第一篇:五年级数学上册 解方程教案 沪教版
解方程
教学目标:
1.在会解简单的两步方程的基础上,初步学会解三步的方程。2.掌握解三步方程的顺序和方法。
3.培养学生的分析、推理能力和思维的灵活性,提高解方程的能力。
4.渗透事物之间相互联系又相互转化的观点。培养学生认真计算,自觉检验的好习惯。教学重点及难点:
教学重点是解含有三步运算的方程的算理和算法;教学难点是如何对方程进行变形求解。教学设计:
一、激发兴趣 引出课题
1.下面括号中的x的值,哪个是方程的解?
3X+6=12(X=2,X=6)3.5-2X=2.1(X=2.8,X=0.7)0.7(X-2)=5.6(X=8,X=10)(X+0.4)÷2.5=1(X=2,X=2.1)2.解方程,并写出检验方程。10-1.4X=7.2(X-3)÷1.3=0.2 3.教师:今天我们继续学习简易方程。板书课题:解简易方程
二、探究新知
1.(出示例题):(23+X+18)÷2=30 1)分析:
师:请学生尝试解方程。然后进行交流核对。师:解这个方程,应该先算哪一步?
生:先求23+18的和等于多少,使方程变成41X÷2=30.师引导小结:这样的方程,能计算的先计算出来,再想含有未知数的一项是一个什么数,用学过的解方程的知识来求方程的解。
2.(出示例题)7X+9-3X=17.8 师:学生尝试在小组内说说解方程的步骤。
用心
爱心
专心 1 师:解这样的方程关键是什么?
生:能化简的部分先化简,把三步方程转化成两步方程,然后再用学过的方法进行求解。3.试一试:
(26+X-18)÷3=10 8X-4X+1=25 学生独立完成后,小组内集体核对,讲清解题算理。
引导学生小结:解这一类方程,要能化简的部分先化简,把三步方程转化成两步方程,再根据四则混合运算的顺序,把含有的X的项看成一个数,根据四则运算各部分之间的关系一步步求出解。
4.(出示例题)X+6=3X 1)师:思考:这个方程与前面的方程有什么不同?
生:方程的左右两边都有X。师:碰到这种情况怎么解决?
学生小组内讨论解决方法。
2)交流解方程的方法:
如果未知数出现在方程的两边,还是运用四则运算的关系进行化简,然后求出方程的解。试一试:解方程并检验。
9X-36=5X
三、巩固运用
1.直接写出得数。
9X+5X= B-0.4B= a+4a= 5x+4x-3x= 2.解方程并检验。
(7+2.3-X)÷2=3.1 9X+19+7X=51 3+2X=5X
四、全课总结:
今天学习的解方程与以前学的有什么不同? 怎样解决这样的问题?
用心
爱心
专心 2
第二篇:五年级数学上册解方程教案
解方程
【学习内容】人教版小学数学五年级上册第五四单元67——68页例
1、例2 【课程标准描述】
能用等式的性质解简单的方程。【学习目标】
1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】
通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】
1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。
2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】
一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。
引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)
(课件出示例1)根据图中信息,列出方程。
2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?
全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。
预设三:把9分成6和3,想x+3=6+3,所以x=6。
预设四:在方程两边同时减去3,就得到x=6。
思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。
引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?
一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。
思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。
学生尝试用算式表示刚才的操作过程。
教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。
4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?
学生交流后汇报,教师根据学生的回答板书检验过程。
二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)
(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。
小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。
三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。
一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:
解这个方程的依据是什么? 两边为什么要同时除以3?
(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。
四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。
2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。
五、回顾总结
今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;
2..等式的性质求方程的解; 3.检验。
注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。
第三篇:五年级数学解方程教案
五年级数学《解方程》教学教案
十东小学
授课教师:徐国
栋
(一)教学内容
教材第57页内容。
(二)教学目标 知识与技能
⑴初步理解方程的解与解方程的含义。⑵会检验一个具体的值是不是方程的解。过程与方法
经历方程的解和解方程的认识过程,提高学生比较、分析的能力。情感态度与价值观
在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验学习习惯。
(三)教学重点与难点
重点:“方程的解”和“解方程”的含义。突破方法:通过比较理解二者的区别。难点:会检验方程的解。
突破方法:小组讨论,练习体验。
(四)教法与学法
教法:设置设置问题,引导学生。
学法:观察理解,讨论交流,练习体验。
(五)教学过程
一、复习引入
⑴在上节课的学习活动中,我们探究了哪些规律。
在小组中组织相互交流,说一说:①什么是方程,②如何判断方程,③方程的性质是什么?
