第一篇:五年级数学上册解方程教案
解方程
【学习内容】人教版小学数学五年级上册第五四单元67——68页例
1、例2 【课程标准描述】
能用等式的性质解简单的方程。【学习目标】
1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】
通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】
1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。
2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】
一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。
引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)
(课件出示例1)根据图中信息,列出方程。
2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?
全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。
预设三:把9分成6和3,想x+3=6+3,所以x=6。
预设四:在方程两边同时减去3,就得到x=6。
思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。
引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?
一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。
思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。
学生尝试用算式表示刚才的操作过程。
教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。
4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?
学生交流后汇报,教师根据学生的回答板书检验过程。
二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)
(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。
小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。
三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。
一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:
解这个方程的依据是什么? 两边为什么要同时除以3?
(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。
四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。
2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。
五、回顾总结
今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;
2..等式的性质求方程的解; 3.检验。
注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。
第二篇:五年级数学解方程教案
五年级数学《解方程》教学教案
十东小学
授课教师:徐国
栋
(一)教学内容
教材第57页内容。
(二)教学目标 知识与技能
⑴初步理解方程的解与解方程的含义。⑵会检验一个具体的值是不是方程的解。过程与方法
经历方程的解和解方程的认识过程,提高学生比较、分析的能力。情感态度与价值观
在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验学习习惯。
(三)教学重点与难点
重点:“方程的解”和“解方程”的含义。突破方法:通过比较理解二者的区别。难点:会检验方程的解。
突破方法:小组讨论,练习体验。
(四)教法与学法
教法:设置设置问题,引导学生。
学法:观察理解,讨论交流,练习体验。
(五)教学过程
一、复习引入
⑴在上节课的学习活动中,我们探究了哪些规律。
在小组中组织相互交流,说一说:①什么是方程,②如何判断方程,③方程的性质是什么?
⑵学生回顾天平平衡的规律,结合天平的平衡规律对我们学习方程有什么作用?这节课我们开始学习如何解方程。
上一节课我加了一些水在天平里,添加了砝码,让天平平衡,同时得到方程100+X=250,但到现在我们都还不知道那些水的质量到底是多少?那我们今天就来解决这个问题,看看水到底是重。这就是我们今天将要学习的——解方程。
[板书课题:解方程。]
二、研究新知
⑴投影出示昨天所做的课题教材P57天平称一标水的画面。学生回忆昨天教学时的情景画面,交流。
师根据学生汇报板书:方程100+X=250。⑵教师:你知道方程100+X=250中的未知数X等于多少吗?你是怎么知道的?
组织学生讨论,交流,然后汇报。可能出现以下几种方法:
*根据数感经验得到X=150 *利用算式100+150=250,得到X=150。
*利用一个加数=和—另一个加数,得到X=150。
*利用天平平衡规律,两边同时减少100,得到X=150。
„„
师:同学们非常聪明,想到了这么多的方法求出了X=150,(同时,也可能没有学生能说出来,教师相机点拨,引出解方程所要运用的规律。)
⑶引导学生检验方程的解的方法,根据学生回答板书:
当X=150时,方程左边=100+150
=250
=方程右边
⑷认识、区别方程的解和解方程。教师:使方程左右两边相等的未知数的值,叫做方程的解。刚才,X=150就是方程的解100+X=250的解。而求方程的解的过程叫做解方程。刚才同学们想出办法求出X=150的过程就是解方程。
教师边讲解边板书:使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程就叫解方程。
②方程的解与解方程有什么不同呢?组织学生议一议,使学生明确:
方程的解是一个数值,而解方程是求方程解的过程。刚才我们把X=150代入方程中,得到方程左边=右边,说明X=150是方程100+X=250的解。(板书:所以,X=150是方程的解)
三、巩固练习
⑴教材P57页“做一做”。
教师:怎样判断X=3是不是方程的解呢?X=2呢?
组织学生将X=3代入方程中进行检验。教师指名一名学生板演。⑵教材P63练习十一第4题。
组织学生先独立完成,再在小组中相互交流。
四、课堂小结
教师:通过这节学习,你有什么收获?
