第一篇:五年级数学解方程相关试题
一、填空:
(1)含有()的()叫方程。如:()
(2)使方程左右两边()的()的值,叫方程的解。
(3)求()的过程叫解方程。
(4)一个加数等于(),减数等于()除数等于(),一个因数等于()
二、下面哪些是方程,是方程的在括号里面画“√”。
4.3+2x=10.3()7.9+X<12.6()
8.9+6X()8X=0.5()
19×2X()9.6+2.5X=17.15()
三、解方程。
8x=24x÷0.5=1.26x-4x=20.212(x+3.7)=1445x-3×11=42
四、列方程解决问题。
1.白猫上周钓了128条鱼,白猫钓的比花猫多14条。花猫在上一周钓了多少条鱼?
2.爷爷今年69岁,爷爷的年龄比小明年龄的5倍还大4岁。小明今年几岁?
3.北京和上海相距1320km。甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?
4.李爷爷家养羊284只,其中大羊的只数是小羊只数的3倍。大羊和小羊各有多少只?
第二篇:小学五年级解方程试题
小学五年级解方程试题【1】
1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?
2、大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。住宅每层高多少米?
3、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积多少万平方米?
4、宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?
5、猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。大象最快能达到每小时多少千米?
6、世界上最大的洲是亚洲,面积是4400万平方千米,比大洋洲面积的4倍还多812万平方千米。大洋洲的面积是多少万平方千米?
7、太阳系的九大行星中,离太阳最近的是水星。地球绕太阳一周是365天,比水星绕太阳一周所用时间的4倍还多13天,水星绕太阳一周是多少天?
8、6个易拉缺罐,9个饮料瓶,每个的价钱都一样,一共卖了1.5元。每个多少钱?
9、地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米?
10、两个相邻自然数的和是97,这两个自然分别是多少?
11、鸡和兔的数量相同,两种动物的腿加起来共有48条。鸡和兔各有多少只?
12、妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁。儿子和妈妈今年分别是多少岁?
13、前年小明比妈妈小24岁,今年妈妈的年龄是小明的3倍。小明和妈妈今年分别是多少岁?
14、一幅油画的长是宽的2倍,我做画框用了1.8m木条。这幅画的长、宽、面积分别是多少?
15、小华收集的火柴盒上的画比小明收集的多60枚,小明收集的火柴盒上的画是小华的5倍。小华和小明收集的火柴盒上的画各是多少枚?
16、大地小学今年招收一年级新生150人,其中男生人数是女生的1.5倍。一年级男、女学生各有多少人?
17、一张课桌比一把椅子贵75元,如果课桌的单价是椅子单价的3倍,课桌和椅子的单价各是多少元?
18、一套西装160元,其中裤子的价格是上衣的。上衣和裤子的价钱各是多少元?
19、少先队员采集植物标本和昆虫标本84件。昆虫标本的件数是植物标本的6倍。两种标本各采集多少件?
20、一个长方形的周长是72厘米,长是宽的2倍,求长方形的长和宽各是多少厘米。
21、我买了两套丛书,单价分别是:>2.5元/本,>3元/本,两套丛书的本数相同,共花了22元。每套丛书多少本?
22、小红家到小明家距离是560米,小明和小红在校门口分手,7分钟后他们同时到家,小明平均每分钟走45m,小红平均每分钟走多少米?
23、一个数的3倍加上这个数的2倍等于1.5,求这个数。
24、一个数乘0.75等于6个2.4相加的和,这个数是多少?
25、甲、乙两地的公路长285千米,客、货两车分别从甲、乙两地同时出发,相向而行,经过3小时两车相遇。已知客车每小时行45千米,货车每小时行多少千米?
26、张老师第一次到体育用品商店买了24套运动服,第二次又买了同样的运动服30套,第二次比第一次多付了510元。每套运动服多少元?
27、五(2)班同学到工地去搬砖,共搬砖1100块。男同学有20人,每人搬砖25块。女同学有30人,每人搬砖多少块?
28、学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?
29、客车和货车从相距600千米的甲、乙两地同时出发,相向而行,6小时后相遇。客车每小时行驶40千米,货车每小时形势多少千米?
30、两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?