⑵学生回顾天平平衡的规律,结合天平的平衡规律对我们学习方程有什么作用?这节课我们开始学习如何解方程。
上一节课我加了一些水在天平里,添加了砝码,让天平平衡,同时得到方程100+X=250,但到现在我们都还不知道那些水的质量到底是多少?那我们今天就来解决这个问题,看看水到底是重。这就是我们今天将要学习的——解方程。
[板书课题:解方程。]
二、研究新知
⑴投影出示昨天所做的课题教材P57天平称一标水的画面。学生回忆昨天教学时的情景画面,交流。
师根据学生汇报板书:方程100+X=250。⑵教师:你知道方程100+X=250中的未知数X等于多少吗?你是怎么知道的?
组织学生讨论,交流,然后汇报。可能出现以下几种方法:
*根据数感经验得到X=150 *利用算式100+150=250,得到X=150。
*利用一个加数=和—另一个加数,得到X=150。
*利用天平平衡规律,两边同时减少100,得到X=150。
„„
师:同学们非常聪明,想到了这么多的方法求出了X=150,(同时,也可能没有学生能说出来,教师相机点拨,引出解方程所要运用的规律。)
⑶引导学生检验方程的解的方法,根据学生回答板书:
当X=150时,方程左边=100+150
=250
=方程右边
⑷认识、区别方程的解和解方程。教师:使方程左右两边相等的未知数的值,叫做方程的解。刚才,X=150就是方程的解100+X=250的解。而求方程的解的过程叫做解方程。刚才同学们想出办法求出X=150的过程就是解方程。
教师边讲解边板书:使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程就叫解方程。
②方程的解与解方程有什么不同呢?组织学生议一议,使学生明确:
方程的解是一个数值,而解方程是求方程解的过程。刚才我们把X=150代入方程中,得到方程左边=右边,说明X=150是方程100+X=250的解。(板书:所以,X=150是方程的解)
三、巩固练习
⑴教材P57页“做一做”。
教师:怎样判断X=3是不是方程的解呢?X=2呢?
组织学生将X=3代入方程中进行检验。教师指名一名学生板演。⑵教材P63练习十一第4题。
组织学生先独立完成,再在小组中相互交流。
四、课堂小结
教师:通过这节学习,你有什么收获?
什么叫方程的解,什么叫解方程。学会了检验一个未知数的值是不是方程的解。学生畅谈。
板书设计 100+X=250 X=150 当X=150时,使方程左右两边相等的未知数。
方程左边=100+150的值,叫做方程的解 =250 =方程右边 求方程的解的过程叫做解方程。所以,X=150是方程的解。课时作业: 一判断。
⑴含有未知数的式子叫方程。()⑵X=36是方程X3=12的解。()
二、X=15是方程42-X=28的解吗?X=14呢?
三、X=12是下列哪些方程的解?把这些方程标出来。
X+18=30 4X=50 X÷3=5 72÷X=6 64-X=5 2X-9=5
第四篇:人教小学数学五年级上册解方程试讲稿
解方程试讲稿
一、教材:人教版小学五年级上册解方程
二、试讲稿
导入:
师:上课,同学们好,请坐
师:大家看一下我手里的盒子,猜一猜里面有几个小球。学生踊跃发言。
师:大家说什么的都有,那我们现在就借助天平来测量一下吧。师:同学们现在看一下讲桌上的这个天平,大家可以得到什么信息呢? 生(众):两边平衡了,右边有9个小球,左边是盒子和3个小球 师:很好,我们已经学习了方程,大家可以就此列一个等式吗? 生:x+3=9 师:非常棒,那x是多少呢?带着这个问题,我们今天来学习解方程。(板书—解方程)新授
师:x是多少呢?大家四人小组讨论一下
师:我见大家讨论的差不多了,来靠窗的那组同学来回答一下 学生:x=6 师:说一下理由
学生:6+3=9,所以x肯定是6.师:非常好,请坐,其实我们还可以用等式的性质来解决这个问题。大家再回忆一下等式的性质
学生(众):等式的两边同时加上或减去同一个数,等式左右仍然相等。
师:好,大家上节课学的都很扎实。现在看讲台上的天平,我把左边去掉三个球,根据等式的性质,那右边应该去掉几个 学生:3个
师:大家试着将刚才的过程用式子写出来。我们请两个学生在黑板上写。X+3-3=9-3 师:大家和这个同学写的一样吗?很好,大家完成的都非常好,师:大家现在观察天平,可以发现了什么? 生:盒子里有6个球
师:对,盒子里有6个球,也就是x等于(教师停顿,学生回答)6,大家把它写在本上。师:通过这样的过程,我们就求出了x=3。老师,现在有个问题,刚才我们两边同时减去了3,减去3有什么好,大家思考一下,来穿白色上衣的那位同学回答一下
