第一篇:苏教版五年级上册数学-梯形的面积计算-教学设计
第二单元 多边形的面积 课题:梯形的面积计算 第 4 课时 总第 课时
教学目标:
1.使学生通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。2.培养学生观察、推理、归纳能力,体会转化思想的价值。
3.让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。
教学重点:探索并掌握梯形的面积计算方法。
教学难点:理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。教学准备:课件 教学过程:
一、复习旧知,揭示课题。(预设3分钟)
1.出示梯形图形,说出各部分的名称。
拿出昨天晚上自己剪的梯形,同桌间说出图形各部分的名称。2.揭示课题。
二、自学例6。(预设17分钟)
1.自学。(预设5分钟)导学单:
(1)你能想办法求出梯形的面积吗?如何做?(2)小组交流。
刚才各组进行了热烈的讨论交流,下面我们来看看各组的成果。
教师根据学生的汇报情况及时进行互动对话。总结出:转化是计算梯形面积最基本,也是最有效的方法。
三、自学例7。自学
导学单:(预设12分钟)
(1)结合三角形面积的推导过程,我猜想可以把梯形转化成()来求面积。
(2)拿出昨晚剪的两个图行,自己拼一拼、算一算、填一填,再思考:(a)拼成平行四边形的两个梯形有什么关系?(b)拼成的平行四边形的底与梯形的上底、下底有什么关系? 拼成的平行四边形的高与梯形的高有什么关系?每个梯形的面积与拼成的平行四边形的面积呢?(c)根据平行四边形的面积公式,怎样求梯形的面积?(d)小组交流。点拨:
(1)你是怎样想到把梯形转化成平行四边形的?那么,一个梯形的面积和拼成的平行四边形的面积有什么关系?
(2)拼成的平行四边形的底等于梯形的()与()的和;拼成的平行四边形的高等于梯形的()。
每个梯形的面积是拼成的平行四边形的面积的()梯形面积=平形四边形面积÷2 =()×高÷2 3.如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么你准备怎样用字母表示梯形面积计算公式?学生独立尝试,一生板演: 字母公式:s=(a+b)×h÷2)
强调公式中的“÷2”,这儿的“÷2”能少吗?为什么?
四、练习(预设14分钟)【基本练习】
1.寻找合适的条件,求出图形中梯形的面积。(单位:cm)
教师提供课堂分层练习单 教师巡视,指导有困难的学生。2.想一想,填一填.用两个完全一样的梯形,拼成平行四边形.如果梯形的面积是12平方厘米, 拼成的平行四边形的面积是()平方厘米.如果平行四边形的面积是24平方厘米, 涂色梯形的面积是().第2题,提问:涂色梯形的面积与整个平行四边形的面积有什么关系? 3.判断题
(1)两个梯形都能拼成一个平行四边形。()(2)两个形状一样的梯形一定能拼成一个平行四边形。()(3)两个完全一样的梯形一定能拼成一个平行四边形。()
(4)平行四边形的面积是梯形面积的2倍。()第3题,强调两个完全一样的梯形一定能拼成一个平行四边形。
4.一条新挖的渠道,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?
第4题:说一说,你是怎样理解“横截面”的? 指一指,图中的物体的“横截面”具体在哪里?
四、课作。(预设6分钟)
完成《补充习题》第8页第3、4题。提高题
在下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?(见ppt)
五、家作。
1.《课课练》第13页1、2、3题。2.提高题 《课课练》第13页拓展应用。
第二篇:人教版小学数学五年级上册《梯形面积的计算》教学设计 -
梯形面积的计算
教学目标:
1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式;
2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;
3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。
4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
教学重点: 理解并掌握梯形面积公式,会计算梯形的面积。教学难点: 自主探究梯形面积公式 教具准备:完全一样的梯形若干个。学具准备:每生准备六个完全一样的梯形。教学过程:
一、复习旧知,进行铺垫。
谈话:1.我们已经学习了哪些平面图形的面积计算,怎样计算?
2、我们在研究三角形的面积公式时,是怎样推导的?
