第一篇:4.1.1圆的标准方程教学反思
教学反思
圆的标准方程,这节内容我安排了两节课的时间,这节课主要是圆的标准方程的推导和一些简单的运用。在平面解析几何中,我认为这节内容很重要,因为它的研究方法为以后学习圆锥曲线提供了一个基础模式,如果学生掌握得好,后面的学习会轻松许多。
由于我所面对的学生初中数学基础不是很好,所以提前复习了旧知识,之后我引入了生活中的一个常见问题引发学生的疑问,产生认知冲突形成学习的氛围,进而提高学生学习本节内容的兴趣。
圆的标准方程是求曲线方程的一个具体表现,但学生对圆的标准方程还是很陌生,难以将圆与圆的标准方程紧密联系起来。基于此,我想通过学生的切身体验;来发现圆的决定要素,让学生明确一个圆对应一个方程,在此基础上借助求曲线方程的基本步骤,由学生自主探究推导出以(2,3)为圆心,2为半径的圆的标准方程,再由特殊到一般,利用化归的思想归纳出以(a,b)为圆心,r为半径的圆心的标准方程。并引导学生找出方程的特征,以帮助学生理解和记忆,及时掌握。
例题教学的设计,还是紧密围绕圆的标准方程这一目标展开,主要加深对圆的标准方程的理解及一些简单的应用。例题安排不多,但变式较多,变式的设计由特殊到一般,由简到繁,由浅入深,层层入深,让学生的思维得以提高,比较符合学生的认知规律,这样学生接受起来比较容易。
课堂练习,是对本节课目标落实情况的检测,让学生明确本节课应该到达什么样的目标,题不多,很基础,主要是激发学生的兴趣和增强学习的自信。
整个教学设计,我的希望是以学生自主学习为主,所以很多问题都由学生独立思考或讨论完成,教师仅仅是一个引路人,让学生的主体地位得到充分体现,注重学生思维的形成过程,并将数学思想方法渗透到教学中。
总的来说,这节课几乎是按自己的教学设计在进行,而且顺利地完成了。应该说在学生动手,双基落实方面还不错,学生的活动也比较充分,教师仅是及时的引导和 1 点评,让学生的主体性得到了较为充分的体现。另外,在教学中不断的渗透数学思想和方法,让学生思维得到提升。
当然,这节课还有很多不足的地方。比如:在变式练习时,未写出切线的方程,缺乏解题和板书的完整性;另外,后面的课堂练习也没有得到及时的反馈,这是较遗憾的。
从这堂课的教学设计和教学的过程中,我得到了锻炼和提高,这对我在今后的教学有很大的帮助。
第二篇:圆的标准方程教学反思
圆的标准方程教学反思6篇
圆的标准方程教学反思1
本节课通过提问引入,在初中学过圆的概念,那么具有什么性质的点的轨迹成为圆呢?然后建立圆的标准方程。本节课采用ppt多媒体演示,增加了信息量,动态演示图形,引起学生更强的注意,提高课堂的教学效率。为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”教学模式进行教学设计。教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来。教师的每项教学措施,都是给学生创造一种思维情景,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题。这节课学生很投入,他们通过独立思考,相互讨论,交流合作发现知识,教学不仅仅是知识的传授,更重要的是让学生参与获得知识的活动,教师应培养学生主动获取知识的能力。
本节课的失误在于:
①课前我以为同学在初中学过圆,并且对圆的定义有深入的了解,但实际情况比我想象的更糟糕,同学的基础有点差,在问题的设计处没有达到预期的效果。
②在解决圆的.问题中多次用到配方法,待定系数法等思想方法,应该多加总结。
③有关圆的内容非常丰富,有很多有价值的问题,应该选取一些较难的题目供学习好的学生研究。
圆的标准方程教学反思2
今天开一节新课,课题是《圆的标准方程》。教学上,我用了奥运五环旗来引入,通过五环的圆形状,让学生举例生活中的圆,借以活跃课堂的气氛并提出本节研究的课题。接下来,设计两个问题作为课堂的串联。问题一:如何作出一个圆?先让学生上来画圆,再结合画圆的呈现的情境,引导学生回顾圆的'定义;问题二:如果圆心为C(a,b),半径为r,如何求圆的方程?教师根据学生作出的圆,添上坐标轴,让学生根据求曲线方程的步骤推导圆的方程。两个问题一解决,圆的标准方程也就浮出水面了。
