第一篇:《8.2 消元——解二元一次方程组》教案1
《消元──二元一次方程组的解法》教案
内容解析:
学生在小学阶段已经学习了解简易方程,在七年级上学期系统学习了解一元一次方程.解二元一次方程组的教学是在前面学习的基础上对方程的进一步研究和学习“元增多”(一元→二元).本节教学的核心是“消元”,从讨论解方程组的需要出发,引导学生从解决问题的基本策略的角度(转化思想:多元(新问题)→一元(旧问题)),实现问题的解决.这里的转化亦即消元化归思想,认知策略是逐步减少未知数的个数,以使方程组化归为一元方程,即先解出一个未知数,然后逐步解出其他未知数.这对学生的能力提升以及后续学习非常重要.在这种思想的指导下,结合学生对同一个问题的不同解方法对照,发现用代入的方法能够实现消元,不仅对消元思想的理解由抽象到具体,而且找出了解二元一次方程组的一种基本方法──代入消元法.教学重点:
解决问题的一般思路:
转化(化繁为简,化难为易,化新为旧); 对消元化归思想的初步理解; 用代入法解二元一次方程组.教学难点:
对数学思想方法的理解,尤其是对用代入的方法实现消元的理解.突破这一难点的关键
教学目标:
知识与技能
1、会用代入法解二元一次方程组
2、初步体会解二元一次方程组的基本思想---“消元” 过程与方法
经历用代入法贾二元一次方程组的训练,培养运算能力,体会化归思想 情感、态度、价值观
通过研究解决问题的方法,培养学生合作意识与探究精神.教学过程设计:
(一)情景导课
背景材料:老师在我们学校代三个班的数学,所教学生共143人.问题1:你能提出什么数学问题?如何解决? 学生可能提出的问题:(1)每个班有多少个学生?(2)男生、女生各多少个?
针对问题(2),增加条件:男生人数的2倍比女生人数的3倍少14人.学生活动:解决问题;展示方法.教师点拨:(1)用建模思想引领思维,实际问题-数学问题.(2)一元一次方程会解但难列,因为要综合考虑问题中的各种等量关系;二元一次方程组易列,因为可以分别考虑两个等量关系,但不会解.从而产生了新问题.方程组对于解含多个未知数的问题很有效,它的优越性会随着问题中未知数的增加而体现得更加明显.【设计意图】(1)由于是借班上课,以此形式开课既能创造轻松的氛围、拉近师生之间的距离,又可以巧妙引出本节课的教学内容.(2)问题是学生自己提出的,因此他们解决这个问题的积极性更高,思维更开阔,各种方法的出现便会成为必然.(3)让学生体会到方程组在解决实际问题中的优越性.(二)解决问题
问题2:怎么解二元一次方程组呢? 追问:为什么要这样做?依据是什么? 你的解题思路是什么?
你的解题方法的名称是什么?为什么可以这样归纳?(学生思考、交流.)
教师明确:转化思想──新问题转化成旧问题; 消元思想──将未知数的个数由多化少,逐一解决.(学生展示自己的方法.)