小结:我们把三角形转化成已学过的平行四边形推导出了三角形的面积计算公式。
3、梯形的特征是什么? 根据学生的回答小结。
二、串联情境,激发兴趣。(出示情境图)
谈话:同学们,上节课我们在甲鱼池参观,提出了许多有价值的数学问题。看,问题口袋里还有问题呢!你想知道吗?(出示问题口袋里的题目)
三、小组合作、探究新知。
1、出示问题:1号甲鱼池的面积是多少? 谈话:求1号甲鱼池的面积是多少?就是求什么图形的面积?那么怎样求梯形的面积呢?这节我们就一起来探究。板书课题:梯形的面积计算。你们准备怎样研究? 小组讨论。
2、交流汇报。
师归纳汇总:(表扬)刚才同学们从不同角度,用所学知识,创造性地想出了这么多办法,很了不起!从同学们汇报情况看大致有三种: a把梯形划分成两个三角形;b把梯形划分成一个三角形和一个平行四边形;c把两个完全一样的梯形拼成了一个平行四边形。从我们的知识水平来看,老师提一个建议,用拼成大平行四边形的方法来计算,这样比较简单,那么是不是任意两个完全相同的梯形都能拼成大平行四边形呢?
3、小组合作推导公式
谈话:请大家拿出课前准备的任意两个完全相同的梯形,试试看!
想一想:拼成图形与梯形之间有何联系?你能从中发现什么?并填在发现卡上。发现卡
用两个完全一样的梯形可以拼成一个----------------形。这个平行四边形的底等于--------------,高等于--------------。每个梯形的面积等于拼成的平行四边形面积的--------------。梯形的面积=--------------。
老师注意辅导学生,了解学生探究的情况,鼓励有因难的学生,并适当加以引导。
5、学生拿着拼图汇报展示,师注意引导。
6、电脑演示转化推导的全过程。边演示边提问发现卡上的问题。
7、师生归纳出公式(完成板书):梯形的面积=(上底+下底)×高÷2。提问:(上底+下底)×高 算的是什么?为何要除以2?
8、师说明字母公式。
谈话:与平行四边形和三角形一样梯形面积也有字母公式,谁能用字母表示?说说每个字母分别表示什么?
板书: S =(a + b)× h÷2
9、阅读课本,并把梯形面积公式填写在课本89页相应的位置。
四、运用知识,解决问题。
1、现在你能算出1号甲鱼池的面积了吗?请学生填在课本上。两名学生板演,其余学生独立练习。全班交流。
2、想一想,填一填
用两个完全一样的梯形,拼成平行四边形.如果梯形的面积是12平方厘米, 拼成的平行四边形的面积是()平方厘米.初步运用(求梯形的面积)单位:厘米
221820解:S=(a+b)h÷2=(10+18)×20÷2103、做自主练习的第3题。学生独立练习。全班交流。
4、做自主练习的第4题。要求面积你需要测量什么?学生独立练习。全班交流。
5、做自主练习的第5题。你知道什么是水渠的横截面?(CAI出示)学生独立练习,全班交流。
四、小结:
通过这节课的学习你有哪些收获?
五、作业布置: 91页的6、7题。
第三篇:“梯形面积计算”教学设计
“梯形面积计算”教学设计
吉林油田松江小学 吴孟东
教学内容
义务教育课程标准实验教科书,数学第九册第五单元“多边形的面积”。教学内容分析
由于上述学习过程中学生已经通过操作、实验、探索等积累了探讨平行四边形,三角形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法。这些都为学生自主探究、探索“梯形面积计算”这一新的学习任务创造了必要的条件,同时也为进一步学习圆面积和立体图形表面积计算打下了良好的基础。教学对象分析
五年级的学生,正处于由中向高年级过渡时期,其认识水平和思维能力亦正处于进一步发展和日趋成熟的时期。通过这一部分内容的学习,可进一步发展学生的空间观念,加强学生对图形特征及各种图形之间内在联系的认识,同时可促使他们的抽象概括等逻辑思维能力的发展和提高。教学目标
1.利用迁移规律和“转化”的数学思想,引导学生通过小组合作探索推导出梯形面积计算公式,并能正确运用公式解决生活中的数学问题;
2.通过小组合作学习,培养学生团结协作、勇于创新的精神; 3.培养学生动手操作能力和观察能力,以及利用已有知识和经验解决新问题的能力;
4.渗透“变”与“不变“的辩证唯物主义观点教育。教学重点:对梯形面积公式的理解。教学难点:梯形面积计算公式的推导过程。
教具、学具准备:多媒体课件、梯形若干、直尺、剪刀。教学过程