小学五年级解方程试题【2】
一.填一填。
(1)X×7×y可以简写为()。
(2)王阿姨买了5支笔,每支a元,付了50元,应找回()元。
(3)小红有a张邮票,小刚的邮票张数是她的8倍,两人共有邮票()张。
(4)如果4a+3=7.8,那么4a-3=().(5)长方形的面积计算公式用字母表示是:(则长方形的面积是()cm.二,判断。(对的打“√”,错的打“×”)
(1)7m+5m=12m()
(2)17+8=25 是等式不是方程。()
(3)方程的解不会是0.()
三,解下列方程。
X+9=11.8 X-7.5=2.56.3X+3×6=81(检验)6(X+8)=73.2(检验),如果a=5cm,b=4.2cm, 5X+6X=24.2 9X÷6=135(检验))
四,列方程解决问题上。
1、小明用一根长42厘米的铁丝围成一个长方形,已知围成的长方形的长比宽多5厘米,这个长方形的长和宽各是多少?
2、一个篮球的价格比一个足球的2倍少30元,王老师买了5个篮球和5个足球,一共用了870元,两种球的单位各是多少元?
3、刘大伯在银行存款200元,张大伯在银行存了150元,以后每个月刘大伯存10元,张大伯存20元,几个月后两人存款一样多?
4、甲桶有油28千克,乙桶有油14.5千克,从甲桶倒多少千克油到乙桶里,才能使甲桶油的质量是乙桶的1.5倍?
第三篇:五年级数学解方程教案
五年级数学《解方程》教学教案
十东小学
授课教师:徐国
栋
(一)教学内容
教材第57页内容。
(二)教学目标 知识与技能
⑴初步理解方程的解与解方程的含义。⑵会检验一个具体的值是不是方程的解。过程与方法
经历方程的解和解方程的认识过程,提高学生比较、分析的能力。情感态度与价值观
在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验学习习惯。
(三)教学重点与难点
重点:“方程的解”和“解方程”的含义。突破方法:通过比较理解二者的区别。难点:会检验方程的解。
突破方法:小组讨论,练习体验。
(四)教法与学法
教法:设置设置问题,引导学生。
学法:观察理解,讨论交流,练习体验。
(五)教学过程
一、复习引入
⑴在上节课的学习活动中,我们探究了哪些规律。
在小组中组织相互交流,说一说:①什么是方程,②如何判断方程,③方程的性质是什么?
⑵学生回顾天平平衡的规律,结合天平的平衡规律对我们学习方程有什么作用?这节课我们开始学习如何解方程。
上一节课我加了一些水在天平里,添加了砝码,让天平平衡,同时得到方程100+X=250,但到现在我们都还不知道那些水的质量到底是多少?那我们今天就来解决这个问题,看看水到底是重。这就是我们今天将要学习的——解方程。
[板书课题:解方程。]
二、研究新知
⑴投影出示昨天所做的课题教材P57天平称一标水的画面。学生回忆昨天教学时的情景画面,交流。
师根据学生汇报板书:方程100+X=250。⑵教师:你知道方程100+X=250中的未知数X等于多少吗?你是怎么知道的?
组织学生讨论,交流,然后汇报。可能出现以下几种方法:
*根据数感经验得到X=150 *利用算式100+150=250,得到X=150。
*利用一个加数=和—另一个加数,得到X=150。
*利用天平平衡规律,两边同时减少100,得到X=150。
„„
师:同学们非常聪明,想到了这么多的方法求出了X=150,(同时,也可能没有学生能说出来,教师相机点拨,引出解方程所要运用的规律。)
⑶引导学生检验方程的解的方法,根据学生回答板书:
当X=150时,方程左边=100+150
=250
=方程右边
⑷认识、区别方程的解和解方程。教师:使方程左右两边相等的未知数的值,叫做方程的解。刚才,X=150就是方程的解100+X=250的解。而求方程的解的过程叫做解方程。刚才同学们想出办法求出X=150的过程就是解方程。
教师边讲解边板书:使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程就叫解方程。
②方程的解与解方程有什么不同呢?组织学生议一议,使学生明确:
方程的解是一个数值,而解方程是求方程解的过程。刚才我们把X=150代入方程中,得到方程左边=右边,说明X=150是方程100+X=250的解。(板书:所以,X=150是方程的解)
三、巩固练习
⑴教材P57页“做一做”。
教师:怎样判断X=3是不是方程的解呢?X=2呢?