结合例题,教师对圆的标准方程的结构作了进一步说明,特别强调了圆心在原点的情况,然后,就进入了练习巩固阶段。本节课设置了三个题组,题组一(4题):已知圆的标准方程,口答圆的圆心坐标和半径;题组二(4题):已知圆的圆心坐标和半径,写出圆的标准方程;通过题组一、二,教师引导学生强化了确定圆方程的关键是明确圆心坐标和圆半径,如果条件不成熟,则需根据条件先求出圆心坐标和半径。于是,给出题组三,都是要求学生先作出草图并求圆的标准方程,条件分别如下:(1)已知圆心和过圆上一点;(2)以A、B两点为圆的直径;(3)已知圆心,且圆与一直线相切;(4)已知圆过两点和半径r。
四道题目,让学生先作简单的思考,然后叫四位学生分别上来板演。这样的安排,也是经过深思熟虑的,但放手让学生做之后,结果却不尽如人意。尤其是3、4两题,两位学生耗费了近15分钟时间,虽然第4题得到了解决,但离下课仅剩下2分钟。结果只能对学生的板演作匆匆忙忙的说明,未能对解题思路作进一步的延伸,是为本课一遗憾。
在课后,几个同事进行了交流,认为题组三的给出太过突然,应该先设置一个类似的例题作缓冲,而且题4在本节课显得难度过高,应当放在下节课再讲。思索再三,确实同事的见解很到位,本节课还是题量设置过大了一些,在教学中,题组三应该一题一题地给出,然后尽可能详细地引导学生对解题思路和过程进行分析,讲多少题,应根据课堂的情况进行调整。如此,弹性会更大,课堂也会进行得更从容。
看来,如何放手给学生?放手到什么程度?总有很多让人品味的地方。
圆的标准方程教学反思3
本节课的教学设计,通过适当的创设情境,调动学生的学习兴趣,然后以问题做链,环环相扣,运用前段时间学习的求曲线的方法引导学生探索方程,使学生的探究活动贯穿始终。从圆的标准方程的推导到标准方程的求解都是在问题的指引下,通过我的适度引导、侧面帮助、不断肯定,由学生探究完成并走向成功。在内容上,有如下感悟:
1、圆是最简单的曲线。本节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备。同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。因此,教学中应加强练习,使学生确实掌握这一单元的知识和方法。
2、在解决有关圆的问题过程中多次用到配方法、待定系数法等思想方法,教学中应多总结。
3、解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前面学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识。
4、有关圆的'内容非常丰富,有很多有价值的问题,建议适当选择一些内容供学生研究。例如:由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题,类似的还有圆系方程等问题。
5、应该重视激发学生的求知欲。教学圆的认识时,注重给学生创设思维空间,注意引导学生积极体验,自己产生问题意识,自己去探索、尝试、解决、总结,从而主动获取知识。
圆的标准方程教学反思4
这节课主要是圆的标准方程的推导和一些简单的运用。它的研究方法坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。如果学生掌握得好,后面的学习“圆锥曲线与方程”会轻松许多。
标准方程的推导,先通过学生的切身体验,来发现决定圆的要素圆心和半径,让学生明确一个圆对应一个方程,在此基础上借助求曲线方程的基本步骤,由学生自主探究推导出以(3,5)为圆心,4为半径的圆的`标准方程,再由特殊到一般,归纳出以(a,b)为圆心,r为半径的圆的标准方程。并引导学生找出方程的特征,以帮助学生理解和记忆。
