第一篇:人教版新课标五年级数学上册解方程练习题
解方程练习题加油!~
7+x=19x+120=17658+x=90x+150=290
79.4+x=95.52x+55=1297 x=63x × 9=4.5
4.4x=444x × 4.5=90x × 5=1006.2x=124
x-6=19x-3.3=8.9x-25.8=95.4x-54.3=100
x-77=275x÷78=10.5
9-x=4.5
77-x=21.99÷x=0.033×(x-4)=46
12x+8x=40
x-0.2x=326×5+2X=44
24-3X=3
X-6=123x+6=188x-3x=105X-0.8X=6(x-2)÷3=73x-8=165×3-x=840-8x=5x-77=144x ÷7=9x÷2.5=100x÷3=33.373.2-x=52.587-x=2299-x=61.93.3÷x=0.37÷x=0.00156÷x=5(8+x)÷5=15(x+5)÷3=1612x-8x=4012x+x=261.3x+x=263X+5X=4820X-50=5028+6X=8810X×(5+1)=6099X=100-X56-2X=204y+2=616+8x=402x-8=8x-6×5=42x+5=712x+8x=4.87(x-2)=49x÷5+9=21(200-x)÷5=303x+9=275.3+7x=7.4x÷5=215x+25=100x÷4.4=10x÷2.2=866-x=32.3
8.8÷x=4.439÷x=3 15÷(x+0.5)=1.5x+ 0.5x=614X-8X=12 32-22X=10X+3=18x+32=764x-3×9=292x+3=10、4×8+2x=3648-27+5x=313x÷5=4.8
第二篇:人教小学数学五年级上册解方程试讲稿
解方程试讲稿
一、教材:人教版小学五年级上册解方程
二、试讲稿
导入:
师:上课,同学们好,请坐
师:大家看一下我手里的盒子,猜一猜里面有几个小球。学生踊跃发言。
师:大家说什么的都有,那我们现在就借助天平来测量一下吧。师:同学们现在看一下讲桌上的这个天平,大家可以得到什么信息呢? 生(众):两边平衡了,右边有9个小球,左边是盒子和3个小球 师:很好,我们已经学习了方程,大家可以就此列一个等式吗? 生:x+3=9 师:非常棒,那x是多少呢?带着这个问题,我们今天来学习解方程。(板书—解方程)新授
师:x是多少呢?大家四人小组讨论一下
师:我见大家讨论的差不多了,来靠窗的那组同学来回答一下 学生:x=6 师:说一下理由
学生:6+3=9,所以x肯定是6.师:非常好,请坐,其实我们还可以用等式的性质来解决这个问题。大家再回忆一下等式的性质
学生(众):等式的两边同时加上或减去同一个数,等式左右仍然相等。
师:好,大家上节课学的都很扎实。现在看讲台上的天平,我把左边去掉三个球,根据等式的性质,那右边应该去掉几个 学生:3个
师:大家试着将刚才的过程用式子写出来。我们请两个学生在黑板上写。X+3-3=9-3 师:大家和这个同学写的一样吗?很好,大家完成的都非常好,师:大家现在观察天平,可以发现了什么? 生:盒子里有6个球
师:对,盒子里有6个球,也就是x等于(教师停顿,学生回答)6,大家把它写在本上。师:通过这样的过程,我们就求出了x=3。老师,现在有个问题,刚才我们两边同时减去了3,减去3有什么好,大家思考一下,来穿白色上衣的那位同学回答一下
生:根据等式的性质,可以知道减去3和减去2等式都成立,但是减去3后,就可以直接得到x的值了。
师:请坐,回答的非常好,我们要记得我们的目的是要求未知数x的值。师:我们把x=3叫做这个方程的解,而刚才求方程的解x=3的过程叫做解方程。师:大家看一下课本上对方程的解和解方程的概念,好,现在来一块说一下 生:使方程两边相等的未知数的值叫做方程的解
求方程解的过程叫做解方程。
师:结合刚才我们学的题目,同桌之间讨论一下方程的解和解方程 师:好,现在我们一块来答一下。非常好,方程的解为x=3 师:那解方程呢,嗯嗯,非常好,整个求解的过程的就叫做解方程
师:那老师有一个问题方程的解和解方程都有一个解字,他们之间有什么区别呢,同桌讨论一下
师:好,你来回答一下
生:方程的解,是一个值,解方程的解代表的是一个过程。师:回答的很利索,很好,请坐。
师:那大家观察一下大屏幕上这3个解方程的过程,看一下他们的格式有什么共同点 生:所有的等号都对齐了。
师:大家观察的很细致,这也是我们书写时需要注意的。
师:按x=3是不是这个方程的解呢?这个需要大家检验一下,同桌之间讨论一下,如何检验呢
学生:可以把x=3带入,看看等号左边和右边是否相等。师:很好,思路很清晰,大家是这检验一下,这个解正确吗? 生:正确
师:好,同学们看一下大屏幕上的书写过程,看看和你的一样吗?非常好,接下来,我们做一下做一做的三道题,老师请3个同学来黑板上做,好,就靠墙的这三位同学吧,其它的同学在下面做。巩固练习
师:大家和它们做的一样吗?来,你来说 生:第二个同学没有检验 小结
师:对,我们得到方程的解后要检验一下,我们这节课就快接近尾声了,那大家说一下这节课你们有哪些收获呢?