组织学生将X=3代入方程中进行检验。教师指名一名学生板演。⑵教材P63练习十一第4题。
组织学生先独立完成,再在小组中相互交流。
四、课堂小结
教师:通过这节学习,你有什么收获?
什么叫方程的解,什么叫解方程。学会了检验一个未知数的值是不是方程的解。学生畅谈。
板书设计 100+X=250 X=150 当X=150时,使方程左右两边相等的未知数。
方程左边=100+150的值,叫做方程的解 =250 =方程右边 求方程的解的过程叫做解方程。所以,X=150是方程的解。课时作业: 一判断。
⑴含有未知数的式子叫方程。()⑵X=36是方程X3=12的解。()
二、X=15是方程42-X=28的解吗?X=14呢?
三、X=12是下列哪些方程的解?把这些方程标出来。
X+18=30 4X=50 X÷3=5 72÷X=6 64-X=5 2X-9=5
第四篇:五年级数学解方程说课稿
五年级数学解方程说课稿
五年级数学解方程说课稿1
一、说教材
人教课标版五年级上册“简易方程”,根据《课标》要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。
本节课[解方程1第57至58页]延伸引入了方程时的例子100+X=250通过让学生尝试找出X的值,引入方程的解与解方程两个概念。例1以X+3=9为例,讨论了形如X±a=b的方程的解法。为了便于给出解方程全过程的直观图示,例题中的数据比较小,主要是提高学生掌握新的思考方法的积极性,这种方法将延伸到解更多复杂的方程。
二、说教学目标:
知识与技能:
1、在理解方程意义的基础上学习方程的解和解方程的的概念,初步掌握用等式性质来解简易方程的方法。
2、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。
3、能应用所学知识解决生活中的简单问题,从中获得价值体验。
重点:方程的解和解方程的概念,初步掌握用等式性质来解简易方程的方法。
难点:区别方程的解和解方程的含义。
情感、态度与价值观:
1、学生能积极参与数学学习活动,对数学有好奇心和求知欲。
2、体验数学与日常生活密切相关,并感悟到数学美。
三、说教法与学法
教法:新课标指出,教师是学习的组织者、引导者、合作者,根据这一理念,在教学中充分发挥学生的主体性,让学生通过课堂讨论、猜想、相互合作等方式,自主探索、自主学习。有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
学法:①让学生学会以旧引新,掌握并运用知识迁移进行学习的.方法;②让学生学会自主发现问题,分析问题,解决问题的方法。
四、说教学过程
(一)、创设情境,迁移导入
1、同学们和老师一起做个游戏,好吗?用手指尖顶住直尺使直尺一直保持平衡,能做到吗?说说你是怎样使直尺保持平衡的。在生活中你还见过哪些平衡现象?
2、课件出示天平:上节课我们借助天平平衡,学习了方程的意义,今天我们继续研究与方程有关的新知识。此环节结合学生平时的生活创设情境。通过寻找直尺上的平衡点,观察天平平衡等实践活动,拓展学生进行实践的机会,也为全课的教学活动创造氛围。
(二)、观察猜想,感知方程的解
课件演示:通过动态直观的演示,将学生带入生活情境中,激发学生的学习兴趣。学生在思考如何让天平保持平衡的学习过程中拓宽了思路,领悟到两边同时增加相同的重量,天平保持平衡,既天平的左边=右边。得出方程式100+X=250。演示操作结束后,教师抛出问题:如何求出X等于多少呢?学生分组讨论猜想[①根据数感直接找出一个X的值代入方程看看左边是否等于250。②利用加减法的关系:250-100=150。③把250分成100+50,利用对应的关系,得到X的值。④利用等式的性质从两边减去100。]在此过程中,教师给学生充分的独立思考、合作交流的时间,让学生自主探索,从中发现,天平两边同时减少相同的重量,天平仍然保持平衡。让学生感悟到可以借助天平求未知数的值,有效地避免了解方程时的机械模仿和死记硬背,降低了学生的思维难度。使学生轻松地感悟出像这样使方程的左右两边相等的未知数的值,叫方程的解。
(三)、操作感悟,体会原理
课件出示例1图。合作探究,通过感性经验的积累和实践的结果,讨论:怎样才能使天平左右两边只剩“X”,而保持天平平衡呢?学生,课件演示。
整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,学会用等式的性质解方程,突破了重点,解决了关键,培养了学生的能力。
(四)、分层训练,理解内化
对于新知需要及时组织学生巩固运用,才能得到理解和内化。我本着“重基础、验能力、拓思维”的原则,设计了三个层次的练习题。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引学生的注意力,使学生面对挑战充满信心,激发了学生兴趣,引发了思考,发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决课题的能力。
(五)全课小结,评价提升
(1)本节课主要的收获是什么?