一、复习旧知
师:大家一起读一下屏幕上的两个公式(平行四边形面积公式和三角形面积公式),这两个公式是怎么推导出来的呢?谁能选择其中一个讲给大家听一听?下面老师再和大家一起回顾一下这两种图形面积公式的推导过程。
(设计意图:为学生学习新的知识做下铺垫,一方面回忆有关知识,为探索梯形面积的计算方法做了准备;另一方面突出“转化“思想的重要性,并提示学生在研究梯形时可以怎样考虑。降低一些学生的学习难度,使学生明确学习目标。)
二、情境创设
师:大家都喜欢看喜洋洋与灰太狼这部动画片吧?现在,喜洋洋的好朋友们被灰太狼关进了密室里,要想进入这个密室救出伙伴们可不是一件容易的事。这密室的门上有一道题,只有算对了的人,才能进去。瞧!(出示一个梯形,标出底和高,说出各部分名称)这是一
道求梯形面积的题,这回可把喜洋洋难住了,责怪自己上课的时候不认真听讲。同学们,你们愿意帮助喜洋洋救出他的伙伴吗?(生:愿意!)三:探究新知
1.操作:请大家利用手中的梯形,通过剪、拼等方法,把梯形转化成我们学过的图形,并找到图形之间的联系,推导出梯形面积计算公式。请马上动手试一试。
2.学生展示:(要求学生说清楚用的是哪种梯形剪拼的,拼出了我们学过的哪些图形)。
(1)两个完全一样的一般梯形拼成一个平行四边形:(2)两个完全一样的等腰梯形拼成一个平行四边形;
(3)将一个梯形从中点处裁开,将裁开的两部分拼成一个平行四边形;
(4)在一个梯形的中点处,画一条平行于上、下底的线段,延长上、下底,通过中线画一个平行四边形;如图:
师:观察剪拼成的平行四边形,你发现剪拼成的平行四边形和梯形之间有什么关系?
填空:拼成的平行四边形的底等于(),平行四边形的高等于()。师:还有哪些剪拼的方法吗?
(5)两个完全一样的直角梯形拼成一个长方形;
填空:拼成的长方形的底等于(),平行四边形的高等于()。(6)将梯形的下底延长,在上底的一顶点向下底引一条线段,使之
成为一个三角形,如图:填空:拼成的三角形的底等于(),三角形的高等于()。
师:那你认为梯形的面积该怎样计算呢?学生归纳公式:(上底+下底)表示什么?(上底+下底)×高表示什么?为什么要除以2? 3.总结:不管采取何种拼剪方法,得出的梯形面积是“上底加下底乘以高再除以2”。(再次验证了知识之间是相互联系的。)4.师:我们现在能帮助喜洋洋救出他的好伙伴了吧!(求密室门上梯形的面积)。
5.追问:想一想,计算梯形面积必须要知道哪些条件? 四:梯度训练 1.判断:
(1)两个完全一样的梯形可以拼成一个平行四边形。()(2)平行四边形的面积是梯形面积的2倍。()
2.一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米.它的横截面的面积是多少平方米?
3.用篱笆围成一块梯形菜地,一侧靠墙。篱笆长30米,这块菜地的面积是多少?
(设计意图:将自己推导的公式运用到生活中,让学生学会应用知识解决生活中的数学问题。进一步理解公式,并学会熟练运用公式。)五:课堂小结:今天你有哪些收获? 六:板书设计:
梯形面积的计算
梯形面积=(上底+下底)×高÷2
S=(a+b)h÷2
第四篇:《梯形面积计算》教学设计
《梯形面积计算》教学设计
教学目标: 1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。
2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。
教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。教学难点: 梯形面积计算方法的推导过程。教学准备: 多媒体课件 教学过程
一.复习引入。
1.谈话:我们学过哪些图形的面积计算? 2.指名学生回答
3.在推导平行四边形和三角形面积公式是一般怎样做? 二.新课传授。
(一)面积计算方法的推导过程。
1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)
你怎么知道它是梯形?(只有一组对边平行)
2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也
转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?
