五年级数学教案:解方程2

2024-06-02下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《五年级数学教案:解方程2》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《五年级数学教案:解方程2》。

五年级数学教案:解方程2

教学目标

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

知识重点

掌握解方程的方法

教学过程

教学方法和手段

引入

前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

教学过程

新知学习

(一) 教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,得到x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

课堂练习

1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。

2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

试着解方程:x-2.4=6x÷9=0.7(强调验算)

小结与作业

课堂小结

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

课后追记

如果X前面是加号,方程两边就减去另外一个数,如果X前面是乘号,方程两边就除以乘号前面的数。

§5.2 解方程(1)教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项。

教学重点:利用等式性质1解方程及移项法则; 教学难点:利用等式性质1来解释方程的变形。教学准备:

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。教学过程:

(一)引入新课:

1、上节课的想一想引入新课:等式和方程之间有什么区别和联系? 方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点? ① 5x+6=9x②3x+5③7+5×3=22④4x+3y=2 由学生小议后回答:①、④是方程。

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)① 2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:“两边”、“都”、“同”、“等式”。

2、利用等式性质1解方程:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。注意: 解题格式。

例1 解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=5

5x=7+4x

x=5-2

5x-4x=7

思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。注意:①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。例2 解方程:3x+4=2x+7 解:移项,得3x-2x=7-4,合并同类项,得x=3。∴x=3是原方程的解。

归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式; ③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页

1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程? ②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。

下载五年级数学教案:解方程2word格式文档
下载五年级数学教案:解方程2.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    五年级解方程应用题

    1.某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 2.一条公路长360m,甲乙两支施工队同时从公路两端向中间铺柏......

    五年级数学解方程教案2(精选五篇)

    解方程,就是要想办法,使方程左边只剩“χ”。 师:解方程的第二步,方程两边同时进行计算,得出χ的值。左边χ+3-3,等于什么? 生:等于χ。 师:(板书:χ)右边9-3呢? 生:等于6。 师:(板书:=6)天平......

    解方程--教案2

    解方程 教学目标: 1.利用等式的基本性质,学会解形如ax=b及x÷a=b方程的解,初步学会a-x=b及a÷x=b方程的解(先不讲,以后讲)。 2.初步学会如何利用方程来解决实际问题,进一步提高分......

    五年级数学解方程教案

    五年级数学《解方程》教学教案 十东小学授课教师:徐国栋 (一)教学内容 教材第57页内容。 (二)教学目标 知识与技能 ⑴初步理解方程的解与解方程的含义。 ⑵会检验一个具体的值是......

    五年级数学解方程说课稿

    五年级数学解方程说课稿 五年级数学解方程说课稿1 一、说教材人教课标版五年级上册“简易方程”,根据《课标》要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方......

    五年级下册数学解方程

    五年级下册数学解方程(专项检测) (满分:100分, 时间:60分钟)一、基础类方程。 X-7.7=2.855X-3X=684X+10=5320=45+6XX-0.6X=8x+8.6=9.452-2x=1513÷x =1.3X+8.3=19.715x =303 3x+9=1218(......

    小学五年级解方程应用题

    五年级解方程应用题(一) 1、大地小学今年招收1年级新生150人,其中男生人数是女生的1.5倍。一年级男、女学生各有多少人? 2、一块地种鱼米可收入2500元,比种土豆收入的3倍还多10......

    小学五年级解方程试题

    小学五年级解方程试题【1】1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?2、大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。住宅每层高多少米?3、故宫的面积......