什么叫方程的解,什么叫解方程。学会了检验一个未知数的值是不是方程的解。学生畅谈。
板书设计 100+X=250 X=150 当X=150时,使方程左右两边相等的未知数。
方程左边=100+150的值,叫做方程的解 =250 =方程右边 求方程的解的过程叫做解方程。所以,X=150是方程的解。课时作业: 一判断。
⑴含有未知数的式子叫方程。()⑵X=36是方程X3=12的解。()
二、X=15是方程42-X=28的解吗?X=14呢?
三、X=12是下列哪些方程的解?把这些方程标出来。
X+18=30 4X=50 X÷3=5 72÷X=6 64-X=5 2X-9=5
第三篇:五年级上册数学解方程专题训练(人教版)
解方程专题
7+x=19x+120=17658+x=90x+150=290
79.4+x=95.52x+55=1297 x=63x × 9=4.5
4.4x=444x × 4.5=90x × 5=1006.2x=124
x-6=19
x-77=275x÷78=10.5
9-x=4.5
77-x=21.99÷x=0.033×(x-4)=46
12x+8x=40
x-0.2x=326×5+2X=44
24-3X=3
X-6=12
3x+6=18
8x-3x=105
x-3.3=8.9x-25.8=95.4x-77=144x ÷7=9x÷2.5=100x÷3=33.373.2-x=52.587-x=2299-x=61.93.3÷x=0.37÷x=0.00156÷x=5(8+x)÷5=15(x+5)÷3=1612x-8x=4012x+x=261.3x+x=263X+5X=4820X-50=5028+6X=8810X×(5+1)=6099X=100-X56-2X=204y+2=616+8x=402x-8=8x-6×5=42x+5=7x-54.3=100x÷4.4=10x÷2.2=866-x=32.38.8÷x=4.439÷x=3 15÷(x+0.5)=1.5x+ 0.5x=614X-8X=12 32-22X=10X+3=18x+32=764x-3×9=292x+3=10
第四篇:人教版五年级上册数学解方程复习题
用方程解应用题——第一组 【1】2004年雅典奥运会中国共获奖牌32枚,比1998年汉城奥运会奖牌的7倍少3枚,汉城奥运会中国获奖牌多少枚?
【2】六年级同学参加科技小组的有25人,比五年级参加人数的2倍还多7人,五年级参加科技小组的有多少人?
【3】2007年亚洲人口约32亿,比欧洲人口总数的5倍还多4亿。欧洲人口大约有多少亿人? 【4】图书馆有故事书120本,如果再购买14本故事书正好是科技书的2倍,图书馆有科技书多少本? 【5】4个乒乓球和2只乒乓球拍,千米,某人骑自行车每小时行12.5千米。这列火车的速度是自行车的多少倍? 第四组:
【1】一批煤计划每天烧0.4吨,21天刚好烧完。实际每天烧0.3吨,可以烧几天?
【2】有126米布,原计划做45件成人上衣,现在用这批布做儿童上衣,每件儿童上衣比成人上衣少用0.7米。可以做儿童上衣多少件?
【3】服装店选用一种画布做上衣,做一件上衣需要用布1.15米。服装店购进这种花布130米,最多可以做多少件上衣?
【4】建筑工地要运200吨黄沙,五年级上册解方程
(A)4x-12=48 5x+4=24 6x-14=16 3x+2=14 5x-40=20 3x-6=0
10x+350=650 160x+20=260 1.2x-1.7=0.7 5x+16=20.5 3x+12=75 3x+15=60 5(x+1.5)=17.5(x-3)÷2=7.5 13(x+5)=169 3(x+2.1)=10.5 4(x-3)=9.6
3×(x+2.8)=17.4(x-2.4)÷8=1.25 0.5×(x+0.8)=0.8 5(x+1.6)=9
(D)(x-3.1)÷6=1.2 10×(15-x)=12(x+1.7)÷3=1.4(x+37)×7=300+860 花了49元。每只乒乓球拍18.5元,每个乒乓球多少元? 【6】父亲的年龄是小聪年龄的9倍,母亲的年龄是小聪年龄的7.5倍,父亲比母亲大6岁,小聪今年几岁? 第二组:
【1】奥运会用的篮球场是一个长28米,宽未知的长方形。它的周长是86米,求篮球场的宽。【2】河里有鹅若干只,鸭的只数是鹅的4倍,又知鸭比鹅多27只。鹅与鸭各有多少只?