3.学生动手操作,分别展示成果。
(1)请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180o,再沿腰平移上去,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)
(2)请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)
(3)请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个三角形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)
4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?
5.你是怎么得出这个规律的?
6.揭示规律并板书:梯形面积=(上底+下底)×高÷2 你们能不能告诉我如果我要求一个梯形的面积要知道写什么条件呢?(上底、下底、高)
现在我用s表示梯形的面积,分别用a、b、h表示上底、下底和高,你能用这些字母表示梯形面积的计算方法吗?(s=(a+b)h÷2)
7.经过刚才的学习,我们了解了梯形面积计算的一个方法,那么我想请同学们帮我解决这样一个问题(出示例1):一个零件,横截面是梯形。上底是14厘米,下底是26厘米,高是8厘米。它的横截面的面积是多少平方厘米?
三.巩固练习。
1.找出梯形的上底、下底和高并计算面积。(单位:厘米)2.量出自己准备的梯形的上底、下底、高,求出它的面积。从这个梯形上剪下一个最大的三角形,怎么剪?剩下的图形面积是多少?为什么?
四、课堂总结。
1.这节课你学到了什么? 2.你还有什么样的问题吗?
第五篇:梯形面积计算教学设计
梯形面积计算教学设计
梯形面积计算教学设计1
教学目标:
1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。
2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。
3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。
教学重点、难点和关键:
教学重点:梯形面积的计算公式。
教学难点:梯形面积计算公式的`推导过程。
教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。
教具、学具准备:
教师准备多媒体课件、学生备用梯形硬纸片。
教学过程:
一、复习引入:
1、复习:
同学们会计算哪些图形的面积?
计算下列图形的面积:多媒体出示。
2、引入:
屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。
3、回忆旧知
我们在学习习近平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)
我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)
二、探索解决问题办法,并尝试转化
1、引导学生提出解决问题方案
我们在学习习近平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?
你准备用什么方法把梯形转化为我们学过的图形?
2、学生尝试转化
刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?
学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。
那么,用拼摆的方法呢,你准备怎样来拼?
学生上台演示。
3、学生操作、实施转化
学生以四人小组为单位,拼摆梯形。
请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?
谁来说一说,你是怎样拼的?多媒体课件演示。
三、观察图形,推导公式:
1、观察
同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?
它们的底、高和面积,大小怎样呢?小组讨论。
学生总结汇报后多媒体课件演示。
2、计算梯形面积
平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?
算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?
计算面积,学生口述,教师板书。
3、推导梯形面积公式
算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?
用字母表示梯形面积公式
阅读教材,加深理解
四、应用公式计算梯形面积
1、基本练习:
计算下面梯形面积
2、教学例题
出示例题并理解题意。
计算面积,一人板演,全班齐练。
3、判断题
4、抢答题
5、测量并计算
五、总结课堂
梯形面积计算教学设计2
教学内容:
九年义务教育六年小学制数学第九册第74—75页。
教学目标:
1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。
2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。
教学重点:
理解并掌握梯形面积公式的推导,会计算梯形的面积。
教学难点:
理解梯形面积公式的推导过程。
教具准备:
两个完全一样的梯形若干个。
学具准备:
各小组准备两个完全一样的梯形一对。
教学过程
一、复习导入:
1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。
(学生回答,cai依次出现相应图形面积的计算公式)
提问:三角形的面积公式为什么是用底×高÷2?
2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?
二、教学新课:
(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)
(二)、实验探究:
1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?
② 梯形的面积会跟梯形的什么有关呢?
2.小组合作实验,推导梯形面积的计算公式:
(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。
(2)思考:
①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?
② 拼成的这个图形的面积跟梯形的面积有什么关系?
③ 你觉得梯形的面积可以怎样计算?
(3)小组合作,学生实验。
3. 实验汇报。
4. 引导学生看图并提问:这个梯形的面积可以怎样计算?
现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?
5.概括总结、归纳公式。
教师提问:
①为什么计算梯形的面积要用(上底+下底)×高÷2?
②要求梯形的面积必须知道哪些条件?
三、练习:
(一).基本练习:
(二)解决问题:
四、小结:
通过这节课的'学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?
