第一篇:概率论与数理统计课程的教学总结
关于“概率论与数理统计”课程的教学总结
概率论与数理统计无疑是其中最为活跃的分支之一,它既有严密的数学基础,又与各学科联系紧密,在自然科学、社会科学、管理科学、技术科学和工农业生产等各个学科和领域中得到极其广泛的应用,概率论与数理统计也因此成为数学专业和许多其它相关专业的一门重要的必修课程。但由于随机现象的普遍存在性、研究方法的独特性和教学内容的实用性,很多学生反映这门课程学起来比较困难。针对这种情况,我们从教学实践出发,进行了大量的教学研究,这学期教的“概率论与数理统计”课程共完成196.8学时的工作量,学生都是经济管理学院的文理兼收的学生,学生学习能力差距很大,这无疑对该门课程的教与学都带来了不同程度的难度。认为从以下三方面入手,可以有效缓解学生的学习困难,提高教学质量。
一、将数学史渗透于概率统计教学之中
在教学中,我们发现学生在概率统计学习中普遍感到入门难。产生困难的原因主要有两点:一方面,概率统计的研究对象是随机现象所呈现的统计规律性,而不再是确定性现象中量与量之间的关系,学生的思维有一个转变过程;另一方面,概率统计中几乎每个概念都是从实际背景抽象而得到,但我们的学生过去并不习惯于直接从实际问题中进行数学抽象。针对这些情况,我们在知识教学的过程中穿插了数学史中的历史典故、人物简介以及概念产生的实际背景等,这不但提高了学生的学习兴趣,活跃了课堂气氛,而且还可以使他们在“亲身经历”概念产生的过程中,进一步加深对概念的理解,同时数学家们坚韧不拔的精神也能激发出他们克服困难的积极性。
二、将数学建模的思想渗透到概率统计教学中去
在素质教育的背景下,教师不能只重视学生的知识学习,而更应着眼于学生应用能力和创新精神的培养。“概率统计”是一门应用性很强的学科,因此我们开设“概率统计”课程的中心任务是引导学生从传统的确定性思维模式进入随机性思维模式,使学生掌握处理在工程建设、经济管理、人文社科等研究中出现的随机问题的数学方法。但是传统的教学方法与实际严重脱节,学生学习了书本知识,却不知该如何使用,这不但与素质教育的宗旨背道而驰,也大大削弱了学生学习的能动性,影响了教学效果。为了解决这一问题,我们不但要将“概率统计”之中蕴含着的丰富的数学建模思想“显化”出来,使学生能够认识到它的重要作用;更应该创造机会,使学生能够亲自使用这种方法,在“实战”中体会渗透数学建模的思想。在教学中我们从以下几方面入手,取得了一定的效果。
1.挖掘课本内容中的数学建模思想。2.将数学建模融入课堂教学。
3.发挥课后作业作为课堂教学的补充与延伸作用。
三、引导和帮助学生建立合理的知识结构。
由认知理论可知,学生对新知识的理解与接受程度与学生已有的认知结构有着极为密切的关系,而知识结构是认知结构中重要的有机组成部分。概率中涉及大量的概念、公式、方法与结论,如果这些知识内容在学生头脑中“散乱堆放”或“链接”方式不合理,都会影响学生对知识的掌握与应用,导致学生学习与理解上的困难。所以应该引导和帮助学生建立良好的知识结构,而“建构”的关键是找出知识内容之间的联系。
1.概率统计中的许多知识具有平行关系,在实践中可以通过类比的方式进行教学。
2.要经常进行知识内容的总结。
实践表明,如果从这三方面入手改进原有教学方式,可以使原本抽象、枯燥、难懂的数学理论变得有血有肉、有滋有味,可以缓解学生学习的困难,激发学生对概率统计这一课程的学习兴趣,进而提高教学质量。
总结人:何巧玲
2016年7月4日
第二篇:概率论与数理统计课程讨论总结.
概率论与数理统计课程讨论总结概率论与数理统计是公认的一门“老师难教,学生难学”的大学数学课程,如何能让各个专业的学生轻松、愉快的学好这们课程摆在了每个老师的面前,这也是这次培训的最重要的议题。
杨孝平和陈萍两位教授是概率论与数理统计国家精品课程的主持人,从事多年概率统计教学、概率统计教材编写,听完他们的讲课,我们长沙分中心的老师们都有一个感受,那就是“受益匪浅,感受良多”。3月28日下午我们分中心组织了一场班级讨论,各位老师踊跃发言,以下就是我们班级讨论的主要内容。
一、高中所学概率知识与大学概率课程的衔接
1、存在的问题
①.好多概率统计问题在高中学过,还有一部分内容,同学都认为是重复,如:古典概率、期望和方差、抽样等。
②.记号不统一,高中和大学课本中的记号有很多不一样,这应该说在引起学生注意方面有一定作用,但我们很大部分学生对高中知识记忆深刻,很难改过来,甚至有同学概率统计学完了,还是没改过来,这样势必影响了进一步的学习。
2、解决办法
①.高中学过的内容,我认为可以弱化,甚至可以不出现,只作一些补充说明,重点加强随机变量内容。
②.记号实现统一。
二、概论统计教学中的案例教学。
教育学理论中有个概念——“范例教学”。“案例”就是指某一实践问题,“案例教学”是指在教学时要从问题到理论,再从理论到应用,而不是从概念到概念、从理论到理论,基于这样的理解,在概率与统计的教学中应处处有案例教学。
理论的来源之一是实际问题解决的需要。概率统计中的思想方法、原理、公式等理论的引入,最能激发学生兴趣并印象深刻的做法是从贴近生活现实的问题即案例引入,如果遇上的问题不能用已有的理论解决,则意味着人们必须创设新的理论。
这些新问题怎样解决?于是,新的概率统计的思想方法、原理、公式等理论便产生了。创设的新的概率统计理论可以解决哪些问题?典型案例即实践中的问题又出来了。所以在概率论与数理统计的教学中应处处有案例,这样教出来的学生才不会是“书呆子”。
三、对概率统计课程中某些章节内容的教学想法
1、条件分布和乘法公式和全概率公式的推导适合探究式或讨论式教学。
2、数字特征部分可以用投资组合的案例来分析。
3、假设检验可以用可乐生产线上的产品容量的案例来分析。
4、回归分析部分可以用保险精算中的案例来分析回归分析部分也适合探究式或讨论式教学。
5、方差分析也可以用案例分析。
四、课时安排及教材选取
各个专业的概论统计课程到底该安排多少课时?什么教材比较好?概率论和数理统计应不应该分成两们课程来开?不同专业是否该开设不同的统计应用课程?这些问题也是我们概论统计一线教师非常关心的问题。
