第一篇:五年级数学解方程教案2
解方程,就是要想办法,使方程左边只剩“χ”。
师:解方程的第二步,方程两边同时进行计算,得出χ的值。左边χ+3-3,等于什么? 生:等于χ。
师:(板书:χ)右边9-3呢? 生:等于6。
师:(板书:=6)天平在变化的过程中,始终保持平衡,说明解方程时,得到的每一步都是等式,要求大家把所有的等号对整齐。为了把等号对整齐,一般要把“解”写到前面一点。
师:χ=6是不是这个方程的解?验算一下就知道了!把χ=6代入方程中,看方程的两边是否相等。我们一起来写验算过程。
师:先看方程左边,(板书:方程左边=χ+3)把χ=6代入方程中,χ+3就变成了几加3? 生:6+3 师:(板书:=6+3)6+3等于9。(板书:=9)方程左边等于9。再看看方程右边等于几? 生:等于9。
师:也是等于9。方程左边等于9,方程右边也等于9,说明了什么? 生:方程左边等于方程右边,χ=6是这个方程的解。
师:(板书:=方程右边)最后,下结论:所以,χ=6是方程的解。(板书:所以,χ=6是方程的解。)师:验算的过程就写完了。现在,请同学们把课本打开,翻到58页,请小组的同学一边对照书中解方程的过程,一边讨论:解方程需要注意什么?(小组讨论)师:现在,请同学们说一说:解方程需要注意什么? 生:„„
师:还有没有要补充的? 生:„„
师:把刚才几位同学说的,合起来就很完整了。会解方程了吗? 生:会了。
师:那就试一试!(解方程χ+7=10)师:哪位同学愿意到黑板上来做?请你来吧!(学生做题)
师:都做完了吗?一起来看看这位同学做的!你们觉得他做得好不好? 生:他全部都做对了。
生:我觉得有一点不好,他把等号没有对整齐!„„ 师:刚才这位同学给你提的意见能接受吗? 生:能!
师:有错就改就是好孩子!解方程不仅要注意方法,还要注意书写格式。做完后还要养成验算的好习惯。师:老师还有一个问题想请教一下:为什么要在方程的两边同时减去7?
生:左边减去7是为了是方程左边只剩χ,右边减去7是为了使方程两边仍然相等!师:说得很好!这道题你们都解对了吗? 生:解对了!
师:你们真聪明!一下子都学会了!老师还想考考大家,出一个和它们不一样的方程:χ-3=9 你们会做吗? 生:会!
师:这题也会呀!那好,试试看吧!请同学们先独立完成,然后在小组内进行交流。(点一名学生板演)师:一起来看看黑板上的作业!他做得怎样? 生:做得很好,„„
师:谁来说说:为什么要在方程的两边同时加上3? 生:是为了使方程左边只剩χ而有保持两边仍然相等!师:你们同意他的说法吗? 生:同意!
师:看来,你们已经掌握解方程的方法了!
三、拓展应用
师:解方程还能帮助我们解决很多生活中的问题呢!请看大屏幕:(课件出示)能解决吗? 师:能!
师:开始吧!(注意:可以不写出演算的过程,但是要进行口头验算。)学生做题后汇报交流!
四、课堂小结
师:同学们真不了不起,不但学会了解方程,还学会了用解方程的方法解决问题!今天的课就上到这里,下课!
第二篇:五年级数学解方程教案
五年级数学《解方程》教学教案
十东小学
授课教师:徐国
栋
(一)教学内容
教材第57页内容。
(二)教学目标 知识与技能
⑴初步理解方程的解与解方程的含义。⑵会检验一个具体的值是不是方程的解。过程与方法
经历方程的解和解方程的认识过程,提高学生比较、分析的能力。情感态度与价值观
在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验学习习惯。
(三)教学重点与难点
重点:“方程的解”和“解方程”的含义。突破方法:通过比较理解二者的区别。难点:会检验方程的解。
突破方法:小组讨论,练习体验。
(四)教法与学法
教法:设置设置问题,引导学生。
学法:观察理解,讨论交流,练习体验。
(五)教学过程
一、复习引入
⑴在上节课的学习活动中,我们探究了哪些规律。
在小组中组织相互交流,说一说:①什么是方程,②如何判断方程,③方程的性质是什么?
⑵学生回顾天平平衡的规律,结合天平的平衡规律对我们学习方程有什么作用?这节课我们开始学习如何解方程。
上一节课我加了一些水在天平里,添加了砝码,让天平平衡,同时得到方程100+X=250,但到现在我们都还不知道那些水的质量到底是多少?那我们今天就来解决这个问题,看看水到底是重。这就是我们今天将要学习的——解方程。
[板书课题:解方程。]
二、研究新知
⑴投影出示昨天所做的课题教材P57天平称一标水的画面。学生回忆昨天教学时的情景画面,交流。
师根据学生汇报板书:方程100+X=250。⑵教师:你知道方程100+X=250中的未知数X等于多少吗?你是怎么知道的?
组织学生讨论,交流,然后汇报。可能出现以下几种方法:
*根据数感经验得到X=150 *利用算式100+150=250,得到X=150。
*利用一个加数=和—另一个加数,得到X=150。
*利用天平平衡规律,两边同时减少100,得到X=150。
„„
师:同学们非常聪明,想到了这么多的方法求出了X=150,(同时,也可能没有学生能说出来,教师相机点拨,引出解方程所要运用的规律。)
⑶引导学生检验方程的解的方法,根据学生回答板书:
当X=150时,方程左边=100+150
=250
=方程右边
⑷认识、区别方程的解和解方程。教师:使方程左右两边相等的未知数的值,叫做方程的解。刚才,X=150就是方程的解100+X=250的解。而求方程的解的过程叫做解方程。刚才同学们想出办法求出X=150的过程就是解方程。
教师边讲解边板书:使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程就叫解方程。
②方程的解与解方程有什么不同呢?组织学生议一议,使学生明确:
方程的解是一个数值,而解方程是求方程解的过程。刚才我们把X=150代入方程中,得到方程左边=右边,说明X=150是方程100+X=250的解。(板书:所以,X=150是方程的解)
三、巩固练习
⑴教材P57页“做一做”。
教师:怎样判断X=3是不是方程的解呢?X=2呢?