五、巩固提高。
板书设计:
梯形面积的计算
梯形的面积=(上底+下底)×高÷2 )
s = (a+b)×h÷2
教学反思:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作 培养探索能力
在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
二、发散验证 培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。
梯形面积计算教学设计3
教学目的:
1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教具准备:
1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。
2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。
3、学生将教科书第147页上面的两个梯形剪下来。
教学过程:
一、复习。
出示三角形图。
问:三角形的面积怎样求?
这个三角形的面积是多少?
三角形的面积计算公式我们是怎样推导出来的?
怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)
师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)
二、新课。
1.教学梯形面积的计算公式。
出示教科书第80页上面的梯形图。
问:这个图形是什么形?(梯形)
师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。
问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)
教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。
问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)
两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的`面积是平行四边形面积的一半)
平行四边形的底等于什么?(等于梯形的上底、下底之和)
平行四边形的高和梯形的高有什么关系?(相等)
平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)
一个梯形的面积怎样算?(提示学生回答,教师板书:(3+5)×4÷2
=8×4÷2
=32÷2
=16(平方厘米)
师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)
问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)
平行四边形的高是什么?(就是梯形的高)
板书:
平行四边形的面积=(上底+下底)×高
梯形的面积=(上底+下底)×高÷2
如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:
S=(a+b)×h÷2
问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)
2.应用出的梯形面积公式计算梯形面积。
(1)出示第81页例题。
指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。
问:这个梯形的上底是多少?下底呢?
这个梯形的高是多少?
梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)
(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。
三、巩固练习。
练习十九第1、2题。
四、作业。
练习十九第3、4题。
梯形面积计算教学设计4
教学目标:
(1)探究梯形面积计算,理解公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力以及动手操作能力。
(3)进一步渗透旋转、平移的数学思想。
教学重点:
理解并掌握梯形面积公式的计算方法。
教学难点:
理解梯形面积公式的推导过程。
教具准备:
多媒体课件
教学过程:
一、创设情境,引出问题
教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?
问:同学们这块地是什么图形啊?
生1:这是一个梯形。
问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?
生2:必须先知道梯形的面积。
师:今天我们这节课就来研究“梯形面积的计算”(板书)。
二、探究新知。
(1)铺垫孕伏。
组织学生回忆平行四边形、三角形面积公式推导的方法及过程,重点突出旋转、平移、割补的数学思想。
(2)协作研讨,探求方法
1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。
师:谁能介绍一下这个梯形?
生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!
2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)
生4:(3+5)42=16(平方厘米)
生5:542+342=16(平方厘米)
生6:(5+3)42=16(平方厘米)
生7:(5-3)42+34=16(平方厘米)
生8:(5+3)(42)=16(平方厘米)
生9:(3+5)24=16(平方厘米)
生10:34+(5-3)42=16(平方厘米)
师生交流、点评……
3、总结规律,渗透数学思想方法
师:这些方法有什么共同的地方吗?
生11:结果都是16平方厘米。
生12:每种方法的计算过程中都用到3、4、5、2这几个数字。
师:这几个数字和梯形有什么关系吗?
生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:现在谁能猜一猜梯形的面积计算公式是怎样的?
生14:梯形的面积=(上底+下底)高2
师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?
生15:S=(a+b)h2
三、应用知识,解决问题
1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。
生16:(300+200)100210=2500(棵)
2、学生完成基础变式练习:“做一做”和练习十八的1~3题。
3、提高能力练习:共同探讨练习十八的第四题。
四、知识小结,体验学习的快乐!
教学反思:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的.多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?
我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。
梯形面积计算教学设计5
教学目标:
1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。
2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。
3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。
教学重点:
理解梯形面积的计算方法,正确计算梯形的面积。
教学难点:
梯形面积计算方法的推导过程。
教学准备:
多媒体课件
教学过程:
一.复习引入。
1.同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?
2.计算下面图形的面积。(单位:厘米)
3.我们先看第一个图形,它的面积是多少?(300平方厘米)
你是怎样计算的?(20xx=300)
你的根据是什么?(平行四边形的面积=底高)
你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)
4.那么第二个图形的面积是多少呢?(36平方厘米)
你是怎样计算的?(1262=36)
你的根据是什么?(三角形的面积=底高2)
你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180o,再沿边平移上去,这样就拼成了一个平行四边形。)
5.出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!
