畏惧心理,又难以适应大学的生活,对所学概率统计知识不能深入的理解,只是掌握一些固定的解题套路,甚至有些同学平时根本不听课,快到考试了才找寻一些模拟题进行考前冲刺,教学效果可想而知。另一方面,高校的扩招也导致了师资的匮乏,教师队伍的建设跟不上学生数量的增加速度,在应对扩招而进行的师资队伍建设中,教师的质量也出现不同程度的下降。特别是对于概率统计这样的全校性基础课程来讲,所需要的教师也是很多的,一些刚走出校门的本科生被迫直接走上了讲台,没有时间进行充分的教学准备活动,教学质量也就得不到充分的保证。2 教学改革的探索与实践 1)改革教学理念,强调数学思维和创新精神的培养 随着我国高等教育由精英教育进入到大众化教育阶段,许多教学理念和指导思想也需要做相应的改变,以适应大众化的教育变化。之前的以培养社会精英、研究型人才的教育目标,以及将教学内容讲深、讲透、层层理论分析的教育指导思想应转变为以普及高等教育、提高社会的科学技术水平为教育目标,教学上应以知识的普及,兼顾一定的理论和实践应用性,以培养学生的数学思维,培养学以致用的创新精神为指导思想,这样才能适应当前的教育形势。 2)改革教学内容,体现应用能力的培养 概率统计是非常重要的一门基础课,已在许多领域发挥了重要作用。尤其是随着近代数学的极大发展,使数学深入到科学、技术、经济等各个领域,对经济和社会生活都产生了深远的影响。现代科学技术对概率统计知识的需求发生了很大变化,现代数学观点、思想方法在现代科技中占的比例越来越大,因此,概率统计知识结构也必须有一个较大的更新。 教学大纲是规范教学工作、保证教学质量的首要环节。因此首当其冲的是要对教学大纲作必要的调整。大纲的修订要有针对性,如根据不同专业的特点和相关学科发展要求,确定教学目标是什么,应达到什么样的要求等。其次,在教材的选择方面,要根据不同专业的特点选用合适的教材。应选择那些既有基本知识点,又有实际应用介绍,既注重学生抽象思维和逻辑推理能力的培养,又注重解决实际问题技能训练的教材。要打破统一大纲、统一教材的限制,根据不同专业特点编写不同的教学大纲和教案、选用不同的教材,从而在教学上既能突出基础,又加强针对性,体现应用性。3)改革教学方式,探索新的教学模式 目前过于统一的要求限制了教师对新的教学方式的摸索及尝试,不少教师仍在采用传统的“满堂灌”的教学方式,无视学生的表现和教学效果。所以,必须改革现有的教学方法,让课堂教学收到明显的教学效果。通过多年的教学实践,我们逐渐探索出一些行之有效的教学方法。比如我们采用启发式的的教学模式,由实际案例的引入到概率统计概念、模型、方法的陈述,由直观到抽象,使学生由浅入深循序渐进的掌握概率统计知识。同时不能只局限于书本知识的传授,还应注意启发学生知识的外延性,努力培养学生开阔的思维和创新的精神。在教学中还要强化知识的应用性,将数学建模融于概率统计的教学当中,多介绍用概率统计知识解决实际问题特别是重大社会或经济问题的案例,让学生在数学建模中切实体会到应用数学知识解决实际问题的益处,体会到概率统计知识的重要性,提高他们的学习兴趣,切实培养学生的数学应用能力和创新能力。 另外,针对学生数学基础不 一、个人素质层次不齐的状况,可以采用分层教学法。将学生依据个人基础及专业要求划分成多个层次,每个层次都制定有针对性的教学目标、采取合适的教学方法,切实提高教学效率。在教学手段的选择上,要充分利用现代教育技术的优点。将传统的黑板加粉笔的教学方法与多媒体教学相结合,将一些抽象的概念、理论等通过图表、动画、视频等多媒体资源生动地表现出来,使学生易于理解和掌握,提高学习兴趣,提高课堂效率。 4)改革考核形式,加强实践能力的训练 课程的考核评价方式是课程教学思路的体现,是学生学习内容、学习方法的风向标,是教学中重要的一个环节。如何探讨一种适合层次教学、能全面体现学生创新能力的考核评价方式非常重要。实践中应采取多种方式相结合的考核形式。将传统的单一闭卷考试方式改为闭卷与开卷相补充、平时考核与期末考试相结合的灵活多样的考试方式。闭卷考试主要考查学生对概率统计基本概念、基本理论的掌握程度; 开卷考试则可以设计一些与教学相关的、应用性的综合型案例,采用数学建模的形式,让学生完全自主的运用所学知识去分析、讨论和解决实际问题。平时考核的方式也有多种形式,包括基本内容的作业训练、学习小结及撰写课题小论文等。课题小论文是教师在教学过程中设计一些小课题,通过学生对这些课题的分析、讨论、总结及撰写论文的过程,达到调动学生学习主动性、促进自主学习的目的。多样的考核形式,既增强了教师教学的灵活性,又能让学生真正体会到学习的乐趣,增加学习的积极性,真正培养了学生的应用能力和创新思维,达到了明显的教学效果。 参考文献 1.曹学锋,孙幸荣,浅谈师范院校概率统计教学改革,中国成人教育,2008(3):169-170.2.周圣武,李金玉,周长新,概率论与数理统计(第二版),煤炭工业出版社,2007.资 助:中国矿业大学青年教师教学改革资助计划项目(项目名称:体现矿业特色,培养创新精神——运筹学系列课程创新教学研究,2010-2012) 作者简介:段滋明,中国矿业大学理学院教师,讲师,主要从事运筹学、概率统计的教学与科研工作。 地 址:江苏徐州中国矿业大学(南湖校区)理学院 221116 联系电话:*** 电子邮箱:zmduan@cumt.edu.cn第五篇:概率统计教学改革探索与实践