师:嗯,学会了解方程,对,解方程就是求未知数x的值,还有吗?嗯,需要检验......。作业
师:同学们下去以后给自己写一个方程,并求出这个方程的解,下节课咱们讨论,好,同学们下课。
第三篇:五年级数学上册解方程教案
解方程
【学习内容】人教版小学数学五年级上册第五四单元67——68页例
1、例2 【课程标准描述】
能用等式的性质解简单的方程。【学习目标】
1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】
通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】
1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。
2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】
一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。
引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)
(课件出示例1)根据图中信息,列出方程。
2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?
全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。
预设三:把9分成6和3,想x+3=6+3,所以x=6。
预设四:在方程两边同时减去3,就得到x=6。
思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。
引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?
一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。
思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。
学生尝试用算式表示刚才的操作过程。
教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。
4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?
学生交流后汇报,教师根据学生的回答板书检验过程。
二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)
(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。
小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。
三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。
一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:
解这个方程的依据是什么? 两边为什么要同时除以3?
(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。
四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。
2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。
五、回顾总结
今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;
2..等式的性质求方程的解; 3.检验。
注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。
第四篇:五年级下册数学解方程专项练习题
五年级上册数学解方程(专项练习)
知识点:
1、用字母表示数
(1)用字母表示数量关系(2)用字母表示计算公式
(3)用字母表示运算定律和计算法则
(4)求代数式的值:把给定字母的数值代入式子,求出式子的值。
2、注意:
(1)数字和字母、字母和字母相乘时,乘号可以记作“·”,或者省略不写,数字要写在字母的前面。
(2)当1与任何字母相乘时,1省略不写。
(3)在一个问题中,不同的量用不同的字母来表示,而不能用同一个字母表示。
3(4)字母可以表示任意数,所以在一些式子中,对字母的表示要进行说明。如:(a≠0)
a
3、简易方程:
(1)方程:含有未知数的等式叫作方程。
方程都是等式,等式不一定是方程,只有当等式中含有未知数时,才是方程。(2)方程的解:使方程左右两边相等的未知数的值叫作方程的解。(3)解方程:求方程的解的过程叫作解方程。
(4)方程的解是一个值,一般来说,没有解方程这个计算过程,方程的解是难以求出的,解方程是求方程的解的过程,是一个演算过程。
一、基础类方程。
x-7.7=2.85 5x-3x=68 4x+10=18
321=45+6x x-0.6x=8 x+8.6=9.4
52-2x=15 13÷x =1.3 x+8.3=19.7
15x =30 3x+9=36 7(x-2)=7
3x+9=12 18(5.37+x=7.47 1.8+2x=6 420-
30.5x+9=40 6
x-2)=27 125÷3x=5 x=180 3(x+3x=36 1.5x=320+4x 30÷x=75 x+5)=18 x+6=3x
5×3-x=8 40-8x=5 x÷5=21
48-20+5x=31 x+2x+8=80 200-x÷5=30
70÷x=4 45.6-3
5(x+5)=100
二、提高类方程。
3(4x-1)=3(22-x)
5(x-8)=3x 7
x =0.6 9.8-2x+3x=70 2.5(x=3.8 x+3)=50(2x-6)=84 x-7=6x+4 7
(22-x)+2=87x 8x-6x+30=12x+15
7(x+2)=5x+60 240
(31-8x)÷3=2x+1
12÷8x=3
8x-15×6=3x-20
÷(x-7)=30(6x-28)÷8=5x-8 21+4x)×2=10x+14(2x+7)×2=3x+18
(
第五篇:五年级下册解方程练习题
五年级解方程练习二
X-7.7=2.85
5X-3X=68
4X+10=15
320=45+6X
52-2x=15
15x=30
3x+9=12
X-0.6X=8
13÷x=1.3
3x+9=36
18(x-2)=27
X+8.6=9.4
X+8.3=19.7
7(x-2)=7
12x=320+4x
五年级解方程练习三
5.37+x=7.47
15÷3x=5
30÷x=85
1.8+2x=6
0.5x+9=40
5×3-x=8
48-20+5x=31
420-3x=170
6x+3x=36
40-8x=5
x+2x+8=80
3(x+5)=18
1.5x+6=3x
x÷5=21 200-x÷5=30
70÷x =4
45.6-3x =1.6
9.8-2x=3.8
5(x+5)=100
x+3x=70
3(x+3)=50
二、提高类方程。
4(4x-1)=3(22-x)
5(x-8)=3x
(22-x+2=68x
7(x+2)=5x+60
7(2x-6)=84
7x-7=6x+4 8x-6x+30=12x+15 240÷(x-7)=30
(20-8x)÷3=2x+1
(6x-40)÷8=5x-8
12÷8x=3
(21+4x)×2=10x+14
8x-15×6=3x-20
2x+7)×2=4x+14(