师生交流,达成共识,明确思路:变形—代入—求解—写解.教师规范解题过程,进而形成概念:
代入消元法──把二元一次方程组中的一个方程变形成用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.【设计意图】我们一直强调让学生“知其然,而且要知其所以然”.但学生往往停留在对知识或方法的表层理解的水平上,究其原因,还是没有形成较强的问题意识,不习惯于多问个“为什么是这样的”、“这样做的依据是什么”等问题.因此,教学应不失时机地培养学生养成良好的问题意识.在问题的引导下,鼓励学生投入到活动中,并留给学生足够的独立思考和自主探索的时间和空间,从而让学生积极、主动地思考,随着思维的自然流淌,“顺势”自然地理解消元思想,解决问题的思路逐渐清晰.通过探索实践,体验知识方法的形成过程,发现代入消元法的由来及过程,真正体会消元思想.练习1:你能把下列方程写成用含x的式子表示y的形式吗?(1)3x+y-1=0;(2)2x-y=3;(3)2y-4x=7.【设计意图】变形其实是解含字母系数的方程,是学生容易出错的地方,这个问题的设置是为代入法做准备.练习2:解方程组
【设计意图】这一环节,可以让学生趁热打铁——熟悉自己发现的方法.通过学生板书、学生批阅对错、教师规范,不仅可以让学生明确代入消元法解方程组的一般过程,再次规范解题的步骤.总结:用代入法解二元一次方程组的一般步骤.【设计意图】我们不应倡导学生对某一方法的死记硬背,但必要的归纳、提炼、反思,能让学生体会解方程组过程中的程序化思想,能帮助学生对基础知识和基本方法有清晰的认识,尤其是对学习学习基础较弱的学生.(三)巩固拓展
A组:必做题
B组:选做题
【设计意图】理解了思路,明确了方法,还要通过一定量的练习才能切实掌握方法,融会贯通,领悟思路,启迪智慧,灵活应用.另外,上课时可以请两名学生选择同一道题目进行板演,主要是对比代入的字母不同,简易程度也不同.同时应指出,在方程组中有未知数的系数为±1时,应用代入法求解起来很简便,如果不是,就比较麻烦,所以在“变形”这一步中,要注意观察,同时为后面的加减法的学习做了伏笔.(四)反思提高
这节课,我学到的知识方法、思想有:__________________ 这节课,让我颇受启发的是:__________________.这节课,我的收获还有:__________________.这节课,让我感到难理解是:__________________.【设计意图】我们的教学不仅仅是和学生分享知识和方法,更重要的是培养学生的学习习惯、提高他们的学习能力,而勤于总结、善于反思则是能力提高的快车道.(五)体味文化
学生把自己搜集到的关于我国古代解方程组的资料互相交流.【设计意图】教学不仅要关注学生在数学知识和能力方面得到提高,还要关注数学文化的传承,使学生受到数学文化的熏陶.目标检测设计:
1.把下列方程写成用含一个未知数的式子表示另一个未知数的形式.(1)3x-y=4;(2)-2x+y+3=0;(3)2x+3y=4.2.解下列方程组.
第二篇:8.2 消元---解二元一次方程组 教学设计 教案
教学准备
1.教学目标
1、掌握代入法解二元一次方程组;
2、经历探索二元一次方程组的解法的过程,初步体会“消元” 的基本思想.2.教学重点/难点
教学重点代入消元法解二元一次方程组。教学难点理解“消元”的基本思想。
3.教学用具 4.标签
教学过程
一、情景导入
关于本章引言中的篮球比赛的问题,通过前面的学习我们已经知道
如果只设一个未知数:设这个队胜了x场,依题意得一个一元一次方程: 2x+(10-x)=16 这个方程大家都知道如何解吗?
如果设两个未知数:,设胜的场数是x,负的场数是y,可列方程组:
那么怎样求这个方程组的解呢?
二、代入消元法
上面的二元一次方程组和一元一次方程有什么关系?
可以发现,二元一次方程组中第1个方程x+y=10说明y=10-x,将第2个方程2x+y=16的y换为10-x,这个方程就化为一元一次方程2x+(10-x)=16。这就是说,二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程。这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.归纳:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.例1 按要求改写下列方程
1、x-y=3(写成用y表示x的形式);
2、x-y=3(写成用x表示y的形式)3、3x-3y=6(写成用一个未知数表示另一个未知数的形式)改写方程要根据实际需要或改写成的方程看起来比较简单(特别是符号的处理)。例2 解方程组:
分析:根据消元的思想,解方程组要把两个未知数转化为一个未知数,为此,需要用一个未知数表示另一个未知数。怎样表示呢?转化成的一元一次方程是什么?
解:由①得x=y+3③
把③代入②,得 3(y+3)-8y=14 解得y=-1 把y=-1代人③得x=2.三、课堂练习:
解上面的方程组能消去y吗?试试看。课本93页1、2题。
四、课堂小结
1、什么是消元的思想?什么是代入消元法?