讨论结果是,各个学校课时安排大相径庭,有48课时的,有56课时的,还有64课时。教材使用也五花八门,老师们也希望能有一套统一的优秀教材和规定课时,以供大家使用,这样记号也会一致。
五、通过两位专家的讲学以及和老师们的交流,学到很多知识尤其是教学过程中存在的问题和解决的办法。
1.对于学习概率统计里面的抽象概念,如何通过一个具体的实例导入概念。2.转变大学教育的观念,大学教育应该是有限的知识+良好的素质和能力,而非所有的知识+终身教育,长沙分中心的所有老师一致认为观念的合理正确性。
3.如何将统计方法与实际案例分析结合的比较完美,陈教授给出了较好的建议。
4.上课是一门艺术,如何上好第一堂课是同学们学习兴趣的前提,陈教授同样给出了中肯的建议。
1、回归分析部分可以用保险精算中的案例来分析,数字特征部分可以用投资组合的案例来分析,假设检验可以用可乐生产线上的产品容量的案例来分析,方差分析也可以用案例分析。
回归分析部分也适合探究式或讨论式教学。条件分布和乘法公式和全概率公式的推导适合探究式或讨论式教学
3.概率与统计课程教学内容应如何与高中阶段概率统计知识衔接?
一、现状
经过几年的教学,以及与学生的交流,我们发现学生在学习概率统计时,开始对概率统计很有兴趣,并且认为很容易学,因为他们认为概率统计就是和高中的差不多,因此,他们就不认真听,不认真学,结果,好多同学没有看到大学概率统计与中学概率统计的联系与区别,第一章就没学好,以至将概率统计落下了,很可惜,应值得我们重视。
二、主要问题
三、在认真聆听两位教授讲学,老师们进行了热烈讨论,并用课程论坛进行文字交流,提出问题,畅谈了教学组织情况和课程建设情况。通过两位专家的讲学和老师们的交流,学到很多知识尤其是教学过程中存在的问题和解决的办法,同时提出有如下方面的深刻感受: 1.对于学习概率统计里面的抽象概念,如何通过一个具体的实例导入概念。2.转变大学教育的观念,大学教育应该是有限的知识+良好的素质和能力,而非所有的知识+终身教育,长沙分中心的所有老师一致认为观念的合理正确性。
3.如何将统计方法与实际案例分析结合的比较完美,陈教授给出了较好的建议。
4.上课是一门艺术,如何上好第一堂课是同学们学习兴趣的前提,陈教授同样给出了中肯的建议。
第三篇:概率论与数理统计课程教学大纲
《概率论与数理统计》课程教学大纲
(2002年制定 2004年修订)
课程编号:
英 文 名:Probability Theory and Mathematical Statistics 课程类别:学科基础课 前 置 课:高等数学
后 置 课:计量经济学、抽样调查、试验设计、贝叶斯统计、非参数估计、统计分析软件、时间序列分析、统计预测与决策、多元统计分析、风险理论
学 分:5学分 课
时:85课时 修读对象:统计学专业学生 主讲教师:杨益民等
选定教材:盛骤等,概率论与数理统计,北京:高等教育出版社,2001年(第三版)
课程概述:
本课程是统计学专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。由于其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。本课程是统计专业学生打开统计之门的一把金钥匙,也是经济类各专业研究生招生考试的重要专业基础课。本课程由概率论与数理统计两部分组成。概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。包括数理统计的基本概念、参数统计、假设检验、非参数检验、方差分析和回归分析等。教学目的:
通过本课程的学习,要求能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布、二维随机变量的和分布、顺序统计量的分布。理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。了解大数定律和中心极限定量的内容及应用,熟悉数据处理、数据分析、数据推断的各种基本方法,能用所掌握的方法具体解决所遇到的各种社会经济问题,为学生进一步学习统计专业课打下坚实的基础。教学方法:
本课程具有很强的应用性,在教学过程中要注意理论联系实际,从实际问题出发,通过抽象、概括,引出新的概念。由于本课程是研究随机现象的科学,学生之前从未接触过,学习起来会感到难度较大,授课时应突出重点,讲清难点。要使学生明白,本课程主要研究哪些方面的问题,从何角度、用何原理和方法进行研究的,是怎样研究的,得到哪些结论,如何用这些方法和结论处理今后遇到的社会经济问题。在教育中要坚持以人为本,全面体现学生的主体地位,教师应充分发挥引导作用,注意随时根据学生的理解状况调整教学进度。授课要体现两方面的作用:一是为学生自学准备必要的理论知识和方法,二是激发学生学习兴趣,引导学生自学。在教学中要体现计算机辅助教学的作用,采用多媒体技术,提高课堂教学的信息量。通过课堂计算机演示实验,帮助学生加深对概念的理解。每次课后必须布置较大数量的思考题和作业,并加强课外辅导和答疑。
各章教学要求及教学要点
第一章 概率论的基本概念
课时分配:13课时 教学要求:
1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算。
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、减法公式、全概率公式,以及贝叶斯公式。
3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。教学内容:1、2、3、4、5、6、随机试验、随机事件与样本空间。
事件的关系与运算、完全事件组。
概率的概念、概率的基本性质、概率的基本公式。等可能概型(古典概型)、几何型概率。条件概率、全概率公式、贝叶斯公式。
事件的独立性、独立重复试验。
思考题:
1、事件A表示三个人对某问题的回答中至少有一人说“否”,B表示三个人对某问题的回答都说“是”。试问:事件AB、AB各表示什么涵义?