(2)方程的解和解方程的区别是什么?怎样解方程?
(3)这节课你觉得自己表现怎么样?哪个小组或哪些同学的哪些地方值得你学习?
这样既对全课进行了总结,又能使每个同学对自己和对其他同学有个客观了评价。通过评价,有利于学生学会学习,学会反思,提高学习能力,养成良好的学习习惯。
板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。
五、板书设计
100+X=250
使方程左右两边相等的未知数和值,叫做方程的解。
求方程的解的过程,叫做解方程。
例1:X+3=9检验:方程的左边=X+3
X+3-3=9-3=6+3
X=6=9
=方程的右边
所以,X=6是方程的解。
这样板书,布局合理,简明扼要,把本节课所学的知识重点,鲜明的展现在学生面前。
五年级数学解方程说课稿2
一、说教材
㈠.教学内容:小学五年级数学上册第四单元解简易方程第五课时:“解方程”(课本第58-61页,例1—例4)
㈡.教材所处地位:本节是学习解方程的方法与应用,它起着承前启后的作用。
㈢.教材的重点和难点:
教学重点:掌握应用四则运算各部分之间的关系解方程。
教学难点:让学生掌握检验方程的方法以及相关的表达术语。
㈣.教学目标:。
1、掌握应用四则运算各部分之间关系解方程的方法,并会检验。
2、了解教材中应用等式性质解方程的方法,作为必要补充。
3、培养学生节约能源,保护环境的意识。
二、说教法
根据我班学生的实际情况,我准备在教学过程中,采用导---探---练三步教学法激发学生的学习兴趣,鼓励学生积极和敢于质疑,引导学生自己动脑、动手、动口,重点分析研究方程式的数量关系,让学生根据应用题的题意列出正确的数量关系式。并以多种形式巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效。
三、说学法
通过运用四则运算各部分之间的关系解方程。
四、说教学程序
(一)、导入新课
通过前两节课的学习,我们对方程已经有了初步的了解,那么请同学们回答下面几个问题:
1、什么是方程?
2、什么是方程的解?
3、什么是解方程?
4、判断下面两个式子是不是方程。
5+x>6x+12=16
想一想x+12=16的解是多少?
但不是所有的方程的解都是能靠思考得出来的,这节课我们就来学习系统的方程解法。首先我们来复习一下四则运算各部分之间的关系。
(二)、讲授新课
1、创设情境,激发兴趣
随着气温的骤然下降,冬天的.脚步离我们越来越近了,生活在北方,冬季的取暖可是个大问题,这不,经营煤炭的张叔叔又在开始忙着计算了。
预计今年的煤炭销售量大约是300吨,可是库存仅有180吨,想要满足供应,还要运进多少吨煤炭?
思考:题中有几个数量,它们之间是什么关系?如果假设还要运进的吨数看成x,怎么用方程还表示这其中的关系?
180+x=300
教师演示这个方程的解法,并检验。
想一想:还有其他的方程列法吗?
300-x=180
学生同桌合作完成。
2、小组合作学习
①如果每辆货车能运煤10吨,要想把这120吨煤一次运完,要多少辆车?
②一个运煤的车队,去掉派出的10辆车,还剩16辆待用,这个车队一共有多少辆车?
每个题都有两种表示数量关系的方法,试着列方程解答。
3、节约能源,思想
随着煤炭、汽油等能源的价格在逐渐攀升,人们把目光都集中在新型能源——太阳能的身上,据统计,一个普通的太阳能用户,相当于每个月节约用电费用20元,那么一年将会节约多少元钱呢?
4、浏览教材
我们所用的教材所呈现给我们的解法是依据等式的性质,让我们一起快速地浏览教材,了解另外一种解方程的方法。
5、巩固练习
完成58面“做一做”的两个练习题。
(三)、课堂小结
方程,对于我们来说,这是一种全新的解决问题的方法,这和我们以前学习的算术解法是截然不同的,所以同学们要勤加练习。
这节课你有什么收获吗?
