第一篇:圆的周长与面积计算教学反思
圆的周长与面积计算教学反思
“圆的周长与面积”学完后,我进行了一次“圆的周长与 面积”的单元测试,总体成绩还算比较满意,但从试卷上和平时的作业上来看反 应出来的问题还是比较多,下面就这一单元近来的教学作以如下思考:
一、存在的问题
1、学生对有关圆的概念认识不深刻。(1)圆周率是圆的周长与直径的关系,学生写成周长与面积或其它的关系,认 识不清;圆的周长除以它的直径,所得的商是()。有的学生填写的是一个固 定的数,还有的同学填的是3.14,准确答案应是圆周率或∏。(2)半圆的周长总容易理解成圆的周长的一半,其实是圆周长的一半加上它的 一条直径或两条半径。(3)对圆的周长和面积公式有点混淆。明明知道是求面积,可是却去求周长,自己还不知道错了。
2、学生对有关圆的生活实际不熟悉。(1)在实际生活运用中不知道“自动旋转喷灌装置”是什么样的,不能把实际 生活与所学知识联系起来。射程40 米,20 米,10 米,是指喷灌面的半径,不是 直径。安装的位置,是指圆心。(2)不知道钟面上的分针是圆的半径,常常理解成直径,造成解题错误。
3、学生对组合图形的周长认识不到。(1)“周长”是指图形一周所有线的长度,小学六年级阶段所认识的“线”只 有两种可以计算长度的线,一是线段,二是圆形的曲线。学生往往会把不在一周 上的线段计入周长,也会不计凹进图形的线,或者减去凹进图形的线的长度。(2)长方形和其内切圆之间的关系不清楚,看不出长方形的宽就是圆的直径,找不出长方形的长宽与圆的直径和半径之间的对应关系,求不出长和宽各是多 少,求长方形的周长就无从下手。
4、学生对组合图形的面积掌握情况。(1)由于学生对图形的平移和旋转比较感兴趣,所以对组合图形的面积掌握较 好,大部分同学都能找到比较简洁的计算方法。(2)在求半圆的面积时,有些学生总是在求得圆的面积后,忘记乘二分之一或 除以2.5、学生不愿意动手操作或操作能力不高。对于没有图形的解答环形面积的应用题,学生不愿动手画草图 来分析,因此找不对两个圆的半径。对动手操作题目不知道怎样下 手,如右图画图形的所有对称轴或多画或少画。
6、两个圆的半径、直径、周长、面积之间的比的关系 两个圆的半径、直径、周长的比是一致的,如果半径比是3:1,则直径和周 长的比都是3:1,也就是长度单位的比相同;两个圆的面积的的倍数关系,是长 度单位的平方倍,长度单位是3 倍,则面积就是9 倍。
7、有关计算方面出现的问题。(1)有的同学在计算某数的平方时,如3 的平方,应该是3 乘3,可总有同学 却成3 乘2.(2)学生在计算碰到3.14 时,不能灵活计算,一般把3.14 放到最后去乘,比 较容易计算,而不灵活的同学不管那一套,3.14 写在哪里就乘哪,计算花费时 间比较多,也容易出错。(3)有的同学在解答这部分知识时,列出综合算式,但是解答时步骤省略或没 有计算结束就不计算了,出现问题也比较突出。
二、解决办法: 发现了问题,我赶紧要想出方法进行补救,不能让这种状态持续下去,我是 这样做的:
1、重视公式的推导过程,加强公式的记忆,强化不同公式的区别,先从公式上 打好基础。
2、在解决问题时,先把公式写上,然后再根据公式列式,这样的好处是让学生 好好思考到底需要哪个公式,避免出错误。
3、整理出这个单元的所有概念及公式,粘贴在书上,便于学生早读时记忆和做 作业时查找相应信息。
4、让学生记住3.14 的倍数的结果,这样能提高计算的速度和质量。
5、让学生在列式解答时,计算步骤不能省略,一步一步算出结果,这样还能避 免学生出错。
6、从学生的实际生活入手,如出示了圆形花坛的图片,设计了在花坛周围铺一 条小路求小路的面积这样的问题,创设与学生十分贴近的生活情景,这样充分调 动学生学习兴趣。增强学生学好数学的信心。
7、在教学过程中,把对知识梳理过程的主动权交给学生,让学生小组交流,培 养学生的合作意识,同时给学生相互学习提供一个机会,照顾到每一个学生,不 放弃每一个学生。
8、恰当的运用多媒体技术,以形象直观的课件演示,如“圆的面积”一课帮助 学生理解圆的面积的推导过程。特别是圆周长的一半转化成长方形的长,半径就 是长方形的宽这一教学环节,恰当的运用课件演示弥补了语言描述的不足,而且 学生通过观察更容易理解和掌握。
9、分层练习,照顾全面学生。
总之,在今后的教学中,努力实现“人人学有价值的数学、人人都获得必要 的数学,不同的人在数学上得到不同的发展”这一教学目标,在教学过程中,追 求积极的教学行为,运用先进的教学模式,灵活恰当的运用多媒体技术,树立“为 学习而设计教学”的备课理念、精心设计每一个环节,使教学流程科学、丰富、生动活泼、努力培养学生梳理知识,反思、研究的习惯及创新精神和实践能力。
第二篇:圆的周长与面积计算教学反思
比的基本性质教学反思