组织学生将X=3代入方程中进行检验。教师指名一名学生板演。⑵教材P63练习十一第4题。
组织学生先独立完成,再在小组中相互交流。
四、课堂小结
教师:通过这节学习,你有什么收获?
什么叫方程的解,什么叫解方程。学会了检验一个未知数的值是不是方程的解。学生畅谈。
板书设计 100+X=250 X=150 当X=150时,使方程左右两边相等的未知数。
方程左边=100+150的值,叫做方程的解 =250 =方程右边 求方程的解的过程叫做解方程。所以,X=150是方程的解。课时作业: 一判断。
⑴含有未知数的式子叫方程。()⑵X=36是方程X3=12的解。()
二、X=15是方程42-X=28的解吗?X=14呢?
三、X=12是下列哪些方程的解?把这些方程标出来。
X+18=30 4X=50 X÷3=5 72÷X=6 64-X=5 2X-9=5
第三篇:五年级数学上册解方程教案
解方程
【学习内容】人教版小学数学五年级上册第五四单元67——68页例
1、例2 【课程标准描述】
能用等式的性质解简单的方程。【学习目标】
1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】
通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】
1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。
2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】
一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。
引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)
(课件出示例1)根据图中信息,列出方程。
2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?
全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。
预设三:把9分成6和3,想x+3=6+3,所以x=6。
预设四:在方程两边同时减去3,就得到x=6。
思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。
引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?
一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。
思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。
学生尝试用算式表示刚才的操作过程。
教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。
4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?
学生交流后汇报,教师根据学生的回答板书检验过程。
二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)
(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。
小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。
三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。
一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:
解这个方程的依据是什么? 两边为什么要同时除以3?
(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。
四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。
2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。
五、回顾总结
今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;
2..等式的性质求方程的解; 3.检验。
注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。
第四篇:解方程--教案2
解方程
教学目标:
1.利用等式的基本性质,学会解形如ax=b及x÷a=b方程的解,初步学会a-x=b及a÷x=b方程的解(先不讲,以后讲)。
2.初步学会如何利用方程来解决实际问题,进一步提高分析数量关系的能力。
3.培养学生认真书写、仔细检验的良好习惯。
教学重点:
会解形如ax=b或x÷a=b方程的解。
教学难点:
初步学会解形如a-x=b及a÷x=b方程的解。
教学过程:
一、回顾导入
解方程,并进行验算(指名板演,集体核对)X+1.9=10
X—1.9=10
二、新知学习(教学例2)
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
要求学生验算。
通过刚才的学习,我们知道了在方程的两边同时乘或除以相同的数(0除外),方程左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
三、反馈练习 1.基本练习:
(1)完成“做一做”第1题第(2)小题,先找到等量关系,再列方程,解方程。集体评讲。
(2)思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?(等式保持不变的规律。)
(3)完成“做一做”第2题第二排三道小题。(强调验算)2.拓展练习:(先不讲,小范围)
17—X=15
21÷X=指名学生介绍自己的解法,重点引导学生根据等式的基本性质解答。
-X=15
21÷X=3 解: 17-X+X=15+X
解 : 21÷X×X=3X
15+X=17
3X=21
15+X—15=17—15
3X÷3=21÷3
X=2
X=7
四、课堂小结: 这节课学习了什么?
第五篇:《解方程》参考教案2
解方程
教学内容:数学书P59-60例2、3及61页的做一做,练习十一的第8题。教学目标:
1、初步学会如何利用方程来解应用题
2、能比较熟练地解方程。
3、进一步提高学生分析数量关系的能力。
教学重难点:找题中的等量关系,并根据等量关系列出方程。教学准备:课件 教学过程:
一、复习导入 解下列方程:
x+5.7=10
x-3.4=7.6
1.4x=0.56
x÷4=2.7 学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。
二、新知学习。
1、教学例2(1)利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?(2)反馈练习
1、完成“做一做”的第2题,先找到等量关系,再列方程,解方程。集体评讲。
2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?
/ 3
依据是什么?等式保持不变的规律。
试着解方程:x-2.4=6
x÷9=0.7
(强调验算)
2、教学例3.(1)出示题目。(课件)
出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。
“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.” 我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。同学们想想,“警戒水位是多少米?”(2)分析,解题。
根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。
它们之间有哪些数量关系呢?(板)警戒水位+超出部分=今日水位① 今日水位—警戒水位=超出部分② 今日水位—超出部分=警戒水位③ 同学们能解决这个问题吗? 学生独立解决问题。
(3)评讲、交流。(侧重如何用方程来解决本题。)
学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。学生列出的方程可能有:
① x+0.64=14.14
②14.14﹣x= 0.64
③14.14﹣0.64= x 每一种方法,都需要学生说出是根据什么列出的方程。
如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口
/ 3
头检验)。
对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。
对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。(4)小结
在解决问题中,我们是怎样来列方程的?
将未知数设为x,再根据题中的等量关系列出方程。
三、练习。
(5)解决“做一做”中的问题。从题中知道哪些信息?有哪些等量关系?
用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。(6)独立完成练习十一中的第8题。
四、课堂小结
这节课学习了什么?(板书课题:列方程解应用题)还有什么问题?
/ 3