二.新课传授。
(一)面积计算方法的推导过程。
1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)
你怎么知道它是梯形?(只有一组对边平行)
2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?
3.学生动手操作,分别展示成果。
(1)请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180o,再沿腰平移上去,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的'上底与下底的和,高没有变,面积是梯形的两倍。)
(2)请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)
(3)请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个三角形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)
4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?
5.你是怎么得出这个规律的?
6.揭示规律并板书:梯形面积=(上底+下底)高2
你们能不能告诉我如果我要求一个梯形的面积要知道写什么条件呢?(上底、下底、高)
现在我用s表示梯形的面积,分别用a、b、h表示上底、下底和高,你能用这些字母表示梯形面积的计算方法吗?(s=(a+b)h2)
7.经过刚才的学习,我们了解了梯形面积计算的一个方法,那么我想请同学们帮我解决这样一个问题(出示例1):一个零件,横截面是梯形。上底是14厘米,下底是26厘米,高是8厘米。它的横截面的面积是多少平方厘米?
三.巩固练习。
1.找出梯形的上底、下底和高并计算面积。(单位:厘米)
2.量出自己准备的梯形的上底、下底、高,求出它的面积。
从这个梯形上剪下一个最大的三角形,怎么剪?剩下的图形面积是多少?为什么?
四、课堂总结。
1.这节课你学到了什么?
2.你还有什么样的问题吗?
梯形面积计算教学设计6
重点难点
使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
教学准备
含资料辑录或图表绘制
教学的过程
一、第2题
让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的`和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。
二、第3题
右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。
三、第5题
要注意两个问题:
1、统一面积单位;
2、讲清楚数量关系。
四、第6题
先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。
五、针对学生在学习过程中出现的问题适当的进行补充和强化。
通过今天的练习我们对梯形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。
梯形面积计算教学设计7
教学目的:
1、掌握梯形的面积计算公式,能正确地计算梯形的面积。
2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点:
正确地进行梯形面积的计算。
教学难点:
梯形面积公式的推导。
教学准备:
投影、小黑板、若干个梯形图片(其中有两个完全一样的。
教学过程:
一、导入新课
1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?
2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?
3、创设情境:
投影显示:
启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)
二、新课展开
1、操作探索
⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。
提问:你拼成了什么图形,怎样拼的?演示一遍。
⑵看一看,观察拼成的平行四边形。
提问:你发现拼成的平行四边形和梯形之间的关系了吗?
出示小黑板:
拼成的平行四边形的底等于,平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。
⑶想一想:梯形的面积怎样计算?
学生讨论,指名回答,师板书。
梯形的面积=(上底+下底)×高÷2
师:(上底+下底)表示什么?为什么要除以2?
⑷做一做:计算“前面出示的梯形”的面积。
2、扩散思维
师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:
生1:做对角线,把梯形分割成两个三角形,如下图⑴:
生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。
生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。
师:同学们真聪明,想出了好多种方法,推导出了梯形的`面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”
3、抽象概括
师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?
生:s=(a+b)h÷2
4、反馈练习
完成课本p81做一做(一人板演)
三、应用深化
出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?
解释:举例说明“横截面”的含义。学生尝试计算:
(2.8+1.4)×1.2÷2
=4.2×1.2÷2
=5.04÷2
=2.52(平方米)
答:它的横截面的面积是2.52平方米。
2、反馈练习:完成p82第1题
四、巩固练习:p82第2题
五、全课小结
六、作业:p82第3、4题
教学后记:
实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。
在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。
梯形面积计算教学设计8
教学目标
1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。
3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。
重点难点
重点:掌握梯形面积的计算公式。
难点:理解梯形面积公式的推导过程。
教具学具
多媒体课件。每人准备两个完全一样的`梯形。(有等腰、直角、一般梯形)
教学过程
一、导入
1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?
生:平行四边形的面积=底×高,也就是S=ah。
三角形的面积=底×高÷2,也就是S=ah÷2。
2、指名让学生说出平行四边形、三角形的面积公式的推导过程。
3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。
二、探究
1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?
生:各种梯形,每种两个。
提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。
(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?
(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?
2、学生先独立思考,后小组交流。
教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。
3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?
各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)
三、汇报
四、总结
师:学完这节课,你收获了什么呢?跟大家说说吧!