2、社会经济现象是否只分成确定性现象和随机现象?“某天的天气状况”是否属于这两类现象?试举出至少三种不属于这两类现象的社会经济现象。
3、随机事件与集合的对应关系是怎样的?
4、对立事件和不相容事件有何区别?
5、全概率公式和贝叶斯公式有何区别,各自能解决什么问题?
6、“小概率事件”是否不会发生?
7、“概率为零的事件”是否必然是不可能事件?
第二章 随机变量及其分布
课时分配:10课时 教学要求:
1、理解随机变量及其概率分布的概念;理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。
2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。
3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,)、指数分布及其应用。
5、根据自变量的概率分布求其简单函数的概率分布。
2教学内容:1、2、3、4、5、随机变量及其分布函数的概念及其性质。离散型随机变量及其分布律。连续型随机变量及其概率密度。常见随机变量的概率分布。
随机变量的函数分布。
思考题:
1、引入随机变量的意义何在?如何用微积分的工具来研究随机试验?
2、分布函数有哪些性质?
n3、离散型随机变量的分布律有哪些性质?若有一组数pi0,且i1它们是不是某pi1.2,个离散型随机变量的概率分布?
4、二项分布何时取得极大值?其极大值是什么?
5、什么类型的实际问题可以用二项分布来研究?如何解决二项分布的计算问题?
6、什么类型的实际问题可以用泊松(Poisson)分布来研究?
7、指数分布的密度函数在不同的教材上有不同的定义,它们的区别何在?
8、连续型随机变量的概率密度有哪些性质?
9、正态分布N(μ,)与标准正态分布的分布函数之间有何联系?如何利用标准正态分布来计算正态分布N(μ,)落在某个区间的概率?
10、什么是正态分布的“3法则”?如何利用“3法则”来研究实际问题?
11、若随机变量X的密度函数不单调,如何求Yf(X)密度函数?
第三章 多维随机变量及其概率分布
课时分配:12课时 教学要求:
1、理解二维随机变量的概念、理解二维随机变量的联合分布的概念、性质及两种基本形式:离散型联合概率分布,边缘分布和条件分布;连续型联合概率密度、边缘密度和条件密度。会利用二维概率分布求有关事件的概率。
2、理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。
3、掌握二维均匀分布,了解二维正态分布的联合概率密度,理解其中参数的概率意义。
4、会求两个随机变量的简单函数(和、顺序统计量)的分布。教学内容:
1、二维随机变量及其概率分布。
2、二维离散型随机变量的概率分布、边缘分布和条件分布。
3、二维连续型随机变量的概率密度、边缘密度和条件密度,常用二维随机变量的概率分布。
4、随机变量的独立性和相关性。
5、两个随机变量函数的分布。思考题: 221、二维随机变量概率分布和相应的两个一维随机变量的概率分布间有何联系?
2、如何用一张概率分布表同时表示二维随机变量的联合分布律、边缘分布律?能否同时表示两个条件分布律?
3、二维均匀分布的联合概率密度与一维均匀分布的概率密度有何共性?如何由此推出三维及n维随机变量的联合概率密度?
4、二维正态分布的联合概率密度和相应的两个一维正态分布的概率密度间有何联系?
5、二维正态分布的联合概率密度各参数的涵义是什么?何时相应的两个一维正态分布是相互独立的?
6、如何确定条件密度表达式的函数定义域?
7、设某离散型随机变量与某连续型随机变量是相互独立的,如何求它们的和分布?
8、哪些独立随机变量具有可加性?
9、随机变量的独立性与事件的独立性有何区别?
第四章 随机变量的数字特征
课时分配:12课时 教学要求:
1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,并会运用数字特征基本性质计算具体分布的数字特征,掌握常用分布(如0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布等)的数字特征。
2、会根据随机变量的概率分布求其函数的数学期望;会根据二维随机变量的概率分布求其函数的数学期望。
3、了解切比雪夫不等式及其应用。教学内容:
1、随机变量的数学期望(均值)、随机变量函数的数学期望。
2、方差、标准差及其性质,切比雪夫(Chebyshev)不等式。
3、协方差、相关系数及其性质。
4、矩、协方差矩阵。思考题:
1、数学期望和方差的统计意义是什么?
2、如何求一维与二维随机变量函数的期望?
3、写出0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布的数学期望和方差。
4、数学期望和方差有哪些重要性质?其中哪些性质需要“相互独立”这一前提条件?
5、切比雪夫不等式的表达式是什么?它的证明过程中关键步骤是什么?它在处理实际问题中有何作用?
6、方差与协方差的实用计算公式是什么?
7、不相关与相互独立之间的关系是怎样的?若随机变量X与Y不相关,它们是否必然相互独立?若随机变量X与Y是正态分布,结论怎样?
8、若随机变量X与Y的相关系数r=0,是否说明X与Y之间没有关系?举例说明之。
9、事件A与B的相关系数是如何定义的?写出其定义式。
10、n维正态分布有哪些重要性质?
第五章 大数定律和中心极限定理
课时分配:4课时 教学要求:
1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)。
2、了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布的中心极限定理)。教学内容:
1、几乎处处收敛、依概率收敛、依分布收敛。
2、切比雪夫大数定律、伯努利大数定律、辛钦(Khinchine)大数定律。
3、棣莫弗-拉普拉斯(De Moivre-Laplace)定理、列维-林德伯格(Levy-Lindberg)定理。思考题:
1、几乎处处收敛、依概率收敛、依分布收敛之间的关系是怎样的?
