第一篇:《解方程2》人教版五年级上册数学教学反思(本站推荐)
《用小数除法解决问题》教学反思
东月学校 纪凤仙
解方程是数学领域里一个关键的知识,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。
而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。在教这单元之前,我一直困惑解方程要采用初中的“移项”解题,还是运用书本的“等式的性质”解题,亦或者用“四则运算之间的关系”,方法多了,学生该吸收哪种方法呢?运用“移项”解题,学生对于这个概念或许不会系统清晰,但是“等式性质”解题时,在碰到a-x=b和a÷x=b此类的方程,学生又该如何下手,老教材的方式改变,必有他的理由,能用吗?
于是,我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。
了解这一信息,我决定新老教材一起使用,先从教材中的运用等式基本性质教学孩子会解简单的方程,以便初中学习可以衔接,而初中的“移项”也会顺利的接收,最后面对现在五年级的思维和解题的方便性,我再教学老教材的 “四则运算关系”解方程,这样能让学生会解各种题型的方程。在我看来,这样的教学书本的知识不丢,方法又可以多种变通。
通过这块知识的整理,我感觉到教材需要教师好好的研究,才能用最合适的方式去教导学生,数学经常存在一种一题多解情况,老师就是引导学生走最好最合适的路。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人和“教师是学习的组织者、引导者与合作者的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式与“等式两边都加上或减去同一个数,等式仍然成立这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
第二篇:五年级数学解方程教学反思
五年级数学解方程教学反思
今天对五年级教材中的各种解方程题进行了教学。本课主要对方程的解法和格式进行强调。
一、本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。
二、在练习题的安排上也做了精心的安排,当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化为分数,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。
三、本课主要对解方程进行了解题练习。通过分小组比赛的形式大大提高了学生学习数学的乐趣和兴趣!
四、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。
五、学生对于方程的书写格式掌握的很好,这一点很让人欣喜。
总之,“兴趣是学生最好的老师”,只要紧紧抓住这一点,教学质量的提高指日可待!
第三篇:五年级数学《解方程》教学反思
五年级数学《解方程》教学反思
五年级数学《解方程》教学反思
方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。
五年级数学上册第四单元的教学内容是“简易方程”。为了更好地实现小学与初中知识的接轨,新教材对简易方程的解法进行了一次改革,将旧教材利用加减乘除法各部分之间关系解方程,改为让学生根据天平的原理来学习方程解法,也就是利用等式的基本性质来解方程。举个例子:
旧教材:
x+48=127
x=127-48
依据运算之间的关系:一个加数等于和减另一个加数。
新教材:
x+48=127
x+48-48=127-48
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
在实际教学中发现,同旧教材的方法相比,现行教材中的这种解法,学生更容易接受,他们不必再去记“一个加数=和-另一个加数、被减数=减数+差……”这些关系式了,只需根据等式的基本性质,想办法让方程左边只剩下X就行。学生很快就将这种解法运用自如,毫不费力。
可是,当学到用方程解决实际问题时,却出现了状况。
新教材在改革方程解法的同时,有一个相应的调整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因为利用等式的基本性质解a-x=b、a÷x=b,方程变形的过程及算理解释比较麻烦。然而,在列方程解决实际问题时,却不可避免地会出现以上两种类型的方程。如:“一本书有65页,王红看了一部分后,还剩27页。王红已经看了多少页?”学生很自然就列出65—x=27这样的方程。
如何解决这个难题?细读教参,发现编者的思路是,当需要列出形如a-x=b或a÷x=b的方程时,要求学生根据实际问题的数量关系,改列成形如x+b=a或bx=a的方程。这样的处理方法倒是可以继续回避上述的两种特殊方程,可是,新的矛盾又出现了。
我们知道,方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。这是方程方法的优越性。然而,在刻意回避a-x=b或a÷x=b这样的方程时,往往会出现和方程思想的基本理念相违背的现象。
如“6枝钢笔比4枝铅笔贵12元。钢笔每枝3元,铅笔每枝多少元?”