五年级数学解方程说课稿3
今天我说课的内容是五年级数学上册第四单元《解简易方程》。下面我从教材分析、教学方法、学法指导、过程分析等四个方面进行说课。
一、教材分析
1、教材的地位与作用
本节课是解简易方程的第三课时“解方程(一)”,是在学生学习方程的意义和等式的性质的基础上进行教学。而今天学习的内容又为后面学习列方程解应用题做准备。今后学习多边形的面积、植树问题等内容时都要直接运用。所以本节课起着一个承上启下的作用,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
2、教学目标的确定
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:知识与技能:
过程与方法:
体验迁移、分析、合作交流的学习方法。
情感态度与价值观:
感受方程与生活中的联系,激发学习兴趣,培养仔细认真的良好学习习惯。
3、教学重点、难点、关键点
根据教材内容和教学目标,我认为本节课的重难点是理解解方程的方法及检验,解决重难点的关键是引导学生确立解方程的一般思路。
二、说教法
1、演示操作法
借助多媒体,激发学生的学习兴趣。
2、观察法
为了体现学生的主体性,培养学生的合作意识,通过同桌合作、交流,自主探寻发现通过等式的性质来解方程。初步理解方程的解和解方程的含义。
这些教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学。
三、说学法
1、合作学习法
采用小组合作学习的形式,让学生经历一个观察、比较、交流、分析等过程,鼓励学生把发现的规律都说出来,有利于学生口语交际和解决问题能力的发展,这样既培养学生的合作意识,又能使学生在发现规律的同时获得成功的体验。
2、自主学习法
以学生自主学习为主,注重探索过程的.教学,充分发挥学生的主观能动性,变被动听为自主学,学生积极动脑去思考、动口去表达。通过交流、猜测、验证、总结归纳,体验探索规律的过程,突破难点,提高效率。
四、过程分析
本节课我准备按以下几个环节进行教学:
(一)基础训练,激趣导入。
上节课的学习中,我们探究了哪些规律?
巩固方程及等式的性质,为下面的学习做好铺垫。
(二)认准目标,指导自学。
1、那我们学习解方程就要充分利用等式的两个基本性质。
2、学生自学教材67~68页例1、例2、例3内容,让学生初步掌握用等式的性质解方程的原理,学完后记录疑问。
(三)合作学习,引导发现。
1、出示课件例1,你了解了哪些信息?怎样列方程?
x+3=9
2、如何解这个方程呢?课件出示利用等式的性质分析的图示。
学生观察图画,同桌交流自己的观察结论,并通过讨论明确解方程的方法。
x+3=9
解:x+3-3=9-3
x=6
3、点名学生汇报,其他同学可以补充。
老师归纳:解方程实质就是把方程转化成x=a的形式,要注意解方程步骤的规范书写。
4、认识、区分方程的解和解方程并学会验算方程的解。
5、学生独立完成例2、例3的内容,并相互检验对方的结果。
老师再次强调要注意解方程和验证步骤的规范书写。
(四)变式训练,反馈调节。
课本67~68“做一做”。
强化重点,巩固新知,培养学生良好的学习习惯。
(五)分层测试,效果回授。
随堂练习册36页《解方程(一)》第一、二、四、五大题
(六)课堂小结
梳理知识形成完整知识体系
(七)布置作业
1、课本练习十五第1题。
2、课本练习十五第4题。
五年级数学解方程说课稿4
一、教材研读。
1、教材编排。
(1)逻辑分析:
方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。并且已经采取逐步渗透的方法来培养代数思维。例如:+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。
(2)语言信息及价值分析:
本课教材的三幅情境图,由浅入深,由具体到抽象,层层递进。第一幅情境借助平衡,让学生领悟等式;第二幅情境完成数量关系向等量关系的转化;第三幅情境引发学生思考,让学生从不同角度找到多种等量关系,列出方程。
2、教学目标。
(1)结合具体情境,建立方程的概念。
(2)在简单情境中寻找等量关系,并会用方程表示。
(3)经历从生活情景到方程模型的建构过程,进一步感受数学与生活之间的密切联系。
3、教学重难点:
(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。
(2)难点:数量关系向等量关系的转化。
二、学情分析:
学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。
三、流程设计:
为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:
(一)引“典”激趣,诱发思考。
引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。