【3】有一块长方形地,长是宽的3倍,周长是120米,这个长方形的长和宽分别是多少米? 【4】大小两只船合运一批货物,大船装载的货物是小船装载的1.8倍,小船比大船少运40吨,两只船各运货物多少吨?
【5】育红小学五、六年级共有学生288人,五年级学生的人数是六年级的1.4倍,五、六年级各有学生多少人?
【6】用一根长54厘米的铁丝围成一个长方形,要使长是宽的2倍,围成的长方形的长和宽各是多少?面积是多少? 第三组:
【1】有两袋大米,甲袋大米的质量是乙袋大米的1.2倍,如果再往乙袋里装5千克大米,两袋大米就一样重了。原来两袋大米各有多少千克?
【2】现有数量相同的鸡兔共居一笼,已知鸡腿和兔腿共有90条,问鸡和兔各有多少只? 【3】鸡和兔子一共有7个头,一共有20条腿。问:鸡、兔各有多少只?
【4】52人外出郊游,一共用了7辆车,每辆面包坐12人,每辆夏利车坐4人,全部坐满。问:面包车与夏利车各几辆?
【5】小红的储蓄罐里5角和1元的硬币共20枚,要把它全部捐给汶川地震灾区,她数了数共12.5元。你能帮她算算,5角的硬币和1元的硬币各多少枚吗? 【6】一列火车4.5小时行驶495
一辆汽车每次运8吨,运了20次,还剩多少吨?
【5】小明和爸爸、妈妈一起去逛公园,成人票每张5.5元,儿童票每张2.5元,他们买门票一共需要多少钱? 第五组: 【1】一艘船每小时行11.5千米,28小时达到目的地。如果每小时多行2.5千米,需要多少小时到达目的地?
【2】A、B两地相距400球迷,甲、乙两辆汽车分别从A、B两地相对而行。甲汽车每小时行38千米,乙汽车每小时行42千米,几小时后两车相距40千米? 【3】一扇窗户的玻璃长是1.3米,宽是1.1米。那么做12扇这样的窗户至少需要多少平方米的玻璃?(得数保留整数)【4】《中华人民共和国国旗法》规定,国旗的长是宽的1.5倍。有一面国旗长1.44米,这面国旗的面积是多少平方米?
【5】甲乙两袋大米共重24.6千克,如果从甲袋中取出3.5千克放入乙袋,这时两袋大米同样重,原来两袋大米各重多少千克? 第六组:【1】一个三角形的花圃,底是25米,高是22米。如果平均每平方米可产鲜花50枝,这块花圃共可产鲜花多少枝? 【2】一张梯形的纸片,下底是24㎝,上底是18㎝,高是14㎝。把它剪成一张尽可能大三角形纸片,余下的总面积是多少? 【3】有一块三角形麦地底58米,高72米,如果每公顷可收小麦4500千克,这块地共收小麦多少千克?
【4】有一块梯形的菜地,上底长4.5米,下底长7.5米,高10米,平均每平方米能收6棵白菜,这块地共可以收多少棵白菜? 【5】一个等腰梯形的周长是30厘米,每条腰和高分别是5厘米和3.6厘米,求这个梯形的面积是多少?