合理的做法应是“设铅笔每枝X元”,从顺向思考,列出方程为“6×3-4X
=12”。然而,按新教材的编排,学生无法解这样的方程,只能转列成“4X+12=6×3”。再如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷X=8,等到解方程时才发现利用天平的原理没法继续,只好改列成8X=128。
如此一来,学生怎么能充分体会方程顺向思维的优越性?
如果说用旧教材的思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,如何是好?
我只能把新旧教材两种方法进行互补,告诉学生,遇到这类方程时,一种解决的办法是按减法和除法各部分之间的关系进行解答;另一种方法就是先按等式的性质,把方程的左右边都加或乘一个x,然后把方程的左右两边交换一下位置,再按照a-x=b及a÷x=b的方法进行解答。
第四篇:五年级数学上册解方程教案
解方程
【学习内容】人教版小学数学五年级上册第五四单元67——68页例
1、例2 【课程标准描述】
能用等式的性质解简单的方程。【学习目标】
1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】
通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】
1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。
2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】
一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。
引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)
(课件出示例1)根据图中信息,列出方程。
2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?
全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。
预设三:把9分成6和3,想x+3=6+3,所以x=6。
预设四:在方程两边同时减去3,就得到x=6。
思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。
引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?
一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。
思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。
学生尝试用算式表示刚才的操作过程。
教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。
4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?
学生交流后汇报,教师根据学生的回答板书检验过程。
二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)
(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。
小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。
三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。
一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:
解这个方程的依据是什么? 两边为什么要同时除以3?
(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。
四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。
2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。
五、回顾总结
今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;
2..等式的性质求方程的解; 3.检验。
注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。
第五篇:小学五年级数学上册《解方程》教学设计
《解方程 》教学设计
教学内容:《义务教育课程标准实验教科书
数学》五年级上册第58、59页例
1、例2。教材分析:
本节课是学生在掌握了等式的性质及方程的意义的基础上正式学习解方程的初始课。主要讨论x+a=b,ax=b,x÷a=b的方程的解法。这部分知识的学习是学生进一步学习稍复杂的方程和应用方程解决实际问题的重要基础,是本单元的重点内容之一,与原有教材不相同的是,新课标实验教材以等式的基础性质为基础,而不是依据逆运算关系教学解方程,这有利于加强中小学数学教学的衔接。对于本课中较简单的方程,教材要求,直接利用等式的性质,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个数(0除外)就能求出方程的解。教学目标:
1、2、能根据等式的性质解较简单的方程。
通过探究较简单的方程的解法,培养利用已有知识解决问题的意识和能力。
3、培养规范书写和自觉检查的习惯。
教学准备:多媒体课件 教学过程;
一、游戏导入,回顾旧知 师:今天我还给大家带来一位老朋友,(出示天平图)
师:我在天平的两边同时放两瓶同样重的墨水,天平的两边怎么样?
生:天平的两边保持平衡。
师:接下来“我说你答”你和我一起合作,让我们图上的天平保持平衡,可以吗? 生:可以
师:我在天平的右边加3瓶墨水。生:天平的左边也加3瓶墨水。师:我从天平的左边拿走一瓶墨水。生:天平的右边也拿走一瓶墨水。说的真好,换一幅图不知道行不行,“我将天平左边排球的数量扩大到原来的3倍,变成6个排球。” “我将天平左边排球的数量缩小到原来的一半,变成3个排球。” 师:同学们真了不起,有这么多让天平保持平衡的方法这个游戏让我们想起些什么?(天平的两边同时加上或减去,相同的物品,天平的两边保持平衡。天平的两边同时扩大或缩小相同的倍数,天平保持平衡。)
师:这个游戏让我们再次复习了天平保持平衡的道理,今天我们将利用这个道理来解决一些实际的问题,大家有信心吗?