2、切比雪夫大数定律、伯努利大数定律、辛钦(Khinchine)大数定律成立的条件是什么,它们之间的差别是什么?
3、哪个大数定律可以用来说明频率的稳定性?试说明之。
4、棣莫弗-拉普拉斯定理和列维-林德伯格定理之间的关系是怎样的?
5、如何用列维-林德伯格定理来近似求独立同分布随机变量的和分布?
第六章 样本及抽样分布
课时分配:6课时 教学要求:
1、理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。
2、了解 分布、t分布和F分布的概念及性质,了解分位数的概念并会查表计算。
3、了解正态总体的某些常用抽样分布。教学内容:
1、总体、个体、简单随机样本、统计量、样本均值、样本方差和样本矩。
2、 分布、t分布和F分布,分位数,正态总体的常用抽样分布。思考题:
1、总体和随机变量之间有何关系?
2、什么是简单随机样本?
3、数理统计中所说样本空间和随机变量X的样本空间是否同一概念?
4、为何能用样本观察值推断总体的状况?它依据的原理是什么?
5、什么叫统计量?常用的统计量有哪些?
6、 分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。
7、t分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。
8、F分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。2229、随机变量的上侧分位数和双侧分位数是怎样定义的?如何通过查表求标准正态分布、 分布、t分布和F分布的分位数?
210、关于正态总体的样本均值、样本方差有何重要结论?
第七章 参数估计
课时分配:8课时 教学要求:
1、理解参数的点估计、估计量与估计值的概念。
2、掌握矩估计法(一阶、二阶矩)和最大似然估计法。
3、了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性。
4、了解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间。教学内容:
1、点估计的概念、估计量与估计值。
2、矩估计法、最大似然估计法。
3、估计量的评选标准。
4、区间估计的概念。
5、单个正态总体的均值和方差的区间估计。
6、两个正态总体的均值差和方差比的区间估计。
7、(0-1)分布参数的区间估计。
8、单侧置信区间。思考题:
1、参数估计主要处理在社会经济中遇到的什么类型的问题?
2、矩估计法的优点和缺陷各是什么?
3、最大似然估计法依据的原理是什么?
4、写出一般情况下最大似然估计法的解题步骤。这个步骤对服从均匀分布的总体是否适用?如何用最大似然估计法对服从均匀分布的总体进行点估计?
5、估计量有哪几个评选标准?其中最基本的标准是什么?
6、为何要进行参数的区间估计?它与点估计相比有何优越性?
7、写出确定参数的置信区间的一般步骤。
8、单个正态总体均值的区间估计用到哪几种抽样分布?
9、单个正态总体方差的区间估计用到哪种抽样分布?
10、两个正态总体的均值差的区间估计用到哪几种抽样分布?
11、两个正态总体方差比的区间估计用到哪种抽样分布?
第八章 假设检验
课时分配:7课时 教学要求:
1、理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2、了解单个及两个正态总体的均值和方差的假设检验,会用公式进行单边及双边假设检验。
3、了解分布拟合检验和秩和检验概念与步骤。教学内容:
1、显著性检验。
2、单个及两个正态总体的均值和方差的假设检验。
3、假设检验的两类错误,样本容量的选取。
4、区间估计与假设检验之间的关系。
5、分布拟合检验。
6、秩和检验。思考题:
1、假设检验分为哪两种类型?
2、假设检验主要处理在社会经济中遇到的什么类型的问题?
3、假设检验依据的原理是什么?
4、确定双边假设检验与单边假设检验的原则是什么?
5、对单边假设检验如何确定备择假设?
6、写出显著性检验的一般步骤。
7、单个正态总体均值的假设检验用到哪几种抽样分布?它和区间估计有何异同?
8、单个正态总体方差的假设检验用到哪种抽样分布?它和区间估计有何异同?
9、两个正态总体均值差的假设检验用到哪几种抽样分布?它和区间估计有何异同?
10、两个正态总体方差比的假设检验用到哪几种抽样分布?它和区间估计有何异同?
11、什么叫施行特征函数?如何用它来描述犯“取伪”错误的概率?
12、对单边及双边假设检验,为同时控制犯两类错误的概率,其必要样本容量应取多大?分别写出其表达式。
13、假设检验和区间估计之间的差别何在?
14、 拟合检验法、偏度、峄度检验法、秩和检验法各自适用于检验什么问题?如何提出原假设?
第九章
方差分析和回归分析
课时分配:9课时 教学要求:
1、了解方差分析的基本思想,试验因素和水平的意义。
2、掌握平方和的分解,会作出方差分析表。
3、了解回归分析的基本思想。
4、掌握一元线性回归,了解可化为线性回归的一元非线性回归和多元线性回归。
5、了解线性相关性检验和利用回归方程进行预测和控制。教学内容:
1、单因素和双因素试验的方差分析。
2、一元线性回归、非线性回归、多元线性回归。思考题:
1、方差分析主要处理在社会经济中遇到的什么类型的问题?
2、写出方差分析的一般步骤。
23、如何进行平方和的分解?总偏差平方和、误差平方和、效应平方和的统计特性怎样?它们的自由度之间有何关系?
4、回归分析主要处理在社会经济中遇到的什么类型的问题?
5、如何用最小二乘法求一元线性回归方程的系数?
6、相关系数与回归系数间有何关系?
7、如何将特殊的非线性回归转化为线性回归?
8、如何用回归方程进行预测与控制?