2、用代入消元法解二元一次方程组。
五、作业:
必做题:课本97页1、2题。
选做题:《同步》8.2(1).
第三篇:8.2 消元---解二元一次方程组 教学设计 教案
教学准备
1.教学目标
知识技能 1.掌握用代入法解二元一次方程组的步骤 2.熟练运用代入法解简单的二元一次方程组.
数学思考 能理解代入法的基本思想所体现的化“未知”转化为“已知”的化归思想方法,建立数学模型。
解决问题 经过练习和讨论,进一步培养观察、比较、分析问题的能力。情感态度 通过本节课的学习,渗透化归的数学美,以及方程 组的解所体现出来的奇异的数学美.
2.教学重点/难点
重点 会用代入法解二元一次方程组
难点 用代入法求出一个未知数值后,把它代入哪一个方程求另一个未知数值比较简便。
3.教学用具 4.标签
教学过程
一、复习引入
1、什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?
2、回顾上节课的问题:
在上节课中,我们用设两个未知数的方法列出了一个二元一次方程组 X+Y=22 ① 2X+Y=40②
表示了问题中的等量关系,如果设一个未知数,这个问题的等量关系是什么? 思考:上面的二元一次方程组和一元一次方程有什么关系呢? 如和解这个二元一次方程组呢?接下来我们共同来研究。板书:用代入法解二元一次方程组。
二、新授
通过观察可以发现,方程①通过移项可以得出Y=20-X,将第②个方程中的Y用20-X来换,就将这个方程转化为一元一次方程,2X+(22-X)=40,按照一元一次方程的求解步骤解得X=18,把X=18代入Y=20-X,解得Y=4,从而的到方程组的解。
通过以上过程可以发现,二元一次方程组中有两个未知数,如果消去一个未知数,将二元一次方程转化为一元一次方程就可以解出一个未知数,进而求出另外一个未知数,这种将未知数由多化少的思想,叫做消元。
1、代入消元法
二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种解法叫做代入消元法,简称代入法。
问题:你能把下列方程用含有X的代数式表示Y的形式吗?(1)2X-Y=3(2)3X+Y-1=0(3)X+5Y=7 例1:用代入法解方程组 X-Y=3 ① 3X-8Y=14 ②
解:由①得 X=Y+3 ③ 把③代入②得 3(Y+3)-8Y=14 解这个方程得 Y=-1 把Y=-1代入③得 X=2 所以这个方程组的解是 X=2 Y=-1 想一想:把Y=-1代入①或②可以吗?
课堂小结
通过今天的学习你有什么收获?
课后习题
P103,2
第四篇:七年级数学8.2消元-解二元一次方程组同步测试题
8.2
消元-解二元一次方程组
同步测试题
班级:_____________姓名:_____________
一、选择题
(本题共计7小题,每题
分,共计21分,)
1.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为()
A.-3
B.3
C.-4
D.4
2.用加减消元法解方程组2x+3y=3,3x-2y=11,下列变形正确的是()
A.4x+6y=3,9x-6y=11
B.6x+3y=9,6x-2y=22
C.4x+6y=6,9x-6y=33
D.6x+9y=3,6x-4y=11
3.二元一次方程组x+y=6,x=2y的解是()
A.x=5,y=1
B.x=4,y=2
C.x=-5,y=-1
D.x=-4,y=-2
y=kx+b中,当x=1时y=2;当x=2时y=4,则k,b的值是()
A.k=0b=0
B.k=2b=0
C.k=3b=1
D.k=0b=2
已知a,b满足方程组a+2b=8,2a+b=7,则a+b的值为()
A.3
B.4
C.5
D.6
已知方程组x-3y=4,①y=2x-1,②把②代入①整理,得()
A.x-6x+3=4
B.x-6x-3=4
C.x-2x-1=4
D.x-2x+1=4
解方程组4x+3y=7,4x-3y=9,时,较为简单的方法是()
A.代入法
B.加减法
C.试值法
D.无法确定
二、填空题
(本题共计
小题,每题
分,共计21分,)
8.方程组x-y=12x+y=2的解是________.