生:根据等式的性质,可以知道减去3和减去2等式都成立,但是减去3后,就可以直接得到x的值了。
师:请坐,回答的非常好,我们要记得我们的目的是要求未知数x的值。师:我们把x=3叫做这个方程的解,而刚才求方程的解x=3的过程叫做解方程。师:大家看一下课本上对方程的解和解方程的概念,好,现在来一块说一下 生:使方程两边相等的未知数的值叫做方程的解
求方程解的过程叫做解方程。
师:结合刚才我们学的题目,同桌之间讨论一下方程的解和解方程 师:好,现在我们一块来答一下。非常好,方程的解为x=3 师:那解方程呢,嗯嗯,非常好,整个求解的过程的就叫做解方程
师:那老师有一个问题方程的解和解方程都有一个解字,他们之间有什么区别呢,同桌讨论一下
师:好,你来回答一下
生:方程的解,是一个值,解方程的解代表的是一个过程。师:回答的很利索,很好,请坐。
师:那大家观察一下大屏幕上这3个解方程的过程,看一下他们的格式有什么共同点 生:所有的等号都对齐了。
师:大家观察的很细致,这也是我们书写时需要注意的。
师:按x=3是不是这个方程的解呢?这个需要大家检验一下,同桌之间讨论一下,如何检验呢
学生:可以把x=3带入,看看等号左边和右边是否相等。师:很好,思路很清晰,大家是这检验一下,这个解正确吗? 生:正确
师:好,同学们看一下大屏幕上的书写过程,看看和你的一样吗?非常好,接下来,我们做一下做一做的三道题,老师请3个同学来黑板上做,好,就靠墙的这三位同学吧,其它的同学在下面做。巩固练习
师:大家和它们做的一样吗?来,你来说 生:第二个同学没有检验 小结
师:对,我们得到方程的解后要检验一下,我们这节课就快接近尾声了,那大家说一下这节课你们有哪些收获呢?
师:嗯,学会了解方程,对,解方程就是求未知数x的值,还有吗?嗯,需要检验......。作业
师:同学们下去以后给自己写一个方程,并求出这个方程的解,下节课咱们讨论,好,同学们下课。
第五篇:人教版五年级上册数学解方程复习题
用方程解应用题——第一组 【1】2004年雅典奥运会中国共获奖牌32枚,比1998年汉城奥运会奖牌的7倍少3枚,汉城奥运会中国获奖牌多少枚?
【2】六年级同学参加科技小组的有25人,比五年级参加人数的2倍还多7人,五年级参加科技小组的有多少人?
【3】2007年亚洲人口约32亿,比欧洲人口总数的5倍还多4亿。欧洲人口大约有多少亿人? 【4】图书馆有故事书120本,如果再购买14本故事书正好是科技书的2倍,图书馆有科技书多少本? 【5】4个乒乓球和2只乒乓球拍,千米,某人骑自行车每小时行12.5千米。这列火车的速度是自行车的多少倍? 第四组:
【1】一批煤计划每天烧0.4吨,21天刚好烧完。实际每天烧0.3吨,可以烧几天?
【2】有126米布,原计划做45件成人上衣,现在用这批布做儿童上衣,每件儿童上衣比成人上衣少用0.7米。可以做儿童上衣多少件?
【3】服装店选用一种画布做上衣,做一件上衣需要用布1.15米。服装店购进这种花布130米,最多可以做多少件上衣?
【4】建筑工地要运200吨黄沙,五年级上册解方程
(A)4x-12=48 5x+4=24 6x-14=16 3x+2=14 5x-40=20 3x-6=0
10x+350=650 160x+20=260 1.2x-1.7=0.7 5x+16=20.5 3x+12=75 3x+15=60 5(x+1.5)=17.5(x-3)÷2=7.5 13(x+5)=169 3(x+2.1)=10.5 4(x-3)=9.6
3×(x+2.8)=17.4(x-2.4)÷8=1.25 0.5×(x+0.8)=0.8 5(x+1.6)=9
(D)(x-3.1)÷6=1.2 10×(15-x)=12(x+1.7)÷3=1.4(x+37)×7=300+860 花了49元。每只乒乓球拍18.5元,每个乒乓球多少元? 【6】父亲的年龄是小聪年龄的9倍,母亲的年龄是小聪年龄的7.5倍,父亲比母亲大6岁,小聪今年几岁? 第二组:
【1】奥运会用的篮球场是一个长28米,宽未知的长方形。它的周长是86米,求篮球场的宽。【2】河里有鹅若干只,鸭的只数是鹅的4倍,又知鸭比鹅多27只。鹅与鸭各有多少只?
【3】有一块长方形地,长是宽的3倍,周长是120米,这个长方形的长和宽分别是多少米? 【4】大小两只船合运一批货物,大船装载的货物是小船装载的1.8倍,小船比大船少运40吨,两只船各运货物多少吨?
【5】育红小学五、六年级共有学生288人,五年级学生的人数是六年级的1.4倍,五、六年级各有学生多少人?
