第一篇:如何在小学数学教学中渗透数学思想
如何在小学数学教学中渗透数学思想
摘 要:数学思想是数学学习的精髓,是帮助学生形成数学认知和提高学生数学素养的关键所在。所以,教师一定要将数学思想渗透到数学教学中去,这样才能够加深学生对知识点的理解和掌握,最终促进学生数学能力的发展,从而为其今后的数学学习打下良好的基础。
关键词:小学数学 数学思想 渗透策略
数学思想具有较强的实用性和普遍性,能够告诉学生如何去思考问题,从什么角度出发去解决数学问题等。在小学数学教学中渗透数学思想,不仅能够培养学生的抽象思维能力、逻辑推理能力以及对数学的应用能力,同时还能够培养学生的创造能力。对此,教师在教学的过程中,要采取积极的措施来将数学思想渗透到整个课堂教学中去,让学生更好的理解和掌握知识点。其具体的措施主要体现在以下几个方面:[1]
一、教师要勇于打破陈规,在教学中正确运用各种数学思想
现阶段,有许多的小学数学教师教学观念落后,没有认识到在数学教学中渗透数学思想的重要性,仍使用传统的“填鸭式”的教学模式,学生被动的接受知识,这样的课堂教学是很难渗透数学思想的。此外,还有一些教师虽然认识到了数学思想在数学教学中渗透的重要性,但并没有在所有的课堂教学中都渗透数学思想,而是在公开课上进行,平时上课大多以照本宣科、强化练习为主。这样表面上的形式化的渗透是起不到任何作用的。[2]
针对以上问题,教师在开展数学课堂教学的过程中,首先要转变自己的教学观念,认识到在数学教学中渗透数学思想的重要性,并对现有的教学模式进行创新,使数学思想真正的渗透到数学课堂教学中去,从而有效的提高数学课堂教学效率,帮助学生理解和掌握知识点。
如,在两位数除以一位数的笔算除法中,笔者可以采取以下教学模式:在上课前,笔者分给学生小木棍先放在一边,然后再从黑板上写下所要计算的算式――84÷4=?,并在计算的过程中强调竖式的写法,告诉学生在计算时,应该从最高位开始计算。在这个竖式中,8代表8个十,8个十除以4得2个十,所以在写商时,可以将2写在十位上去;算完后再继续算4÷4,并告诉学生这代表的是4个一除以4个一,得1个一,并将1写在个位数上,最后得到21。但是在教学的过程中,还是会有一些学生的抽象思维能力较弱,学生不能明白这种方法,这时就可以引导学生借助小木棍进行计算,教师这种方法从具体到抽象,不仅给了学生多一些的选择,还增强了学生的学习积极性。
总而言之,教师在数学教学的过程中,应该勇于打破陈规,正确的运用各种数学思想进行教学,为学生提供足够的时间和空间来进行观察、猜测、实验、计算等一系列的活动,使其在数学活动中逐渐掌握一些数学方法,积累更多的数学活动经验。
二、督促学生进行反思,引导学生在数学学习中使用数学思想
首先,在学习过程中进行及时的反思,不仅能够让学生发现自己的不足之处,也能够让学生对所学过的知识点有一个更深层的认识和理解。所以,在数学学习中,教师应该督促对学习方法、学习内容进行反思,使学生在反思中加深对所学知识的理解,并将隐含在数学知识中的思想方法挖掘出来,从而提高数学思想在学生认知?Y构中的清晰度。
其次,教师还应该根据小学生的认知水平对其进行适当的引导,应做到以下几点:第一,不断的培养学生务实的反思态度,让其认识到在数学学习中进行反思的重要性,让学生养成良好的反思习惯。第二,教会学生反思的方法,引导学生认真的回忆和思考学习中的各个环节,并对自己在学习中所遇到的问题进行思考和分析。第三,还要引导学生在反思的过程中与教师或者同学之间进行交流和总结,使每一位学生都能够掌握数学学习中常用的数学思想,并在学习中对其加以应用。
如,在三角形的认识中,教师可以先让学生通过观察来对三角形进行分类,当学生说完以后,教师则可以引导学生进行反思分类的方法是什么?当学生进行反思时,就会想到是以三角形的角进行分类的,这样学生就对三角形的分类方法有了一个清晰的认识,同时也通过对三角形的分类而获得了更精确的知识,使其感受到了数学思想在整个数学学习中的重要作用。当学生初步掌握和弄清楚不同三角形以后,教师还应该乘胜追击,引导学生用集合图来表示不同三角形之间的关系,并在分类的过程中,向学生渗透集合的思想方法。
三、在知识的整理与复习中对数学思想进行总结
要想提高学生的数学能力和素养,应采取正确的教学方式来让学生理解和掌握数学思想。而在数学教学中,整理和复习在整个学习中是最重要的,所以,在每一个单元结束后,笔者都带领学生对所学内容进行整理和复习,进一步理解和巩固所学知识,使其在整理和复习的过程中,促进其认知结构的发展。此外,数学思想是数学知识体系中的重要组成部分,同一数学知识可以用多种方法解决,也就是说其蕴含着多种数学思想。所以,笔者在平时的课堂教学中,引导学生对所学知识进行整理和复习,学生则会在不断的总结过程中对某一数学思想获得全方面的把握,让学生感受到数学思想在整个数学学习中的重要性,有效的提升学生的数学素养。