9.用代入消元法解二元一次方程组
3x+y=2①2x-3y=8② 时,由①变形得
y=________.10.如果实数x,y满足方程组2x-y=1x+y=2,那么-x+2y2021=________.11.已知2x+3y=5x+2y=2,则2021+x+y=________.
12.已知m,n满足方程组m+2n=5,2m+n=4,则m+nm-n=________.13.解方程组7x+5y=34x-5y=-4用________法解较简便.
14.解方程组:3x-2y=11…①2x+3y=16…②,完成下列部分变形过程.
由①×3,得:________…③由②×2,得:4x+6y=32…④由④+③,得:________;
上述解此方程组用到的方法是________.
三、解答题
(本题共计
小题,共计78分,)
15.解方程组:2x+y=4⋯⋯①,3x-y=1⋯⋯②.16.解方程组.(1)x=1-y,2x-y=-4;
(2)3x+4y=19,x-y=4;
(3)8y+5x=2,4y-3x=-10;
(4)2x-3y=-12,x3+y4=4.17.解方程组:2x-y=43x+y=1.
解方程组:x+2y=-5x-4y=7 .
19.x3+y4=22x-y=6.
解下列方程组:
(1)x-3y=-4,x+12+y=1;
(2)x+y2+x-y3=1,x+y-2x-y=10.
第五篇:消元---解二元一次方程组教学反思
反思一:消元---解二元一次方程组教学反思
常言道:举一反三,触类旁通。数学教学尤其如此。旨在于对一个数学知识点反复例举、反复引导、反复训练,进而对类似问题能够参考性的对比解决并且不断提升知识的认知水平。消元二元一次方程组的解法这个课时的思想就是把未知数的个数递减而逐一解决。我在教学这个内容中得到如下反思。
一、在这节课的开始应该充分利用教材关于胜负问题的例子,让学生首先明白两个方程中的x都表示胜的场数,y都是表示负的场数,这个过程就是为了消除学生在以下的代入消元法和加减消元法中为什么能够互换的疑虑。这是个好的开端。
二、充分强调等式的变化。虽然这是个复习的问题,但是,让学生反复演练这样的等式变换是一个必要的过程,它将为后面的代入法顺利进行起到铺垫的作用。
三、在进行代入消元法时,遵循由浅入深、循序渐进的原则,引导并强调学生观察未知数的系数,注意系数是1的未知数,针对这个系数进行等式变换,然后代入另一个方程。在这个教学过程中,学生的学习难点就是当未知数的系数不是1的情况,教师就应该运用开课前复习的等式变换的知识点:用含有一个字母的代数式表示另一个字母,引导学生熟练进行等式变换,这个过程教师往往忽略训练的深度和广度,要引起注意把握训练尺度。
四、在进行加减消元法时,难点是:相同未知数的系数不相同也不是互为相反数的情况。基于此,教学原则也应该是由易到难、逐次深入的原则。教师应该先让学生熟悉简单的未知数相同或互为相反数这类题目的加减消元法则和原理;继而认真展示成倍数关系的未知数的系数;然后出示一些比如:3x-5y=10,2x+10y=1,等等的问题,提示学生怎样使相同未知数的系数相同或互为相反数,这时教师要帮助学生认真分析,强调遵循求几个数最小公倍数的原则,使它们相同未知数的系数变成为它们的最小公倍数,然后进行加减消元法去解决问题。
这就是我在这个课程教学的一些反思。
反思二:消元---解二元一次方程组教学反思
1、这节课的主要内容是用代入法解二元一次方程组。这种代入消元法的关键是如何选择一个方程,如何用含一个未知数的式子去表示另一个未知数。所以在教学上要抓住这个关键来讲解。
2、在教学过程中,学生虽然学会了用代入法解二元一次方程组,但是在结构不同的方程组中,学生就有点不知所措,不懂选择哪个方程代入另一个方程,以至