复习、机动:4课时
附录:参考书目
1、茆诗松等,《概率论与数理统计》,中国统计出版社,2000
2、苏均和,《概率论与数理统计》,上海财经大学出版社,1999
3、华东师范大学数学系编,《概率论与数理统计》,中国科学技术大学出版社,1992
4、复旦大学数学系编,《概率论》(第一、二册),人民教育出版社,1979
5、唐象能、戴俭华,《数理统计》,机械工业出版社,1994
6、[俄]A.A.史威斯尼科夫等,《概率论解题指南》,上海科学技术大学出版社,1981
7、周复恭等,《应用数理统计学》,中国人民大学出版社,1989
8、[印度]C.R.劳,《线性统计推断及其应用》,科学出版社,1987
9、郑德如,《相关分析和回归分析》,上海人民出版社,1984
10、吴喜之,《非参数统计》,中国统计出版社,1999
11、Vendables, W.N.& Ripley.B.D.,《Modern Applied Statistics with S-plus》,Springer-Verlag,New York,1997
12、张尧庭,《定性资料的统计分析》,广西师范大学出版社,1991
13、[美]戴维.R.安德森等,《商务与经济统计》,机械工业出版社,2000
执笔人: 杨益民 2004年5月 审定人: 管于华 2004年5月 院(系、部)负责人: 钱书法 2004年5月
第四篇:概率论与数理统计
《概率论与数理统计》公共基础课教学实践
1012502-31 汤建波
概率与数理统计在现实的牛产和生活中有着广泛的应用,因此,《概率论与数理统计》作为公共课是很多专业所必修的。但是,由于这门课的学习方法与《微积分》《线性代数》等其他课程有着极大的差异,很多学生在学习过程中感到难以把握概念与理论,在遇到问题时不知如何人手。因此,笔者在总结这几年教学实践的基础上,提出以下思考。
一、适度引入案例。形成生动教学及启发性教学
概率论源于博弈,是赌博中的很多问题催生了概率论这门数学学科。在开课伊始,教师就适度引入触发概率论的一些问题,如“De.mere”问题,“分赌金问题”等等,使学生在故事中不仅得到r课本里所没有的历史知识,而且无形中可以提高学习兴趣,消弭一部分同学的畏难情绪。另外,再在随后的教学过程中引入“彩票中奖问题”“蒙特卡罗法求订法”“保险付赔问题”等等,引导学生了解、探索这门学科在现实中的应用,使学乍实现由知识向能力的转化,从而增强学,F利用概率统计解决实际问题的“欲望”,促使他们更好地认识现实世界。
概念是概率课程中最基本的内容,对概念的理解程度直接影响学生对这门课程的学习与掌握程度。在教学中,应尽量从实际问题入手,先提出问题,接着在问题的分析和解决中抽象出概念,让学生清楚概念的来龙去脉,而不是硬性给出定义,让学生死记硬背。例如,在讲述“事件”这个定义时,引入“卫瞿嫦娥二号将于2010年10月1日发射”这一现实中的“事件”在概率论中应该是“实验”,而其结果“发射成功”才能算是概率论所定义的“事件”,这样,在区别现实的“事件”与概率论所研究的“事件”基础上,学生加深了对“事件”这一定义的理解。在阐明相互独立和互不相容之间的区别有P(A)>0,P(B)>0时,A、B相瓦独屯与互不相容是不能同时成立的,直观上可以这样解释:相互独立意味这
4、B其中一方发生与否并不影响另一方的发生,而互不相容意味着A、B只要其中一方发生了,另一方就一定不发生,所以这两个关系不能同时存在。从公式上解释是:P(A)>0,P(B)>0且A、B相互独立,则P(AB)=P(A)P(B)>0,而如果A、B互不相容,则P(AB)=P(西)=0。但是只要有一方的概率为0,如,如果A=西,则A与B既相互独立又互不相容,因为此时P(AB)=P(A)P(B)=0。综上所述,相互独立与互不相容并没有必然的联系。
而在区别“不相关”与“相互独立”的区别时,可以通过举例得知J]|f、y不相关不一定就独立,因为X、l,之间有可能存在其他的函数关系,但是存在函数关系的随机变量是否就不独立了呢?答案是未必,例子如下:
考察随机变量X、l,和Z:假定x与l,独立月.都服从参数为P的(0—1)分布,令z为x与y的函数:
可以得到当P=1/2时,Z与X相互独立。转载于 无忧论文网 http://www.xiexiebang.com
通过这些举例,避免了学生将“独立”和“互不相容”等同起来,又说明了“独立”与“函数关系”之间的联系。
二、课堂教学中注重数学思想的教育。培养学生建模能力
概率统计中的很多问题都可以归结为同一类问题,数学模型就是这类事物共同本质的抽象。“数学建模”是指对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构。数学模型在概率统计中的应用随处可见,模型化方法贯穿本课程全过程,因此,在教学过程中应该注意培养学生抽象出问题的本质以建立起一般的数学模型的能力。
如“将n只球随机地放入Ⅳ(N大于等于n)个盒子中去,求每个盒子至多有一只球的概率”与“班级同学生日各不相同”具有相同的数学模型。另外,还有古典概型、贝努利概型、正态分布等等这些都是生产生活中抽象出来的,在很多问题中都可以归结为以上的模型。如以下两个
:
例1,设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理。考虑两种配备维修工人的方法,其一是由4人维护,每人负责20台;其二是由3人共同维护80台。试比较这两种方法在设备发生故障时不能及时维修的概率的大小。
例2,保险公司在一天内承保了5000张相同年龄、为期1年的寿险保单,每人一份。在合同有效期内若投保人死亡,则公司赔付3万元。设在一年内,该年龄段的死亡率为0.0015,且各个投保人是否死亡相互独立。求该公司对于这批投保人的赔付总额不超过30万元的概率。
以上两个例子虽然不同,但都可以归结为伯努利概型,利用二项分布解决。对这类模型,不应简单地给出它的结果,而应注秀模型的建立、模型的应用范围以及如何把实际问题转化为有关的数学模型去解决。
三、适度引入多媒体教学及数据处理软件。促进课堂教学手段多样化