学生讨论。
老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。
梯形面积计算教学设计9
教学目标:
1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。
2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。
3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:
梯形面积计算公式的推导和运用。
教学难点:
理解梯形面积公式的推导过程。
教学过程:
一、导入新课
1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。
3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
二、新课展开
第一层次,推导公式
(1)猜想:
让学生先猜测一下梯形的面积可能和哪些量相关。
(2)操作学具
①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
学生预设:
方法一:把两个完全一样的梯形拼成一个平行四边形;
方法二:把一个梯形分成两个三角形;
方法三:把一个梯形分成一个平行四边形和一个三角形。
……
师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。
④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。
(2)观察思考
①教师提出问题引导学生观察。
a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b.每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
问:梯形的面积公式中“(上底+下底)×高”求的是什么?
为什么要除以2?
③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。
方法一:梯形的面积=上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
方法二:梯形的.面积=平行四边形面积+三角形面积
=上底×高+三角形的底×高÷2
=(2个梯形上底+三角形底)×高÷2
=(梯形上底+梯形下底)×高÷2
④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,公式应用。
(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。
三、巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
四、全课小结。(略)
板书设计:
梯形的面积计算
平行四边形的面积=底×高例3S=(a+b)h÷2
梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2
S=(a+b)h÷2=156×135÷2
=10530(平方米)
梯形面积计算教学设计10
一、教学内容分析:
1、教学主要内容:书27页
2.教材编写特点:
这一教学内容是在学生学会平行四边形、三角形面积的计算并形成一定空间观念的基础上进行教学的。教材编写时注重把学生当作教育的可开发资源进行挖掘,让他们通过操作,进一步学习用转化的方法思考,同时继续渗透割补、旋转和平移的思想,以便于学生理解梯形面积的推导公式。
3、教材编排特点
(1)从求堤坝横截面做好防洪工作准备的实际情境引入,说明数学在现实生活中的存在,使学生感受知道“梯形的面积计算”的必要性,通过模型演示,使学生了解横截面的含义。
(2)通过已学的知识,如三角形的面积、平行四边形的面积等公式,将梯形转化成已学图形,来推导出梯形的面积计算公式。
4、我的思考
《梯形的面积》这一课的教学重点是认识是面积公式的推导,已经利用梯形面积计算公式解决实际问题。
在设计这一课的教学时,我主要考虑体现以下这样几个方面:
1、紧密联系生活。让数学源于生活,归于生活。数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。
2、体现学生的主体性,让每个学生都能主动参与学习。
学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。
3、着重体现学生主动建构知识意义的过程。
本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。
二、学生分析
1.学生已有知识基础:学生已经学习了平行四边形、三角形面积的计算。
2.学生已有生活经验和学习该内容的经验:五年级学生对于面积计算并不陌生,从基础知识和基本技能方面来看,准备状况是良好的。
3.学生学习该内容可能出现的情况会很多,因为通过将新知转化为旧知进行梯形面积公式的推导,方法应该会有很多种,因此教师要给学生多一点时间思考。
4.在探索过程中利用小组合作学习方式,一定要在独立思考的基础上,另外,有可能学生在操作的过程中可以将提醒转化为已学图形,但在面积推导的过程中会出现问题,因此,有必要将推导过程中出现的问题和全班学生一起商量,探讨。
5.我的思考:学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。课中让学生通过观察、比较推理得出结论。以及如何将新知与旧知及相互之间如何转化,更是把学生推到了前台,让他们自己来推导出结果并解决实际问题。
三、学习目标
1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。
2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在拼剪中感受数学知识的内在美,体验创新的乐趣。
四、教学活动
活动内容
活动的组织与实施
设计意图
时间分配
导入新课,认识千米
出示情境:求堤坝横截面面积
师:什么是“横截面”,生可能回答有“侧面、一边”等等。
师:出示堤坝的模型,帮助学生理解“横截面”
师:横截面是什么形状的?
生:梯形。
师:要求横截面的面积,就是要求梯形的面积。
梯形的面积该如何求呢?
师:和学生一起回忆平行四边以及三角形面积计算公式是如何推倒的。并请学生示范三角形面积计算公式如何推导的。(注:重点让学生回忆起将两个完全一样的三角形拼成平行四边形来进行推导)。
师:那我们能不能将梯形也转换成已学图形来推倒出它的计算公式呢?