比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时让学生对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。但在这一环节中,花费的时间有些多,主要原因是教师设计、提问有时不到位造成的。由于前面花费了时间较多,所以,课没进行完,没打到预期的效果。当然整节课还是体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!
注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。例如:当学生得出“比的基本性质”这一规律时,我马上出示:判断:(1)8:10=(8+10):(10+10)=18:20()
(2)12:16=(12/6):(16/4)=2:4()
(3)0.8:1=(0.8×10):(1×10)=8:10()(4)、4:5的前项扩大2倍,要使比值不变,比的后项应该除以2.()这四道题,如果学生会完成了,这个基本性质也理解了。再如:我出示的例1中的3道例题,把学生在化简过程中将会出现的错误全部呈现了出来,学生第一印象的掌握,有助于今后的练习。
总之,教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,有些环节处理的不到位,课堂回答问题的学生参与面不够广,在以后教学中力求让学生在知识点和概念及数学语言的运用上表述更准确。
第三篇:圆的面积计算教学反思
圆的面积计算教学反思
圆的面积计算>教学反思
(一)本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
一、>故事激趣,渗透“转化”
本课开始,我引导学生回忆简述了“曹冲称象”的故事,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、演示操作,加深理解
当学生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。
这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。
圆的面积计算教学反思
(二)圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:
一、故事激趣,渗透“转化”重视自主探究,发挥学生主体性。
教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同>倾听并判断学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓
三、演示操作,加深理解
生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的,样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。平行四边形面积学生都>会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c、2=πr h=r,平行四边形的面积=圆的面积,从而推导出S平=s圆=π×r×r =πr2。
此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
圆的面积计算教学反思
(三)这节《圆的面积》,是义务教育课程标准实验教科书六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识的学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。一。明确概念: 圆的面积是在圆的周长的基础上进行教学的,首先利用课件演示 马能吃到草的图 让学生直观感知圆的面积。并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二、以旧促新 明确了概念,认识圆的面积之后,自然是想到该如何计算圆的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,为新知的“再创造”做好知识的准备。根据学生的回答,选取其中的一个平面图形:平行四边形,让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,就可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