对此,在数学课堂教学中,首先,要指导学生对所学知识进行回忆,并明确每一知识点的内容是什么?是怎么来的……从而加深学生对知识点的理解。其次,在整理和复习的过程中,教师还应强化不同数学知识之间的内在联系,并让学生认识到所有问题的解决都是由一种思想方法来引导的,并让学生在分析问题和解决问题的过程中,总结出数学思想。
如,在对平面图形面积的复习中,可以让学生先来回忆一下什么是面积,并让学生说一说各种平面图形的面积计算方法,当学生说出来后,笔者让学生通过讨论和探究等方式来说一说这些公式又是怎么来的。这样不仅能够加深学生对这些公式的记忆,同时也能够让学生在推导公式的过程中,明白“转化”这一数学思想,并从中悟出“转化”这一数学思想的本质,最终体会到数学思想方法的普遍性和实用性来。
结语
在开展小学数学教学的过程中,教师要认识到渗透数学思想的重要意义,并采取积极的措施来将各种数学思想渗透到整个数学教学中去。这样才能够调动学生的学习积极性,并在学生理解和掌握知识点的同时,提高学生的数学素养,最终满足数学教研发展和社会发展的需求。
参考文献
[1]陈海明.浅谈如何在小学数学教学中渗透数学思想[J],中国校外教育,2014(10).[2]刘涛.数学思想方法在小学数学教学中的渗透研究[J],中国校外教育,2017(20).
第二篇:在小学数学教学中渗透数学建模思想
在小学数学教学中渗透数学建模思想
从教十多年以来,深刻领悟到“授之以渔”的重要性。教师在教学过程中要采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。现结合自己的教学实践谈谈对小学生形成数学建模思想的思考。
一、积累表象,感知数学模型
感性材料是学生建立数学模型的基础,因此教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知某类事物的特征或数量间的相依关系,为数学模型的准确构建提供平台。如“表内乘法”模型构建的过程就是一个不断感知、积累的过程。首先学习“2-6的乘法口诀”的算法,初步了解乘法的意义,学会能用找规律的方法算出几个相同加数的和,感知乘法口诀的来源及编制的方法;接着采取半扶半放的方式学习“
7、8的乘法口诀”,进一步引导学生感知归纳法、演绎法更广的适用范围;最后学习“9的乘法口诀”,运用以前已有的思想和方法灵活解决相关的计算问题。在此过程中,学生经历了观察、操作、实践等活动,充分体验了“表内乘法”的内涵,为形成“表内乘法”的模型奠定了坚实的基础。
二、参与研究,构建数学模型
动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。
三、联系实际,应用数学模型
从具体的问题经历抽象提炼的过程,初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升。如“鸡兔同笼”的问题模型,是通过研究“鸡”、“兔”建立起来的,但建立模型的过程中不可能将所有的同类事物一一列举。因此,教师要带领学生继续扩展考察的范围,分析当情境、数据变化时模型的稳定性。可以出示如下问题让学生分析:“两车共有126人,如果从一辆车每8人中选一名代表,从乙车每6人中选一名代表,正好选出17名代表。甲、乙两车各有多少人?”这样,使模型的外延不断得以丰富和拓展。
第三篇:在数学教学中渗透数学建模思想
在数学教学中渗透数学建模思想,利用数型结合法解决实际问题
邹城市石墙中学 王保顺 2012年7月16日 11:06
数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。中学数学教学中建模思想的培养与应用是数学教育的重要内容,呼唤数学应用意识,提高数学应用质量,已成为广大数学教育工作者的共识。开展中学数学建模教学与应用的研究,对提高学生数学应用意识,培养学生灵活的思维能力,分析问题、解决问题的能力,促进中学数学教学改革,全面推进中学数学素质教育有重要意义。本文结合教学实践,谈谈初中建模教学在人才培养中的作用和体会。
我在教学14.1.3函数的图像时,例如:
小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速返回。父亲在报亭看了10分钟报纸后,用15分钟返回家。下面的图象中哪一个表示父亲离家后距离与时间之间的关系?哪一个表示母亲离家后距离与时间之间的关系?