在概率统计教学中,实际题目信息及文字很多,“一支粉笔、一块黑板,以讲授为主”的传统教学方法显然已经跟不上现代化的教学要求,不利于培养学生的综合素质和创新能力。因此,有必要借助于现代化媒体技术和统计软件,制作内容、图形、声音、图像等结合起来的多媒体课件。~方面,采用多媒体教学手段进行辅助教学,能够将教师从很多重复性的劳动中解脱出来,教师可以将更多的精力和时间投入到如何分析和解释问题,以提高课堂效率,与学生有效地进行课堂交流。另一方面,用图形动画和模拟实验等多媒体作为辅助教学手段,便于学生对概念、图形等的理解。如投币试验、高尔顿板钉实验等小动画在不占用太多课堂时间的同时,又增添了课堂的趣味性。又如在利用Mathematica软件演示大数定律和中心极限定理时,就能将抽象的定理化为形象的直观认识,达到一定的教学效果。在处理概率统计问题中,教师也会面对大量的数据,另外,集数学计算、处理与分析为一身的数据处理软件如:Excel,Matlab,Mathematic,SAS,SPSS等,在计算一些冗长数据时可以简化计算,降低理论难度。而且,在教师的演示过程中,能让学生初步了解如何应用计算机及软件,将所学的知识用于解决生产生活中的实际问题,从而激发他们学习概率知识的热情,提高他们利用计算机解决问题的能力。
最后,在教学过程中,教师应该考虑到各个专业的学生今后学习与发展的需要,在满足教学大纲的要求下,选择与其专业关系紧密的知识点进行重点讲授。同时,在讲授过程中,本着以人为本的教学理念,注意多种方法灵活应用,建立积极的互动教学模式,尽量避免教师在课堂上满堂灌、填鸭式地教学,充分调动学生学习的主动性,挖掘学生的学习潜能,最大限度地发挥和发展学生的聪明才智,使学生能理解概率统计这一学科领域思想方法的精髓。
论文参考文献:
[1]盛骤,谢式千。潘承毅.概率论与数理统计[M].北京:高等教育出版社,2009.
[2] 姜启源.数学模型[M].北京:高等教育出版社。2003:4—7.
[3] 徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985:171—188.
[4] 郝晓斌,董西广.数学建模思想在概率论与数理统计课程教学中的应用[J].经济研究导刊,2010,90(16):244—245.
[5]徐荣聪,游华.(概率论与数理统计)课程案例教学法[J].宁德师专学报(自然科学版),2008(2):145—147.
第五篇:概率论与数理统计
概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。看你报的哪个学校了~~ 赞同
数学的方向还是比较多的,比如金融,计算机,理科的方向 赞同
参看08年该校硕士招生简章中的专业目录及参考书目,先做到心里有数 09年的在08年7、8月份才能出 每年新的招生简章都是在上一年的研究生招生录取工作结束之后才能公布的 所以不要急 最早也要等到7月份 现在不要急 先按照08的看 一般两三年之内不会有什么变化 即使有 也是在原有基础上 增加或改动一两本参考书的版本 不会有实质性的变动 而且 你如果现在就开始准备考研复习那就算比较早的了 一般从暑假开始复习就可以的 所以这个时期是基础段复习可把精力主要放在英语上 强化英语考研词汇是非常必要的 至于专业课 可以先按08的指定参考书初步复习等新的招生简章出来 再进行有针对性地复习不用担心万一改动了我会不会白白看了 以一个过来人的经验 知识储备的越多越好 名校的试题往往不局限于指定参考书的范围(楼主既然这么问了,这要好好慢慢的回答)
建议楼主考清华的经济学研究生,清华的工科类要强于北大(个人意见);2,清华现在要考考A版的数学对你的有点好处,但影响不大,复试对你有利。3,清华的专业课考的难都因人而异,初试复试考一样的专业课,包括金融学(含国际金融、证券投资、投资市场、保险精算等,本专业所招人数最多)、国际经贸(研究生阶段叫做世界经济)、西方经济学、财政学、政治经济学专业;报考时可以随意报考自己喜欢的专业,录取时先全院统一录取(按分数高低),再按分数与志愿选择;专业课考的不是很难;(建议楼主去看下金融学基础,复旦大学出版社简称白皮书,或许对你有帮助)4,清华经济就业形势就目前环境下就业非常棒,中国才处于开始阶段,每年毕业生到各大银行、金融机构、保险机构、证券公司、财政货币机关、国家机关及高校任职,待遇非常之高!
网站,你可以试试去这里看看。在页面中部的对话框输入学校或专业就可以任意查。在这里,你还可以查到任意学校的招生简章,复习指导,网上报名及其它重要信息。全国各校公布分数线的时间也在这里最早发布。你可以试试,相信不会让你失望。。
因你是转专业,再给你一点个人建议吧
一、慎重选择:不要轻易下决定
不断地学习不同领域的知识,是所有有求知欲的人们的美好愿望,然而,这同样会成为朝三暮四的借口。
其实,很多考研人本来就存有逃避现实社会的压力,而选择继续呆在学校的心理;而在跨专业考研的人中,更有许多人根本就没有好好学过原来的专业,甚至从没认真考虑过是否自己适合它,只为了逃避,才选个看起来容易的专业去考。
如果是这样,请先停下来想想自己到底想要什么再说。因为一颗对待生活从不认真的心,是不会因为换了个专业就能有起色的。
如果不是这样,那么,也请三思。就因为一直认真,这次更要谨慎。
首先,考研复习将是艰巨的历程。隔行如隔山——这句古谚将贯穿之后的整个求学过程。自己原来的专业,再不济也学了三四年,耳濡目染,基础知识一定比没学过的扎实,细节也许没钻研,但大的格局和概念、思维方式是存在于脑海中的,即使是每次考前一个月的突击,突击了四年,也不是没有用的。这就是本专业对于外专业的一大优势。反过来,即是跨专业者相对于本专业者的劣势。
复习的时候,要花更多的时间在专业课上,使得基础课很容易就被搁置了,而任何一科的掉队,都会影响整个复习过程的心态和考试结果。
其次,备考中可能出现意想不到的困难。
不熟悉专业试题的答题惯例,会莫名其妙丢掉不该丢的分。而且,笔试通过了,复试中存在的不确定性因素,使跨专业者总是难以拥有“尽在掌握”的自信,而它确实也是难以“尽在掌握”的。
最后,也是最重要的,考上之后三年的研究生生活。
不管是面对基本功扎实的同学们,还是面对有一定要求和标准的导师,还是面对也许让自己一时找不到坐标点的新求学生涯——如何给自己定位,如何重拾自信,如何建立对新专业的“新感情”,如何规划以后的职业和人生,这都是需要付出比别人更多心力去克服的问题。所以,是否要转变方向,换一个专业,需要尖锐严格地审视自身,而不是盲目跟风,可以考虑以下几点:
是否真正热爱将要为之付出心血的新专业?
