《12.3 角的平分线的性质》教案1

时间:2019-05-15 02:48:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《12.3 角的平分线的性质》教案1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《12.3 角的平分线的性质》教案1》。

第一篇:《12.3 角的平分线的性质》教案1

《12.3角的平分线的性质》教案

教学目标

1.掌握角平分线的画法.

2.应用三角形全等的知识,解释角平分线的原理. 3.掌握、运用角的平分线的性质.

教学重难点

1.利用直尺和圆规作已知角的平分线. 2.角平分线的性质及其应用.

教学过程

一、提出问题,思考引入

下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?

要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.

∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.(利用“边边边”定理证明)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示,作已知角的平分线的方法. 已知:∠AOB.求作:∠AOB的平分线. 作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于

1MN的长为半径作弧.两弧在∠AOB内部交于点C. 2(3)作射线OC,射线OC即为所求.

二、思考、探索

同学阅读教材48页的第二个思考,量一量,回答问题.

我们发现PD=PE,于是我们猜想:角的平分线上的点到角的两边的距离相等. 我们做出了猜想,下一步我们来验证这个猜想是否正确. 证明:∵PD⊥OA,PE⊥OB. ∴∠PDO=∠PEO=90°.

在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS).∴PD=PE.

这样我们验证了我们的猜想,通过(1)明确已知和所求;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出结论的途径,写出证明过程.这样的步骤,我们证明了一个几何命题,得到了角的平分线的性质:角的平分线上的点到角的两边的距离相等.

下面请同学们思考一个问题. 思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?(学生以小组为单位讨论,教师可深入到学生中,及时引导)引导学生总结出:角的内部到角的两边的距离相等的点在角的平分线上.利用这一结论解答上题.

三、例题

如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.

教师板书,解释说明证明过程.

四、随堂练习

课本第50页的练习第1、2题.

五、课堂小结

今天,我们学习了角平分线的画法和性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.同学们要灵活运用性质,解决问题.

六、课后作业

课本第51页习题12.3的第2、3、4、5题.

第二篇:12.3角平分线的性质说课稿

《12.3角的平分线的性质》说课稿

一、说教材

1、教材的地位及作用:

本节课是人教版八年级上第12章第3节第1课时教学内容,是在学生学习了角平分线的概念和全等三角形的基础上进行教学的,主要学习角平分线的作法和角平分线的性质定理。这节课的学习将为证明线段相等开辟新的思路,简化证明过程,是今后作图、计算、证明的重要工具,并为今后对圆的内心的学习作好知识准备.因此它既是对前面所学知识的应用,又是为后续学习作铺垫,具有承前启后举足轻重的作用,因此本节课在教材中占有非常重要的地位。

2、教学目标:

根据《新课标》对本节课内容的要求,并针对八年级学生的一知规律及学情特点制定如下教学目标。

知识与技能:

1、能用尺规作图法画一个已知角的角平分线。

2、探究并证明角平分线性质定理能够运用性质定理证明两条线段相等及衍生 的其它有关问题。过程与方法:

1、在通过观察、实验、猜想、推理、验证等过程探究角平分线的性质定理,在 推导过程中,提高综合运用三角形的有关知识解决问题的能力

2、并初步运用角平分线的性质证明线段之间的相等关系。体会角的平分线的性 质在生活生产中的应用;在学习过程中发展几何直觉,培养数学推理能力。

情感态度:

1、通过对角平分线的进一步认识,渗透运用不同的观点,从不同的侧面认识 事物的辩证思维方法,体会知识点之间的紧密联系,进一步感知几何学习中位置关系与数量关系的相互转化思想。

2、培养学生探究问题的兴趣,增强解决问题的自信心。获得解决问题的成功体验,逐步发展培养学生的理性精神。

3、教学重点、难点:

根据教材的内容及作用确定本节课的教学 重点:角平分线的性质的证明及运用 难点:角平分线的尺规作图法

二、学情分析

八年级学生具备基础的几何知识,能够自主思考与学习,有一定的推理能力,好奇心强,有探究的欲望,能在教师的引导下发现生活中的数学知识,并运用所学推出新知。

三、说教法

在教学过程中,学生是学习的主体,教师是学习的组织者、引导者与合作者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我将借助多媒体,创设问题情境,采用 “启发诱导—探索发现—猜想证明”以及“讲练结合”的教学方法,以问题的提出、问题的解决为主线设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的引导下发现、分析和解决问题,给学生留出足够的思考时间和空间,从真正意义上完成对知识的自我建构。

四、说学法

数学课程标准中指出,学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。因此通过本节课的教学,让学生学会从生活实际中发现数学问题,探究原理并运用其解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力。让学生在观察、实验、猜想、推理、证明、应用等活动中,生通过自主学习,小组探究等方式成并建构数学知识。

《12.3角的平分线的性质》说课稿

乌十中 杨丽丽

“同课异构”《12.3角平分线的性质》教案

乌十中 杨丽丽

第三篇:角的平分线的性质1教案

角的平分线的性质

(一)教学目标

1、应用三角形全等的知识,解释角平分线的原理.

2.会用尺规作一个已知角的平分线.

教学重点

利用尺规作已知角的平分线.

教学难点

角的平分线的作图方法的提炼.

教学过程

Ⅰ.提出问题,创设情境

问题1:三角形中有哪些重要线段.

问题2:你能作出这些线段吗?

Ⅱ.导入新课

在学直角三角形全等的条件时有这样一个题:

在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.

求证:∠MOC=∠NOC.

通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.

受这个题的启示,我们能不能这样做:

在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC•与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.

思考:这个方案可行吗?(学生思考、讨论后,统一思想,认为可行)

议一议:图中是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?

要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.

∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.

看看条件够不够.

所以△ABC≌△ADC(SSS).

所以∠CAD=∠CAB.即射线AC就是∠DAB的平分线.

由此,我们总结出作已知角的平分线的已知:∠AOB.

求作:∠AOB的平分线.

作法:

①以O为圆心,适当长为半径作弧,分OB于M、N.

别交OA、方法:

②分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.

③作射线OC,射线OC即为所求.

议一议:

1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

总结:

1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角平分线.

2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

探索活动

按以下步骤折纸

1.在准备好的三角形的每个顶点上标好字母;A、B、C;把角A对折,使得这个角的两边重合;

2、在折痕(即平分线)上任意找一点O;

过点O折AC边的垂线,得到新的折痕OD,其中,点D是折痕与AC的交点,即垂足;

4、将纸打开,新的折痕与AB边交点为E.我们由此得出:

角平分线的性质:角平分线上的点到角的两边的距离相等.

下面用我们学过的知识证明发现:

如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求证:OE=OD.

Ⅲ. 课时小结

本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.

Ⅳ.思考

在一节数学课上,老师要求同学们练习一道题,题目的图形如图所示,图中的BD是∠ABC的平分线,在同学们忙于画图和分析题目时,小明同学忽然兴奋地大声说:“我有个发现!”原来他自己创造了一个在直角三角形中画锐角的平分线的方法.他的方法是这样的,在AB上取点E,使BE=BC,然后画DE⊥AB交AC于D,•那么BD•就是∠ABC的平分线.

有的同学对小明的画法表示怀疑,你认为他的画法对不对呢?请你来说明理由.

第四篇:角平分线性质教案

教学设计

一、教学目标

(一)知识与技能目标

1.掌握作角的平分线和作直线垂线的方法 2.学握角平分线的性质

(二)情感态度目标

1.在探讨做角平分线的方法及角平分线性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验。2.培养学生团结合作精神。

教学重点: 掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。教学难点: 1.对角平分线性质定理中点到角两边的距离的正确理解; 2.对于性质定理的运用。

教学工具: 多媒体 课件。直尺,圆规等

二、教学过程设计

(一)复习引入 1.角平分线的定义。2.点到直线的距离。

学生思考,回答问题。(设计意图:复习已学知识,为下面研究创造条件。)

(二)设计活动,引出内容 【活动一】

问题 1 :利用之前学过的知识,如何确定一个角的角平分线。

问题 2 :不利用工具,将一张用纸片做的角分成两个相等的角,你有什么办法?(对折)学生活动:学生用量角器去量,让一个学生上讲台用折纸的方法得到角平分线展示给大家。