(二)探究新知,建立概念。
1、借助天平,启发思考。
我将教材情境动态化,通过FLANSH课件,让学生充分感知当天平两端都没放物品的时候天平左右两边是平衡的。当我们往天平的一端放上物品而另一端不放的时候,或者两端放的.物品质量不等的时候,天平的两臂不平衡,表示两边物体的质量不相等。这时候左边大于右边,或右边大于左边。当我们经过调整,天平两臂再次平衡时,表示两边的物体质量相等,即左边=右边。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。同时,对情境中数据也进行了分批给出的处理。先给出了左边鱼食和小砝码的重量,让学生用一个数学表达式来表示天平左边的质量,再给出天平右边的质量,让学生列出等式。这样就较好地避免了学生习惯性的使用算术的思维方式,同时也顺利地进行了用数字表示向用符号表示的转化。在这一情境的教学中,借助天平这一载体,启发学生理解了平衡,认识了等式。
第二个主题图是本节课教学的核心内容。首先,我引导学生在情境中找出文字信息“4块月饼的质量一共是380克”。然后引导学生结合情境图,把这一信息转化为等量关系。4块月饼的质量是如何表示的呢?用数量关系“每块月饼的质量×4”来表示,“每块月饼的质量×4”表示的是4块月饼的质量,380克也表示4块月饼的质量,所以他们相等。从而完成数量关系向等量关系的转化,算术思想向代数思想的转化,改变学生的长达4年的惯性思维方式。
3、变换角度,深入思考。
第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=20xx,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。
4、建立概念,判断巩固。
在前面教学的基础上总结、抽象出方程的含义。通过三道例题的简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。
(三)生活应用,提高能力。
数学应该服务于生活,紧接着我让同学们根据直观图象列方程。这些题目都来自于生活实际,并且分别以现实情境图、线段、文字叙述、综合拓展为顺序,层层递进。学生在用方程表示直观情境里的相等关系后,他们在写方程时会更加关注方程的本质属性,从而巩固方程的概念。练习强调学生在按照“数量关系—等量关系—方程”这样一个过程,通过想一想,找一找,说一说,写一写等不同的形式学会用方程来表示生活中的实际问题,并体会到方程的作用,为以后运用方程解决实际问题打下坚实基础。
五年级数学解方程说课稿5
一、说教材
1、教学内容:
小学五年级数学上册P57,及“做一做”,练习十一第4题。
2、教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
3、教学目标:
(1)、结合具体的题目,让学生初步理解方程的解与解方程的含义。
(2)、会检验一个具体的值是不是方程的解,掌握检验的格式。
(3)、进一步提高学生比较、分析的能力。
4、教学重点及难点:
比较方程的解和解方程这两个概念的含义
二 、说教法学法
(一) 创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
(二) 突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
(三) 自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题(1)什么叫方程的解?请举例说明。(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
(四) 使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的.学习习惯的形成。
三 说教学过程
一 复习引入
我们前边学了天平平衡的道理,我们先来做一个天平平衡的游戏,老师说,你来对:我在天平左边放一个苹果,要想使天平平衡,你应该怎么做?再放两个梨呢?
学习天平平衡的道理有什么作用呢?通过今天这节课的学习你就会发现它的作用了。
二 教学什么是方程的解
出示课本57页插图,问:从图上你能看到什么信息?你能根据图中告诉的等量关系列一个方程吗?
板书:100+X=100
问:X表示什么?X可以是任何一个数吗?为什么?
X是什么数时,方程左右两边才相等呢?你是怎么算出来的?
生答,板书:
1 100+(150)=250,所以X=150
2 250-100=150,所以X=150
3 利用天平平衡的道理100+X—100=250-100
X=150
教师总结:刚才同学们通过多种方法都算出了X=150时,方程左右两边相等,像这样,使方程左右两边相等的未知数的值就叫方程的解。
加深记忆:问X=120是这个方程的解吗?为什么?根据你的理解什么才是方程的解呢?
判断:
X=3是方程3X=15的解吗?X=2呢?为什么?