例题教学的设计,主要加深对圆的标准方程的理解及一些简单的应用。例题安排不多,但变式较多,变式的设计由特殊到一般,由简到繁,由浅入深,比较符合学生的认知规律,这样学生接受起来比较容易。
课堂练习,是对本节课目标落实情况的检测,让学生明确本节课应该到达什么样的目标。
这节课几乎是按自己的教学设计顺利完成。在学生动手,双基落实方面还不错,学生的活动也比较充分,教师仅是及时的引导和点评,让学生的主体性得到了较为充分的体现。另外,在教学中不断的渗透数学思想和方法,让学生思维得到提升。
圆的标准方程教学反思5
《圆的标准方程》教学反思使用分层教学这一方法教学已有半年之久,整体课堂无论从课堂参与度还是课堂教学效果都有了明显提高。更让我高兴的是学生的数学成绩,数学思维还有综合素质都得到了显著的提高。就我刚刚上的“圆的标准方程”这一节课,谈一下我自己的想法:“圆的标准方程”这节课的'内容相对比较简单,主要就是考察圆的概念,圆的标准方程求法,但由于圆的基本性质联系现实生活比较紧密,所以我将本节的数学课与学生的专业和日常生活中的实物结合,将教学任务分解,本着第三层次的学生能解决不找第二层的学生,第二层次的学生能解决不给第一层次的学生这一原则,充分发挥了第三层次学生的作用,上课时所有学生的参与度空前高涨。成功之处:
通过落实分层学案,使学生找到适合自己的学案,这不仅有利于课上有意注意的保持,而且方便学生在课后及时复习,写出反思;
力求将全班学习、小组讨论和个人独立研究三者有机结合,给学生以思考、讲解和展示的机会,采用小组学习法,组内强弱搭配,组的每位学生的能力得到均衡,培养学生的协作意识和参与意识,使学生参与课堂的主动性都有所增强;
2.生活引入,又从生活结束。让学生体会到数学源于生活,贴近生活。整堂课效果还是满意的,但是还是存在一些问题。比如:
1.组与组之间搭配不太合理;
2.没有充分挖掘第一层次的学生的潜力,而且第三层次的学生到达第三类题目时,一看数学应用题直接放弃了。存在问题,解决问题。本着这一原则,我会继续努力。
圆的标准方程教学反思6
圆的标准方程,这节内容我安排了两节课的时间,这节课主要是圆的标准方程的推导和一些简单的运用。在平面解析几何中,我认为这节内容很重要,因为它的研究方法为以后学习圆锥曲线提供了一个基础模式,如果学生掌握得好,后面的学习会轻松许多。
由于我所面对的学生初中数学基础不是很好,所以提前复习了旧知识,之后我引入了生活中的一个常见问题引发学生的疑问,产生认知冲突形成学习的氛围,进而提高学生学习本节内容的兴趣。
圆的标准方程是求曲线方程的一个具体表现,但学生对圆的标准方程还是很陌生,难以将圆与圆的标准方程紧密联系起来。基于此,我想通过学生的切身体验;来发现圆的决定要素,让学生明确一个圆对应一个方程,在此基础上借助求曲线方程的基本步骤,由学生自主探究推导出以(2,3)为圆心,2为半径的圆的标准方程,再由特殊到一般,利用化归的思想归纳出以(a,b)为圆心,r为半径的圆心的标准方程。并引导学生找出方程的特征,以帮助学生理解和记忆,及时掌握。
例题教学的`设计,还是紧密围绕圆的标准方程这一目标展开,主要加深对圆的标准方程的理解及一些简单的应用。例题安排不多,但变式较多,变式的设计由特殊到一般,由简到繁,由浅入深,层层入深,让学生的思维得以提高,比较符合学生的认知规律,这样学生接受起来比较容易。
课堂练习,是对本节课目标落实情况的检测,让学生明确本节课应该到达什么样的目标,题不多,很基础,主要是激发学生的兴趣和增强学习的自信。
整个教学设计,我的希望是以学生自主学习为主,所以很多问题都由学生独立思考或讨论完成,教师仅仅是一个引路人,让学生的主体地位得到充分体现,注重学生思维的形成过程,并将数学思想方法渗透到教学中。
总的来说,这节课几乎是按自己的教学设计在进行,而且顺利地完成了。应该说在学生动手,双基落实方面还不错,学生的活动也比较充分,教师仅是及时的引导和点评,让学生的主体性得到了较为充分的体现。另外,在教学中不断的渗透数学思想和方法,让学生思维得到提升。