(设计意图:利用我问你答的游戏形式复习和巩固前两节学习的天平平衡道理,再结合连环画式的幻灯片,不仅能加深学生的记忆,还能激发学生的学习兴趣,使学生能以一种积极的状态参与到数学活动中来。)
二、提出问题,探究新知 ㈠(课件出示例1的主题图)
1、提出问题
师:请看大屏幕,请你说出图上的意思。(盒子里有x个球,盒子外有3个球,合起来一共是9个球。)师:能不能用我们新学的方程解决这个问题
学生列出方程:X+3=9(引导学生根据加法的意义列出方程。)师:大家和他的想法一样吗(板书:X+3=9)那么X是多少?(异口同声说6)
师:当然我知道这么简单的问题是难不住大家的,但是从今天开始我们将学习利用解方程的方法来解决这个问题,(板书:解方程)齐读解方程,(设计思路:在这里学生能列出这个方程其实也是一个难点,因为学生一直是按以前算术方法的解题思路去分析,不假思索就会说出9-3=6,因此我在这里强调用加法的意义列出方程。为后面学习用方程解决问题做准备。另外强调解方程这种思考方法到中学解更加复杂的方程一直有用,可以提高学生学习掌握新的思考方法的积极性。)
2、结合天平探究解法 A、结合天平,理解方程 师:怎样解方程呢?还是请天平来帮忙。(出示天平图1)师:你能理解吗?说说他的意思,师生结合图一起说:天平的左边是X+3,天平的右边是9,左右两边正好平衡,说明两边相等。方程的左边是X+3,方程的右边是9,左右两边正好相等。齐读这个方程X+3=9 B、明确目的,寻找方法
师:接下来我们就来解这个方程,哎,我不禁要问我们解方程的目的是什么?(学生回答:解方程的目的就是要算出X=?)师:对,我们解方程的目的就是要算出X等于几.师:请你结合天平图思考,怎样才能使天平的左边只剩下X,而且还要保持天平平衡?(同座位的同学可以相互讨论)
组织交流(指名学生说,再说一次,齐说一次)
天平的两边同时去掉3个皮球,天平的两边平衡,为什么要同时去掉3个,同时去掉两个行吗?
(课件演示)进一步明确:只有天平的两边同时去掉3个皮球,左边才能只剩下X。右边剩下6个皮球,说明X代表6个皮球。师:天平的两边同时去掉3个皮球,天平的两边保持平衡,那么这句话表现在里该怎么说?
出示:方程的两边同时减去3,左右两边相等。
把这个过程记录下来就是:出示:方程的左边-3=方程的右边-3 师:方程的左边原来是X+3再减去3,方程的右边原来是9也减去3(板书:X+3-3
9-3)这个时候天平仍然平衡,说明方程的左右两边相等,(板书:=)方程的左边是X+3再减去一个3,就只剩下X,(板书:X)方程的右边是9再减去3就是6。(板书:6)这个时候天平仍然保持平衡,所以X=6(板书:=)在这里需要强调一点,解方程时每一步得到的都是一个等式,不能连等。另外还要注意等号对齐。
师:画个方框,这个过程就是解方程的过程,所以在过程前面要写上(板书:解:)
师:一起回顾解方程的过程,第一步:先写方程。第二布:写上解:
第三步:为了使方程的左边只剩下X两边同时减去一个相同的数。第四步:求出X=?
看着解方程的过程自己心里琢磨琢磨。
师:刚才我们求出X+3=9这个方程的的解是X=6这个答案正确吗?我们一起来验算一下
指名学生回答,(课件出示):方程的左边= X+3
=6+3
=9
=方程的右边
所以X=6是方程的解
4、巩固练习同学们会解方程了吗?现在我有一个问题需要你来帮忙,在课前我了解到我们班共有学生----人,其中男生----人,求女生有多少人?(学生自己试着列式)
师:同学们真了不起,想出这么多种方程,但我们今天,只解决这个方程,X+----=------展示,集体交流
(设计意图:从一开始就强化必要的书写规范,以发挥首次感知先入为主的强势效应,有利于促进良好的书写习惯的形成。)㈡、出示例2 师:这个方程都解对了吗?你们真聪明,一下子就学会了,不过接下来的挑战会更艰巨,大家有信心吗?(出示例2的主题图)师:你能用一个方程来表示吗?(3X=18)
师:那么你会解这个方程吗?请大家打开课本59页自己独立思考完成例2的填空
讨论交流:
①、谁能说一说,你是怎样让方程的左边只剩下一个X的.。师:解方程的目的就是要求出X=?天平的左边有3个X,要想求出一个X,我们可以把3个X平均分成3分,每份就是一个X,那么天平的右边该怎么做?