长远来看,这个新领域是否有自己的天赋和性格发挥的空间?
是否可以肯定学习三年之后真能丰富完善自己的知识结构,而不是剃头担子两头塌?最后也是最基本最当前的问题:基础课是否有自身优势?没有优势怎么拨得出更多的时间给专业课的复习?
二、审时度势:了解自己,踏实去做
经过了自我的拷问,还坚定地要跨专业考研的朋友——相信你一定是个头脑清醒、梦想坚定的人。
在此,我们不得不再次强调跨专业考研的理由和标准:第一,热爱;第二,基于对自身才智和优势短处进行全面评估而做出的决定;第三,要自信,更要不怕苦不怕累。
可以举个例子。一个在学校并非不认真对待自己学业的考研人,在经过四年的学习之后,发现仍然不喜欢自己所学的数学专业,而爱好文史哲。如果基础课英语政治还不错,那么他就具备了考虑跨专业考研的最低要求。那么,接下来怎么确定专业呢?首先,看爱好。对新闻传播、考古、文学皆有兴趣,怎么办?一个一个排除。对于新闻,多搜集资料,看作为一个新闻工作者需要什么样的素质,比如,敏锐的新闻感、强烈的争取和参与意识、健康的身体。直面自己的优缺点,如果有敏锐的新闻感,却没有强烈的争取和参与意识,甚至都无法面对需要长时间的工作强度,那么放弃。对于考古,作同样评估;另外,如果这时你的父母亲反对你的考古梦想,请把他们的忧虑考虑进去,一意孤行并不可取,要考虑到家庭的实际情况;并且,父母也是了解你的人,他们对你的性格、天分其实很了解。那么如果你认为父母意见的可接受性大过你对于考古的热忱,考古这一项,也被划去。最后剩下文学,如果经过一系列评估,觉得可行,那么它之下还有很多专业细分,是中国文学还是世界、比较文学,是古代文学还是现当代文学?要根据自己平时看书的偏好、积累的多少、考试试题能否应付等等内在和外在的因素来决定。这些将和下一部分联系起来谈。
这只是一个例子,跨专业的方向转变五花八门,几页纸不可能描述详尽,我们只能通过这个例子,了解一下需要考虑和平衡的各方面因素。
当然,请牢记,内心的热爱和对自己学习能力的自信在选择中最为重要。有了这两点,相
信你的选择会是对你而言最好的选择。这将是一个美丽的决定,决定之后,一定有云开见日的感觉。方向确定了,就朝着那儿毫不回头地走吧。
三、报考准备:眼观六路,耳听八方
让我们直接进入主题。
第一,细分专业和学校,确定报考目标。一定要看自己喜欢哪个城市,既然想借助这次的考研改变现状开始一段新的求学历程,一直想去哪个(或哪些)城市念书就不要将就。圈出大致范围,再找到那里学校的招生简章、专业招生表——网上查找或动用一切关系。特别要注意的是,你有意向的专业是否拒绝跨专业考生。在进行认真细致的对比之下确定两到三个你想去的名校和你喜欢的专业。这一步可以和前面确定城市同时进行,每个人情况不同,自行制定每一步适合自己的计划是必要的,而且能从中得到极大的充实感,总之,它让我们感到:一切都在自己的控制之下。
然后,尽可能地多找一些这几个可选学校可选专业的历年试题,仔细研究,看看哪一类的试题自己更有把握。这一步至关重要,这一步不可省略也不可推后,它将直接影响到以后的考试发挥。经过这一步,学校和细分专业几乎都能定下来了。
这一阶段什么时候进行呢?越早越好。我们不提倡把战线拉得太长,真正有效的复习从4月到次年1月足矣;然而跨专业不同,需要“酝酿”。可以不用过早开始真正的复习,但至少要比别人早两个月到半年开始寻找学校、涉猎与新专业相关的期刊、书籍、寻找对于新专业的亲近感和对于新学校新未来的向往感——这是真正复习开始的前站,用这段时间弥补跨专业的不足,在真正的战役打响时,我们将更加坚定更有信心。
第二,专业课教材到位。前面把工作真正做到细致,4月份到5月份一定要定下最终要考的学校和专业。定下之后,就要相信自己的判断,不要犹疑,快去买专业课教材!按照学校列出的书目买全专业课教材,还要找出一两个能帮上忙师兄师姐、找同学、找亲戚,甚至找网友去打听没有列出的那些。
这里有两个问题:买书和找师兄师姐——自己能买到的书,尽量自己去买,有学校可以邮购,有书店可以搜寻,再不行,去图书馆系统或网上找出这本书的出版社,找到出版社电话,打电话、汇款去邮购。不要一开始就事事麻烦别人,自己能解决的自己找渠道解决。后面有更重要的事去麻烦他们。实在不行了,去找师兄师姐,最重要的是问题要明确。随便说:“我要考你们学校某专业,请帮助我”是没用的。要明确说出你的具体问题,要考哪些书,重点看哪些泛读看哪些,打听到哪里能买到自己却没办法,请他们帮忙——听到这么明确的问题,人人都会乐意帮忙。6月底之前,主要的专业课教材一定要到位。
第三,复习时要注意的问题。