刚才同学们找出这个方程的解得过程叫做解方程,今天这节课我们重点利用天平平衡的道理来解方程。(板书课题:解方程)
三 解方程
1 利用这道题讲解解方程的格式
解方程有固定的格式,教师边讲格式边完成100+X=100的解方程的完整步骤。
2 学生独立尝试做例1
(1.)出示例1主题图:请你用一句话说一说这幅图所表示的内容。
(2.)学生叙述图意,并列出方程。
(3.)激趣:你能用方程平衡的原理来解方程吗?
(4).学生尝试解决χ+3=9。教师巡视,指名板演。
(5.)板演的学生讲解解决问题的思路方法
(6)观察黑板上同学的板书,你有什么发现,你认为还有什么需要同学们注意的地方吗?
(7).x=6是不是方程的解呢?(需要进行检验)
(8.)学生自学课本,掌握方程检验的方法和格式。
A方程是怎样验算的?
B它的格式有什么特殊的要求?
四 迁移练习:x+8=10 x-8=10
1.全班齐练,指名板演。
2.评价分析讲解。
对比提升:x+8=10 x-8=10
1.观察两道方程的解答过程,你有什么发现?(x加几,我们就减几;x减几,我们就加几。)
2.为什么要这样做?
3.方程的左边发生了变化,为了使方程成立,方程的右边又应该怎样做?这样做的依据是什么?
五 回顾总结
这节课你都学会什么?什么是方程的解?什么是解方程?解方程时要注意些什么?
课后反思:
在进行了一次试讲后,我上了《解方程》这节课。因为试讲过一次,对学生容易出现的问题已有所了解,所以再次上这节课时,就知道了侧重点在哪,这也是我没有教过五年级教材的一个弊端吧,总是对学生的情况不了解,把握不好学生容易在哪出问题,总是等学生出现了问题后才知道侧重点。通过上同一节课,通过老师评课和课后反思,对这节课的教学思路清晰了。
这节课与我试讲时相比,我觉得其中一个环节在教学中有所突破。就是让学生认识什么是“方程的解”,在试讲时,这部分教的不扎实,对学生来说印象不深刻。再次讲这节课时,我是这样处理的:通过100+X=250,让学生找出当X的值是∏时,方程的左右两边才相等,当学生用各种不同的方法算出X=150时,方程左右两边相等,这时我指出,X=150就是这个方程的解,然后问,X=100是这个方程的解吗?为什么?什么才是方程的解?通过这样的反复强调,学生很清晰地明白了,使方程左右两边相等的未知数的值才是方程的解。这样处理,我觉得学生对这个概念理解的比较清楚,印象也比较深刻。如果再将“解方程”和“方程的解”进行区分,效果可能会更好些。
但是这节课还有很多不足的地方,如利用天平平衡的算理来解方程时,有些知识点处理的不够主次分明,如,在结合一道题来讲时,重点根据天平平衡的道理来讲,学生明白了其中的道理后,在接下来的进一步练习巩固中,只要结合等式的性质让学生明白只要在方程两边同时加几或者同时减几即可,不需要再讲算理了。也就是说,教学层次不是很分明,应该是有主有次,多放些空间给学生。
第五篇:五年级下册数学解方程
五年级下册数学解方程(专项检测)
(满分:100分,时间:60分钟)
一、基础类方程。
X-7.7=2.855X-3X=684X+10=5320=45+6XX-0.6X=8x+8.6=9.452-2x=1513÷x =1.3X+8.3=19.715x =303
3x+9=1218(x-2)=2712
15÷3x=530÷x=851.8+2
3(x+5)=180.5x+9=406
5×3-x=840-8x=5
x+2x+8=80200-x÷5=30
9.8-2x=3.85(x+5)=100
二、提高类方程。
4(4x-1)=3(22-x)
5(x-8)=3x7
(22-x)+2=68x8
7(x+2)=5x+60
(20-8x)÷3=2x+1
12÷8x=3
8x-15×6=3x-20
x+9=367(x-2)=7x=320+4x5.37+x=7.47x=6420-3x=170x+3x=361.5x+6=3xx÷5=2148-20+5x=3170÷x =445.6-3x =1.6x+3x=703(x+3)=507(2x-6)=84 x-7=6x+4 x-6x+30=12x+15240÷(x-7)=30(6x-40)÷8=5x-8(21+4x)×2=10x+14(2x+7)×2=4x+14