【6】用一根长54厘米的铁丝围成一个长方形,要使长是宽的2倍,围成的长方形的长和宽各是多少?面积是多少? 第三组:
【1】有两袋大米,甲袋大米的质量是乙袋大米的1.2倍,如果再往乙袋里装5千克大米,两袋大米就一样重了。原来两袋大米各有多少千克?
【2】现有数量相同的鸡兔共居一笼,已知鸡腿和兔腿共有90条,问鸡和兔各有多少只? 【3】鸡和兔子一共有7个头,一共有20条腿。问:鸡、兔各有多少只?
【4】52人外出郊游,一共用了7辆车,每辆面包坐12人,每辆夏利车坐4人,全部坐满。问:面包车与夏利车各几辆?
【5】小红的储蓄罐里5角和1元的硬币共20枚,要把它全部捐给汶川地震灾区,她数了数共12.5元。你能帮她算算,5角的硬币和1元的硬币各多少枚吗? 【6】一列火车4.5小时行驶495
一辆汽车每次运8吨,运了20次,还剩多少吨?
【5】小明和爸爸、妈妈一起去逛公园,成人票每张5.5元,儿童票每张2.5元,他们买门票一共需要多少钱? 第五组: 【1】一艘船每小时行11.5千米,28小时达到目的地。如果每小时多行2.5千米,需要多少小时到达目的地?
【2】A、B两地相距400球迷,甲、乙两辆汽车分别从A、B两地相对而行。甲汽车每小时行38千米,乙汽车每小时行42千米,几小时后两车相距40千米? 【3】一扇窗户的玻璃长是1.3米,宽是1.1米。那么做12扇这样的窗户至少需要多少平方米的玻璃?(得数保留整数)【4】《中华人民共和国国旗法》规定,国旗的长是宽的1.5倍。有一面国旗长1.44米,这面国旗的面积是多少平方米?
【5】甲乙两袋大米共重24.6千克,如果从甲袋中取出3.5千克放入乙袋,这时两袋大米同样重,原来两袋大米各重多少千克? 第六组:【1】一个三角形的花圃,底是25米,高是22米。如果平均每平方米可产鲜花50枝,这块花圃共可产鲜花多少枝? 【2】一张梯形的纸片,下底是24㎝,上底是18㎝,高是14㎝。把它剪成一张尽可能大三角形纸片,余下的总面积是多少? 【3】有一块三角形麦地底58米,高72米,如果每公顷可收小麦4500千克,这块地共收小麦多少千克?
【4】有一块梯形的菜地,上底长4.5米,下底长7.5米,高10米,平均每平方米能收6棵白菜,这块地共可以收多少棵白菜? 【5】一个等腰梯形的周长是30厘米,每条腰和高分别是5厘米和3.6厘米,求这个梯形的面积是多少?
3x-20=70 3x+105=450 6x-8.3=1.9 5x-80=400 2x+17.5=36.9 2x×6=1296 5x+4=39 8x+8=280
(B)24-6x=1.8 19-2x=7
8.15+2x=21.35 10+1.5x=25 25.6-2x=1.3 5.5-4x=3.5 8x+2×5=42 3x-2×7=22 5x-4×9=25 7x-4.5×7=43.4 7x+5×8=320 4×1.5+2.5x=11 10x+23×4=227 0.4x-4×51=60.4 X+14.3=50×2 5x-0.4×16=29.6 2.5x+34=49
12×0.7+4x=28.4 4×2.5-2x=3.6 5x-5÷2.5=3.8
(C)13.5×4+3x=126 6x+3.1×6=64.2 4x-4×0.73=25.08 5x-4×5=30 6×8+3x=186 4x+2×0.8=21.6 5×1.3-2x=5.5 3.18×2-2x=4.26 X÷7.2+3.8=15 2(x-2.6)=8 8(x-6.2)=41.6
(3+5)x=960 6(x+0.8)=10.8 7(x+4.5)=42(x-1.2)×6=0 9(x-0.1)=2.7 5.2(x+8)=33.8 2(x+3)=18 x-0.36x=160 x-0.05x=20.9 x+4x=32.5
7.8x-2.4x=1.08 3x+x=200
3.5x-1.5x=0.6 4x+1.2x=7.8 X-0.48x=0.78 6x+2.5x=2.55
(E)3x+2x+13.2=97.6 x+3x=16
7x-5.5x=10.5 14x-8.4x=40.32 x-0.2x=16 3.5x+5x=168 3x-x=19 2x+x=51
7.8x-x=14.28 x-0.32x=13.6 7.8x+7.2x=45 0.82x+0.28x=3.52 x+3x=9.6 1.5x+x=95 4x-x=27 24x+6x=63.6 3x-3.6=7.89 5.5x-1.3x=12.6
姓名