(设计意图:掌握作角的平分线的简易方法)

假如我们要将纸片换成木板、钢板等没法折的角,又该怎么办呢?那么我们除了使用量角器外,我再给大家介绍另一种仪器——角平分仪(展示课件)如图,是一个平分角的仪器,其中 AB=AD,BD=DC,将点 A 放在角的顶点,AB 和 AD 沿着角的两边放下,沿 AC 画一条射线 AE,AE 就是这个角的平分线,你能说明它的道理吗?

(总结学生思路——利用三角形全等)

(设计意图:训练书写数学语言)

引导学生观察这个角分仪,根据这个角分仪的制作原理,通过小组讨论总结,归纳出作一个已知角角平分线的方法。(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)

通过小组讨论的结果,让同学在黑板上演示作图过程及复述画法,再利用多媒体演示,加深印象,并强调尺规的规范性。讨论结果展示:

作已知角平分线的方法: 已知:∠ AOB .

求作:∠ AOB 的平分线. 作法:

(1)以 O 为圆心,适当长为半径作弧,分别交 OA、OB 于 M、N.(2)分别以 M、N 为圆心,大于 MN 的长为半径作弧.两弧在∠ AOB 内部交于点 C.(3)作射线 OC,射线 OC 即为所求.设置问题:

1.在上面作法的第二步中,“大于 MN 的长”这个条件改成“小于或等于

MN 的长”不行吗?

2.第二步中所作的两弧交点一定在∠ AOB 的内部吗?

(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。)学生讨论结果总结:

1.不行,若改成“小于或等于 MN 的长”,那么所作的两弧可能没有交点,所以就找不到角的平分线。

2.若分别以 M、N 为圆心,大于 MN 的长为半径画两弧,两弧的交点可能在∠ AOB 的内部,也可能在∠ AOB 的外部,而我们要找的是∠ AOB 内部的交点,• 否则两弧交点与顶点连线得到的射线就不是∠ AOB 的平分线了。应用:平分平角∠ AOB(学生口述)由平分平角的步骤,得出结论: 作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。

【活动二】

拿出用纸片做的角 ∠ AOB,在这个角的角平分线上任意取一点 P,过点 P 分别向角的两边做垂线,量一量点 P 到将两边的垂线段的长有什么关系?再在这个角平分线上任取 3 个点,也分别向角的两边做垂线,看看这些点到角的两边的垂线段的长有什么关系?

学生动手操作,通过观察,用尺子测量,得出结论: 角平分线上的点到角两边的距离相等。

这是从直观上得出的结论,从理论上要证明这个结论。

(设计意图:解决实际问题,拓展学生思维,引导角平分线的性质定理总结,规律化规范语言,深化记忆定理)

证一证: 引导学生证明角平分线的性质,分清题设、结论,将文字变成符号并加以证明。学生板眼,挑出问题,纠正问题,得出完整过程。

由此,得到角平分线的性质:角平分线上的点到角两边的距离相等。用符号语言表示为: ∵ OP平分∠ AOB PD ⊥ OA,PE ⊥ OB ∴ PD=PE 定理的作用:证明线段相等。练习:判断正误,并说明理由:

(1)如图 1,P 在射线 OC 上,PE ⊥ OA,PF ⊥ OB,则 PE=PF。(2)如图 2,P 是∠ AOB 的平分线 OC 上的一点,E、F 分别在 OA、OB 上,则 PE=PF。

(3)如图 3,在∠ AOB 的平分线 OC 上任取一点 P,若 P 到 OA 的距离为 3cm,则 P 到 OB 的距离边为 3cm。

(三)知识回顾 1.角平分线的画法

2.角平分线的性质:角平分线的点到角两边的距离相等

(四)板书设计

第五篇:11.3 角的平分线的性质 教案1

§13.3.2 角的平分线的性质

(二)教学目标

(一)教学知识点

角的平分线的性质

(二)能力训练要求

1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”. 2.能应用这两个性质解决一些简单的实际问题.