3x-20=70 3x+105=450 6x-8.3=1.9 5x-80=400 2x+17.5=36.9 2x×6=1296 5x+4=39 8x+8=280
(B)24-6x=1.8 19-2x=7
8.15+2x=21.35 10+1.5x=25 25.6-2x=1.3 5.5-4x=3.5 8x+2×5=42 3x-2×7=22 5x-4×9=25 7x-4.5×7=43.4 7x+5×8=320 4×1.5+2.5x=11 10x+23×4=227 0.4x-4×51=60.4 X+14.3=50×2 5x-0.4×16=29.6 2.5x+34=49
12×0.7+4x=28.4 4×2.5-2x=3.6 5x-5÷2.5=3.8
(C)13.5×4+3x=126 6x+3.1×6=64.2 4x-4×0.73=25.08 5x-4×5=30 6×8+3x=186 4x+2×0.8=21.6 5×1.3-2x=5.5 3.18×2-2x=4.26 X÷7.2+3.8=15 2(x-2.6)=8 8(x-6.2)=41.6
(3+5)x=960 6(x+0.8)=10.8 7(x+4.5)=42(x-1.2)×6=0 9(x-0.1)=2.7 5.2(x+8)=33.8 2(x+3)=18 x-0.36x=160 x-0.05x=20.9 x+4x=32.5
7.8x-2.4x=1.08 3x+x=200
3.5x-1.5x=0.6 4x+1.2x=7.8 X-0.48x=0.78 6x+2.5x=2.55
(E)3x+2x+13.2=97.6 x+3x=16
7x-5.5x=10.5 14x-8.4x=40.32 x-0.2x=16 3.5x+5x=168 3x-x=19 2x+x=51
7.8x-x=14.28 x-0.32x=13.6 7.8x+7.2x=45 0.82x+0.28x=3.52 x+3x=9.6 1.5x+x=95 4x-x=27 24x+6x=63.6 3x-3.6=7.89 5.5x-1.3x=12.6
姓名
第五篇:五年级数学解方程教案2
解方程,就是要想办法,使方程左边只剩“χ”。
师:解方程的第二步,方程两边同时进行计算,得出χ的值。左边χ+3-3,等于什么? 生:等于χ。
师:(板书:χ)右边9-3呢? 生:等于6。
师:(板书:=6)天平在变化的过程中,始终保持平衡,说明解方程时,得到的每一步都是等式,要求大家把所有的等号对整齐。为了把等号对整齐,一般要把“解”写到前面一点。
师:χ=6是不是这个方程的解?验算一下就知道了!把χ=6代入方程中,看方程的两边是否相等。我们一起来写验算过程。
师:先看方程左边,(板书:方程左边=χ+3)把χ=6代入方程中,χ+3就变成了几加3? 生:6+3 师:(板书:=6+3)6+3等于9。(板书:=9)方程左边等于9。再看看方程右边等于几? 生:等于9。
师:也是等于9。方程左边等于9,方程右边也等于9,说明了什么? 生:方程左边等于方程右边,χ=6是这个方程的解。
师:(板书:=方程右边)最后,下结论:所以,χ=6是方程的解。(板书:所以,χ=6是方程的解。)师:验算的过程就写完了。现在,请同学们把课本打开,翻到58页,请小组的同学一边对照书中解方程的过程,一边讨论:解方程需要注意什么?(小组讨论)师:现在,请同学们说一说:解方程需要注意什么? 生:„„
师:还有没有要补充的? 生:„„
师:把刚才几位同学说的,合起来就很完整了。会解方程了吗? 生:会了。
师:那就试一试!(解方程χ+7=10)师:哪位同学愿意到黑板上来做?请你来吧!(学生做题)
师:都做完了吗?一起来看看这位同学做的!你们觉得他做得好不好? 生:他全部都做对了。
生:我觉得有一点不好,他把等号没有对整齐!„„ 师:刚才这位同学给你提的意见能接受吗? 生:能!
师:有错就改就是好孩子!解方程不仅要注意方法,还要注意书写格式。做完后还要养成验算的好习惯。师:老师还有一个问题想请教一下:为什么要在方程的两边同时减去7?
生:左边减去7是为了是方程左边只剩χ,右边减去7是为了使方程两边仍然相等!师:说得很好!这道题你们都解对了吗? 生:解对了!
师:你们真聪明!一下子都学会了!老师还想考考大家,出一个和它们不一样的方程:χ-3=9 你们会做吗? 生:会!
师:这题也会呀!那好,试试看吧!请同学们先独立完成,然后在小组内进行交流。(点一名学生板演)师:一起来看看黑板上的作业!他做得怎样? 生:做得很好,„„
师:谁来说说:为什么要在方程的两边同时加上3? 生:是为了使方程左边只剩χ而有保持两边仍然相等!师:你们同意他的说法吗? 生:同意!
师:看来,你们已经掌握解方程的方法了!
三、拓展应用
师:解方程还能帮助我们解决很多生活中的问题呢!请看大屏幕:(课件出示)能解决吗? 师:能!
师:开始吧!(注意:可以不写出演算的过程,但是要进行口头验算。)学生做题后汇报交流!
四、课堂小结
师:同学们真不了不起,不但学会了解方程,还学会了用解方程的方法解决问题!今天的课就上到这里,下课!