生:可以!
让学生发现问题,需要找到解决问题的方法。增强学生学习的主动性。
尝试推导公式
师:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式。
提纲:
(1)用两个完全一样的梯形可以拼成一个________________形。
(2)这个平行四边形的底等于____________________,高等于___________________.
(3)每个梯形的面积等于拼成的平行四边形面积的____________________.
(4)梯形的面积=____________________________.
学生通过已学知识来尝试推导新知,培养他们独立探究的能力,节时高效。
探索梯形面积计算公式的推导
师:刚利用两个完全一样的梯形拼成平行四边形推导出梯形的面积计算公式。那么现在你能不能将一个梯形转化为我们所学过的图形来推导出梯形的面积计算公式呢?下面以小组为单位,尝试着进行推导。
生小组合作探究,师巡视指导。
学生进行汇报:
1、可以把梯形转化为两个三角形,两个三角形面积的和就是梯形的面积。
2、可以把梯形先分成两个小梯形,再转话成平行四边形。转化成的平行四边形的面积的一半就是原来梯形的面积。因为平形四边形的高是原来梯形的高一半。
3、将体形分成一个平行四边形和一三角形。平行四边形和三角形面积之和就是梯形的面积。
4、可以将梯形的上底延伸到一个顶点,就变成了一大三角形,大三角形的面积减去小三角形的面积,剩下的就是梯形的面积。
……
师:在学生讲解的过程中板书他们的方法。
另外如遇到推导过程有难度的,师可以稍做讲解,帮助学生理解。
小结:梯形的面积计算公式:
梯形的面积=(上底+下底)×高÷2
师:如果用s表示梯形的面积,用a和b分别表示梯形的上底和下底,用h表示梯形的.高,那么,梯形的面积公式用字母表示可以怎么写?
生:s=(a+b)×h÷2
师:利用一分钟的时间记忆。
通过小组合作的交流与探索,发现新的方法,让学生了解到方法多样化,在探索的过程了解到数学的神奇。培养学生的合作意识,提高学生的学习兴趣。
解决问题
师:现在我们已经知道了梯形的面积计算公式,那么能不能利用它求出堤坝的横截面的面积呢?(能!)那么请你们求出堤坝横截面的面积。
集体订正
把所学知识应用到实际生活当中去拓展
应用以及练习
完成课后习题。特别是第四题,让学生各自交流自己的想法,得到最简便的方法求出圆木的根数。
教学反思:
课标的基本理念就是要让学生“人人学有价值的数学”,梯形的面积计算无外乎是上底加下底的和乘高除以2,要记住这个公式很容易,然后再花大量的时间进行各种题形的训练,学生的确可以很快算出答案,考出很高的分数,可是,对于他们实践能力和创新思维的培养却没有提供任何的时间和机会,在新的教学理念的指引下,学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。
梯形面积计算教学设计11
学习目标:
1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。
2、培养观察、推理、归纳能力,体会转化思想的价值。
3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。
学习重点:
探索并掌握梯形的面积计算方法。
学习难点:
理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。
学习准备:
剪下书后的梯形
学习过程:
一、先学探究
■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)
1、按算式画出相应的图形,说说自己是怎么想的?
算式:4×34×3÷2
2、复习梯形的有关知识:举一梯形。
说说梯形的基本特征及各部分名称。
■学情预判:学生在探索并掌握梯形的面积计算方法上可能会困惑不解,要加强引道。
二.交流共享
■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。
【板块一】学习例6:
(1)出示例6:
用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个梯形有什么特点?
测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。
(3)如何计算一个梯形的面积?
从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)
得出以下结论:
这两个的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼
成一个
这个平行四边形的底等于
这个平行四边形的高等于
因为每个梯形的'面积等于拼成的平行四边形面积的
所以梯形的面积=
(4)用字母表示梯形面积公式:
三、反馈完善
1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。
2、完成P15练一练
一个梯形的面积与整个平行四边形的面积有什么关系?
3、P5动手做
四、总结回顾:
通过今天的学习,你有什么收获?想要提醒大家注意什么?
平行四边形,学习目标,计算方法,自信心,教学