三、转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,转化成学过的平面图形。让学生拼并观察它像什么图形?让学生发表自己的意见,充分肯定学生的观察。引导学生闭上眼睛,如果分成 32 等份会怎么样? 64 等份呢? „„ 让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就愈接近长方形,完成另一个重要数学思想 — 极限思想的渗透。四。公式推导 长方形 面积学生都会计算: s=ab 引导学生观察长方形的长和宽与圆有什么样的关系:发现 a =c/2 =πr b=r, 长方形的面积 = 圆的面积,从而推导出 S=πS=π×r×r =πr2。通过实验操作 , 经历公式的推导过程 , 不但使学生加深对公式的理解 , 而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神 , 学生在求知的过程中体会到数形结合的内在美 , 品尝到成功的喜悦。
第四篇:《圆的周长和面积》教学反思
教材分析:
本节课的内容是在学生认识了圆,探索并掌握了圆周长和面积计算公式的基础上学习的,为学生以后学习解决有关圆的较复杂的实际问题奠定了基础。
学情分析:
学生已经认识了圆,探索并初步掌握了圆周长和面积的计算公式,能利用公式进行简单的圆周长和面积的计算;另外学生的理解、分析能力及计算力较差。
《圆的周长和面积》教学反思
本节课《圆的周长和面积》的教学,涉及公式较多,计算也较麻烦;所以,公式相当混淆,计算的正确率也较低,这让我比较头疼。就本节课来说我觉得有以下几个方面做得较好:
1、教学中基本能以学生为中心,面向全体学生。从教学设计到整个教学过程,我都从学生实际角度去思考问题,尽量让每个学生都有收获。因为学生基础相对薄弱,我就以基础性的训练为主,适当提升难度,让学有余力的学生有兴趣继续研究。从提问的人数来看,大约占到了总人数的一半左右,让每个学生都参与到学习中来。
2、基本能围绕着重点进行教学,且训练有一定的梯度,从学生做基础题所用的时间,学生基础真的较薄弱,只有抓好了基础训练,才会让大部分的学生有提高。
3、基本能做到不断夯实基础知识和基本技能。通过学生的自我修正,小组内互相帮助,教师的巡视指导,多数学生基本掌握了计算方法,如要熟练计算,还需课后多巩固、多加练习。
回顾整节课的教学,同时,我也发现了本节课有许多不足: 我在突出重点的同时,没有更好地渗透难点的教学,有点重基础而忽略深化的感觉。有些细节没注意到,例如学生独立完成练习时我就粗略地看了一下学生做的方法和结果,而没有留意到他们的书写格式,有时也会忽略对某些中下生的指导。
通过本节课的教学,我反思了许多,在今后的教学中,我会以本节课的教学得失为基础,加强对每一节课的研究,扬长避短,全面提高数学课的教学质量。在今后的教学中,最好是老师要把出现的问题尽量提前考虑的更全面一些,事先就给学生打上“预防针”,防患于未然,但隔一段时间就要对学生学习内容进行总结反思,发现问题及时补缺补漏,以免造成积少成多,反思真是一副良药。
第五篇:圆的周长与面积教学反思
《圆的周长与面积》课例分析
10月23日,我听了马老师讲的《圆的周长和面积》的复习课,下面是我从几方面对马老师的这节课进行深刻反思:
一、本节课的亮点
1、知识树导入令人耳目一新。
(1)先让学生自己上台展示知识树,学生在展示过程中引领学生共同复习本章知识点。
(2)老师出示漂亮的知识树,为学生构建整体知识框架打下坚实的基础,同时为本节课的顺利进行 良好的开端。
2、知识回顾阶段:回顾知识的同时马老师恰当的运用多媒体技术,以形象直观的课件演示,如“圆的面积”一课帮助学生理解圆的面积的推导过程。特别是圆周长的一半转化成长方形的长,半径就是长方形的宽这一教学环节,恰当的运用课件演示弥补了语言描述的不足,而且学生通过观察更容易理解和掌握。
3、实践应用阶段:设计的体型即面向全体同学又体现梯度化。分层练习,照顾全面学生。在平时的练习中,注重基础题、应用题、提高题和拓展题的分层,让后进的同学,能够完成基础题,中等的同学,通过动脑思考,小组合作等方式,基本能够解决全部题目,对于优秀的同学提倡探索解决拓展题的意识。
4、在教学过程中,把对知识梳理过程的主动权交给学生,让学生小组交流,培养学生的合作意识,同时给学生相互学习提供一个机会,照顾到每一个学生,不放弃每一个学生。
5、注重难点突破如:半圆的周长总容易理解成圆的周长的一半,其实是圆周长的一半加上它的一条直径或两条半径。
二、不足之处:课容量稍大;设计的题型稍难.总之,在今后的教学中,努力实现“人人学有价值的数学、人人都获得必要的数学”这一教学目标,在教学过程中,追求积极的教学行为,灵活恰当的运用多媒体技术,树立“为学习而设计教学”的备课理念、精心设计每一个环节,使教学流程科学、丰富、生动活泼、努力培养学生梳理知识,反思、研究的习惯及创新精神和实践能力。