使运算简便。而是盲目地规定消那个未知数,使得计算量很大。出现这种问题的
原因是,没有抓住教师在课堂上强调的关键。针对这个问题,在以后的教学中,我会再强调这个解题的关键,甚至还专门利用课余时间,帮他们补回来。让他们在这方面多多练习。
3、如果让我重新上这节课,我觉得还有一些可以改进的地方。那就是在[活动4]
中,我布置学生做教科书第99页练习的第2题时,学生完成后,再强调第⑴小题,方程不用变形,直接选第一个方程代入第二个方程的原因。
4、我会虚心接受各位老师给我的建议。那就是,对不同的学生进行针对性的指导,使不同的学生都有发展。
反思三:消元---解二元一次方程组教学反思
解二元一次方程组是二元一次方程组一章中很重要的知识,占有重要的地位。通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解消元的思想。加减法解二元一次方程组的基本思想与代入法相同,仍是消元化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使消元化归这一转化思想得以实现。因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。
教学后发现,大部分学生能够通过加减消元法解二元一次方程组,教学一开始给出了一个二元一次方程组,先让学生用代入法求解,既复习了旧知识,又引出了新课题,引发学生探究的兴趣。通过学生的观察、发现,理解加减消元法的原理和方法,使学生明确使用加减法的条件,体会在一定条件下使用加减法的优越性。之后,通过两个例题来帮助学生规范书写,同时明确用加减法解二元一次方程组的步骤。接下来,通过一系列的练习来巩固加减消元法的应用,并在练习中摸索运算技巧,培养能力,训练学生思维的灵活性及分析问题、解决问题的综合能力。有个别同学在运算上比较容易出错,运用的灵活性掌握得不太好,解答起来速度较慢,我想只要多加练习,一定会又快又准确的。
反思四:消元---解二元一次方程组教学反思
解二元一次方程组分两节设置,第一节讲代入消元法,第二节讲加减消元法。从学生作业反馈,对两种消元法的步骤和方法能较好的掌握。但是学生解题中错误较多。问题出现在进行代入消元后的一元一次方程解错了。如去分母时忘了用最小公倍数乘遍每一项,移项要变号,数与多项式相乘要乘遍每项。这样导致整个方程组的解错。对于加减法应让学生明确方程组如果既能用加法消元又能用减法消元的情况下尽量用加法。毕竟加法不容易出错。对于减法尤其是减数是负号时是学生解题的易错点,应该多给学生一些思考的时间,让他们自己摸索出解决问题的办法。同时,也训练了学生的思维。
几个例题比较起来,学生做减法比较容易出错,看来减法的练习应该多些,上课应多花些时间解决减法的问题,而在加减消元法的引入时我选择了创设情景,二元一次方程组的应用问题等量关系相对比较简单,这样不仅可以让学生感受数学的实际应用价值,而且可以增加他们对于解应用题的信心,因为有大部分的学生对于应用题有畏难的心理。这样做的效果不错。在第一课时着重讲解系数相同和互为相反数的加减消元,不要涉及其他的,要巩固前面的知识。第二节着重观察、整理方程组,要多板书几组规范的解题步骤。
通过本课教学,自己感觉有些方面还是做得不够好:首先对于观察二元一次方程组中同一未知数系数的特点的引入过于生硬,并且学生对于何时用同一未知数系数的绝对值的说法不理解,应让学生明确只有在比较同一未知数的系数大小时,引用这样的术语;其次是,学生对于教师引入用加减法的具体过程上缺少必要的过渡,主要原因是自己没有做好这方面的预设,这一点可以再课前利用多媒体做一个简单的方程组中两个方程两边分别相加减的具体步骤,会更好;最后是本节课的练习的体量上有欠缺,没有达到巩固的目的,只停留在简单的观察、理解、熟悉上,缺少必要的加深和扩展。