师:把18个皮球也平均分成3分,每份就是一个X所对应的。把这一过程表示在方程里就是方程的两边同时除以3,(课件演示)得出X=6它是不是方程解,请大家自己验算,和同桌的同学说一说,师:用一句话概括自己的做法,在方程的两边同时除以一个不等于0的数,左右两边仍然相等。
(设计意图:在学习例1的基础上,放手自己思考3X=18的解法,充分体现了学生的主体性,也有利于把教学的重点由天平保持平衡的变换规律,类推出方程保持相等的变换方法上来,采用先“试”后“教”,先做后说的方法,便于发挥学生的主动性。)练习: 20+ x = 47 解
20+x○□=47○□
x =□
㈢、归纳总结,加深记忆
提问:你学会解方程了吗?和同学讨论一下,解方程需要注意什么? 总结:
1、方程两边同时减去同一个数,或两边同时除以一个不等于0的数,方程左右两边仍然相等。
2、注意解方程的格式。
3、记得验算。
三、强化认知,巩固提高
1、基本练习
2、强化练习
四、谈谈这节课的收获,还有什么问题?
5 x = 60
解
5x ○ □=60 ○ □
x =□如果方程两边同时加上或乘一个数,左右两边还相等吗? 这个问题且听下回分解。
《解方程》的设计思路
寿阳县东关小学
冯志平
今天我讲课的内容是五年级上册第58页,和第59页的例1和例2这节课是学生在掌握了等式的性质及方程的意义的基础上正式学习解方程的初始课。这部分知识的学习是学生进一步学习稍复杂的方程和应用方程解决实际问题的重要基础,是本单元的重点内容之一,与原有教材不相同的是,新课标实验教材以等式的基础性质为基础,而不是依据逆运算关系教学解方程,这有利于加强中小学数学教学的衔接。对于本课中较简单的方程,教材要求,直接利用等式的性质,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个数(0除外)就能求出方程的解。根据以上特点,我将本节课的教学目标确定为:
1、2、能根据等式的性质解较简单的方程。
通过探究较简单的方程的解法,培养利用已有知识解决问题的意识和能力。
3、培养规范书写和自觉检查的习惯。
而让学生能够根据等式的性质来解方程既是本节课的重点,也是本节课的难点,为突破这个难点我设计了以下的教学环节,首先我设计了一个游戏,利用我问你答的游戏形式复习和巩固前两节学习的天平平衡道理,再结合连环画式的幻灯片,不仅能加深学生的记忆,还能激发学生的学习兴趣,使学生能以一种积极的状态参与到数学活动中来。第二部分,提出问题探究新知,先出示例1的主题图,让学生根据图列出方程,在这里有一点需要强调,学生一直是按以前算术方法的解题思路去分析,不假思索就会说出9-3=6,因此我在这里强调用加法的意义列出方程。为后面学习用方程解决问题做准备。
本课的难点是根据是根据天平平衡的原理来解方程,这部分内容我分两步来完成,①、结合天平理解方程,理解清方程的左边和方程的右边,把方程和以前的算式从根本上区别开来。②明确目的、寻找方法。先让学生明确解方程的目的就是要算出未知数是几。再让学生思考怎样让方程的左边只剩下X,学生通过反复的说可以理解,只有天平的两边同时去掉3个皮球,才能只剩下X.。然后我又出示“方程的左边-3=方程的右边-3”这样的一个等式,这其实等于是给了学生一根拐杖,使学生真正明白是在谁的基础上减去3。对于学生来说,怎样根据天平平衡原理来解方程就不难理解了。在教学例2,两边同时除以一个数时,在学习例1的基础上,放手自己思考3X=18的解法,充分体现了学生的主体性,也有利于把教学的重点由天平保持平衡的变换规律,类推出方程保持相等的变换方法上来,采用先“试”后“教”,先做后说的方法,便于发挥学生的主动性。另外我还在课件上想办法,让天平的两边真正体现两边同时除以3,天平保持平衡,明确显示出,一个X就代表6个球。
③、规范书写,指导验算。从一开始就强化必要的书写规范,以发挥首次感知先入为主的强势效应,有利于促进良好的书写习惯的形成。