我要引导学生,把这一实际问题转换为数学模型,即函数关系,通过学生动手画函数图像,在通过图像求函数解析式,从而解决实际问题。
在课堂教学中,教师通过启发、引导、指导、辅导等方式与讲授结合起来,以提高学生的参与程度,加强学生学习的主动性,另处学生通过自主探究、发现、尝试、提问、讨论、反馈、练习等,经历数学概念形成的过程,从而加深对概念的理解,使其主体作用得到更充分的发挥,从而使教学与学法能够较好的相融相进,同时,学生在此过程中所获得的体验和经历,可以使他们在后继的学习中,逐渐理解能力,掌握教学思维方法、学会数学思维。同时在获取新知的过程中,掌握自主学习的方法,提高学习数学的能力。
第四篇:小学数学教学中渗透模型思想
小学数学教学中渗透模型思想
小学数学很初等,很简单。尽管简单,却要起到启蒙基本数学思想的作用。数学思想中,模型思想、函数思想是非常重要的思想。其在小学教学中的渗透,学生的正确理解,对学生后续学习非常重要。通过学习,我想对小学教学课本中这种思想渗透方法的分析,浅谈如何在小学数学教学中恰当地将模型思想、函数思想渗透与教学中。
一、模型思想的渗透方法分析:
模型的概念也没有出现在小学教学中,但是其思想贯穿于小学教学中。要在教学中渗透模型思想,教师首先自己要知道什么事模型,什么是数学模型,以及什么模型思想。
什么是模型?模型,本意是尺度、样本、标准。其方法为:;将原型物(系统)进行简化、类比和抽象,并通过适当的逻辑思维关系将其主要的特征描述出来,用于研究和揭示原型的形态、特征和本质的模仿品。
二、什么是数学模型,其有什么特点?
数学模型一般是指用数学语言、符号和图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。
小学数学中随处可见模型的思想,需要教师在教学过程中通过合理的方法进行引导,使学生建立模型的抽象过程。
数学模型具有一般化、典型化、和精确化的特点。小学数学中的数学模型,主要的是确定性数学模型。数的概念、计算法则、公式、性质、数量关系等都是模型。
三、什么是模型思想,模型思想有什么意义?
就是针对要解决的问题,构造相应的数学模型,通过对数学模型的研究来解决实际问题的一种数学思想方法。
模型思想可以将复杂问题简单化,抽取关注的对象进行研究;模型思想可以培养学生学习数学的兴趣;模型思想有利于培养学生的创造能力、分析能力。
四、模型思想在小学数学教学中的渗透
数学自身就是对客观世界的模型化。因此数的概念、运算法则、几何概念等都是模型思想的体现。在教学中,将这些模型的建立过程详细的进行讲解,有利于启发学生对模型思想的理解,对建立模型方法的认知。
五、“数”的概念模型的建立过程分析:
每一个数概念就是一个数学模型。自然数、分数、小数都是现实模型的抽象。自然数是小学生最早接触的数学概念,其是与客观世界的一个个独立存在物的抽象化。
分数是对单位“1”的充分认识的基础上,进一步演化而来的……
数学模型加法、减法、乘法、除法运算的模型建立过程分析: 小学教学中,通过实物的增减来启蒙加减法的基本思想,建立加法、减法模型。
通过实物矩阵事排列,实物分配建立乘法、除法的概念。在学生接受这些概念之后,通过练习、拓展强化模型的概念。
第五篇:在数学教学中渗透基本的数学思想
美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在小学数学教育中有意识地向学生渗透一些基本数学思想方法是能使学生领悟数学的真谛,懂得数学的价值,学会数学地思考和解决问题,能把知识的学习与培养能力、发展智力有机地统一起来,且它本身也蕴涵了情感素养的熏染,这也正是新课程标准充分强调的。《九年制义务教育全日制小学数学课程标准》以下简称《数学课程标准》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”因此,在小学数学教学阶段有意识地向学生渗透一些基本数学思想方法可以加深学生对数学概念、公式、定理、定律的理解,是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学教学进行素质教育的真正内涵之所在。
我是如何渗透数学思想方法:
一、改变应试教育观念,创新数学思想方法。数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要改变应试教育观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。
其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、课堂教学中及时渗透数学思想方法。为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,我经常通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼”这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学“梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。
三、让学生学会自觉运用数学思想方法。数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。我们知道,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。例如;在教学完多边形面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。
总之,我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应新课改的需要。数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,有效进行数学思想方法的渗透。