(三)情感与价值观要求

通过折纸、画图、文字一符号的翻译活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣.

教学重点

角平分线的性质及其应用.

教学难点

灵活应用两个性质解决问题.

教学方法

探索、归纳的方法.

教具准备

剪刀、折纸、投影片.

教学过程

Ⅰ.创设情境,引入新课

[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?

[生]我发现

[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求. [生甲]噢,对于,我知道了.

[师]同学甲,你再做一遍加深一下印象.

问题1:你能用文字语言叙述所画图形的性质吗? [生]角平分线上的点到角的两边的距离相等.

问题2:(出示投影片)

能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:

学生通过讨论作出下列概括:

已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.

由已知事项推出的事项:PD=PE.

于是我们得角的平分线的性质:

在角的平分线上的点到角的两边的距离相等.

[师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)

问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:

[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得

∠PDE=∠POD.

由已知推出的事项:点P在∠AOB的平分线上. [师]这样的话,我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.同学们思考一下,这两个性质有什么联系吗?

[生]这两个性质已知条件和所推出的结论可以互换. [师]对,这是自己的语言,这一点在数学上叫“互逆性”.

下面请同学们思考一个问题.

思考:

如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?

1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?

2.比例尺为1:20000是什么意思?

(学生以小组为单位讨论,教师可深入到学生中,及时引导)

讨论结果展示:

1.应该是用

[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.

证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.

因为BM是△ABC的角平分线,点P在BM上.

所以PD=PE.

同理PE=PF.

所以PD=PE=PF.

即点P到三边AB、BC、CA的距离相等.

Ⅲ.随堂练习

1.课本P107练习.

2.课本P108习题13.3─2.

在这里要提醒学生直接利用角平分线的性质,无须再证三角形全等.

Ⅳ.课时小结

今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,可以看出,随着研究的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.

Ⅴ.课后作业

课本习题13.3─3、4、5题.

下载《12.3 角的平分线的性质》教案1word格式文档
下载《12.3 角的平分线的性质》教案1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    11.3.1角平分线性质1教案[全文5篇]

    §11.3.1 角的平分线的性质(一) 教学目标 (一)教学知识点 角平分线的画法、角平分线的性质1.(二)能力训练要求 1.掌握角平分线的性质1 2.会用尺规作一个已知角的平分线.(三)情感与价值......

    角的平分线的性质教案

    角的平分线的性质 教学目标 1. 掌握角的平分线的性质定理和它的逆定理的内容、证明及应用. 2. 理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题. 3. 渗透角平分线是满足......

    教案角的平分线的性质

    教案 王彦坤 一.教学目标 1、知识与技能 (1)掌握用尺规作已知角的平分线的方法。 (2)理解角的平分线的性质并能初步运用。 2、过程与方法 学生经历观察演示,动手操作,合作交流,自主......

    角平分线的性质教案

    送教下乡教案----孔田中学 12.3 角的平分线的性质(2) 陈明盛 一、教学目标 (一)知识与技能 1.了解角的平分线的判定定理; 2.会利用角的平分线的判定进行证明与计算. (二)过程与方法......

    角的平分线的性质教案

    角的平分线的性质教案 学习重点 掌握角的平分线的性质定理 学习难点 角平分线定理的应用 设置情景 1.什么是角的平分线?怎样画一个角的平分线? 2.如图,AB=AD,BC=DC, 沿着A......

    角平分线的性质教案

    《角平分线的性质》讲学稿 学习目标:1、通过动手实践探究角平分线的性质 2、熟练应用角平分线性质3、会进行文字命题的论证 重点:角平分线性质的理解和应用 难点:文字命题的论......

    角平分线的性质定理教案

    角平分线的性质定理教案 慧光中学:王晓艳 教学目标:(1)掌握角平分线的性质定理; (2)能够运用性质定理证明两条线段相等; 教学重点:角平分线的性质定理及它的应用。 教学难点:角平分线......

    角的平分线的性质2教案

    角的平分线的性质(二) 教学目标 1.角的平分线的性质. 2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”. 3.能应用这两个性质解决一些简单的实际问题. 教学重点......