首先,基础课不能偏废。前面说了,基础课要有一定把握,才可能跨专业考研,否则到关键时刻就会感到分身乏术。在主攻专业课时,基础课一天都不能停。可以用早晨、吃午饭前、吃晚饭前以及睡觉前的时间去复习英语:阅读、单词、听力,一个都不能少。如果每天坚持,就是这些边边角角的时间都足够英语的复习准备。政治也一样,最好报一个秋季班,几个月上下来,有老师领着复习,比自己摸索更有效率,大致的知识脉络也会清晰起来了。请相信自己,从初中就开始学的这门课,不会差到哪里去,但也要在心里培养对它的兴趣,一讨厌它、搁置一段日子,一切都晚了;反过来,每天花两个小时,只要坚持,就会既轻松又有成就感。
跨专业考生往往把一腔热情放在专业课上,有意无意地就偏废了基础课,等发觉时间紧迫的时候,回头一看基础课落下一大截,这会大大影响后面冲刺和考试的信心。
其次,专业课复习。11月份报名之前一定要把专业书踏踏实实至少细读一遍。这一遍不要欺骗自己,质量至上,一定要全部弄通弄懂。这样在后面的两个月才会更有底。
笔记一定要做。当11月报名时间来临时,你会发现越来越多的人们讨论起复习进度。那时候本专业考生和别的跨专业考生所做的准备和进度会让你大惊失色——有那么多人准备得那么好!本来就对不熟悉的专业容易产生的“心虚”这个时候会更加强烈,那么回过头总结一下自己的成果,只有实实在在密密麻麻的几本笔记会成为自己的强心剂,数数看,几本笔记,七八万字是少不了的。加上政治英语,你会为自己所做的上10万字的笔记而惊讶的。这是积聚信心、抬头挺胸的重要来源。
四、全力复习:坚持到底,毫不畏惧
首先,研究历年试题,自己划重点。历年试题非常非常重要,报名之前即11月初,一定要把学校相关专业的历年试题弄到手。这需要积极调动网络资源,自己能下载的下载,能买到的去买,最后一招:求助师兄师姐。这时提出的请求也一样要尽可能明确。有一个女生,考某大学某专业,通过同学的同学的姐姐,找到一位师姐,打电话给她:“我知道你们学校图书馆五楼的阅览室有历年试题的专柜,可以借出来复印。请帮忙复印某年到某年某专业的„„”该师姐大惊:“我都不知道有这样一个地方,你怎么知道的?”这个女生慢慢说来,怎么从网上找到该学校专栏讨论、怎么了解到的,师姐大开眼界,兴趣高涨,帮她把相关专业能找到的试题全都复印一通寄去。
接下来就是更仔细地研究试题。只需要一个晚上时间,把历年试题全都摆在桌面,总结规律和重点难点,老师出题的习惯等等。借此可以划出下一步复习的重点(甚至是考试的重点),不再一律通读,而是有头脑的、有目标的复习。不要怕系内老师改朝换代,再改也有一脉相承的科研风格,掌握了大体,以不变应万变。
划完重点,一股“运筹帷幄”的气势油然而生,趁着这股气势,投入到更深入的复习中去,一定事半功倍。
其次,为考试做准备,掌握专业答题习惯。在剩下的两个月当中,一定要找点时间去学校的自己要考的专业宿舍混混,目的是了解专业答题有什么惯例、有什么特殊要求和需要注意的地方。随便哪个学校都行,自己方便找的、正规的大学就可以;当然,方便的话,最佳选择就是所考学校研一同专业学生宿舍,这样就不仅了解试题情况,还可以挖掘更多这两个月应该注意的问题。
考试的时候,和复习中所强调的一样——一定要自信。要相信自己经过了周密的计划、万全的准备。拿到试卷的时候,要像热爱专业书籍一样热爱它们,冷静的头脑,热情的心灵,一定战无不胜。
最后,就是复试了。关于导师是否要找,各有各的说法,能找到最好,没找过的也不用惴惴不安。相信自己最重要。
其实接到复试通知书的时候,一般都没有更多时间去扩展知识面了,这些是最初就应该做的。这时候跨专业考生常常担心自己的基础不够,再次心虚。那么与其瞎抓一把,不如把以前看过的书拿出来再翻一遍,总有用得上的,做生不如做熟。对于某些领域的熟悉或精通,比泛泛而谈更能显出自己的特色。用真诚的微笑和哪怕是使劲鼓才能鼓起的信心和勇气,去直面导师。好歹经过这一年的学习,我们也算复合型人才了,怕什么!
说到这里,整个过程看起来完了——其实没有!拿到录取通知书的时候,是一个开始。
进入研究生阶段的学习,是一个更自主、更专业的学习过程,跨专业学生一踏入这片天地,肯定会受到冲击。不熟悉的领域,老师觉得应该是常识自己却闻所未闻的知识,难以找到的新生活定位„„这些都要有心理准备。建议在5月到8月这段天堂般的生活中也不要忘记看看与专业相关的书籍(并非专业课本),继续打基础,进入研究生生活根本没有时间给你去打基础。
总之,对于勇敢的考研人,继续用韧性和信心,在开学前调养好身心,并不放弃不断学习的好习惯,为进入一个新的求学生涯做好准备,都是必要的。相信这样贯穿始终的准备,一定会迎来新的局面,实现挑战人生充实自己的梦想。对生活认真,生活也会认真地回报你。要相信,要坚持。