当然,这节课还有很多不足的地方。比如:在变式练习时,未写出切线的方程,缺乏解题和板书的完整性;另外,后面的课堂练习也没有得到及时的反馈,这是较遗憾的。
第三篇:圆的标准方程教学反思
圆的标准方程教学反思 5篇
圆的标准方程教学反思 1
本节课通过提问引入,在初中学过圆的概念,那么具有什么性质的点的轨迹成为圆呢?然后建立圆的标准方程。本节课采用ppt多媒体演示,增加了信息量,动态演示图形,引起学生更强的注意,提高课堂的教学效率。为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”教学模式进行教学设计。教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来。教师的每项教学措施,都是给学生创造一种思维情景,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题。这节课学生很投入,他们通过独立思考,相互讨论,交流合作发现知识,教学不仅仅是知识的'传授,更重要的是让学生参与获得知识的活动,教师应培养学生主动获取知识的能力。
本节课的失误在于:
①课前我以为同学在初中学过圆,并且对圆的定义有深入的了解,但实际情况比我想象的更糟糕,同学的基础有点差,在问题的设计处没有达到预期的效果。
②在解决圆的问题中多次用到配方法,待定系数法等思想方法,应该多加总结。
③有关圆的内容非常丰富,有很多有价值的问题,应该选取一些较难的题目供学习好的学生研究。
圆的标准方程教学反思 2
本节课的教学设计,通过适当的创设情境,调动学生的学习兴趣,然后以问题做链,环环相扣,运用前段时间学习的求曲线的方法引导学生探索方程,使学生的探究活动贯穿始终。从圆的标准方程的推导到标准方程的求解都是在问题的指引下,通过我的适度引导、侧面帮助、不断肯定,由学生探究完成并走向成功。在内容上,有如下感悟:
1、圆是最简单的曲线。本节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备。同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的'思想方法。因此,教学中应加强练习,使学生确实掌握这一单元的知识和方法。
2、在解决有关圆的问题过程中多次用到配方法、待定系数法等思想方法,教学中应多总结。
3、解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前面学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识。
4、有关圆的内容非常丰富,有很多有价值的问题,建议适当选择一些内容供学生研究。例如:由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题,类似的还有圆系方程等问题。
5、应该重视激发学生的求知欲。教学圆的认识时,注重给学生创设思维空间,注意引导学生积极体验,自己产生问题意识,自己去探索、尝试、解决、总结,从而主动获取知识。
圆的标准方程教学反思 3
《圆的标准方程》教学反思使用分层教学这一方法教学已有半年之久,整体课堂无论从课堂参与度还是课堂教学效果都有了明显提高。更让我高兴的是学生的数学成绩,数学思维还有综合素质都得到了显著的提高。就我刚刚上的“圆的标准方程”这一节课,谈一下我自己的想法:“圆的标准方程”这节课的内容相对比较简单,主要就是考察圆的概念,圆的标准方程求法,但由于圆的`基本性质联系现实生活比较紧密,所以我将本节的数学课与学生的专业和日常生活中的实物结合,将教学任务分解,本着第三层次的学生能解决不找第二层的学生,第二层次的学生能解决不给第一层次的学生这一原则,充分发挥了第三层次学生的作用,上课时所有学生的参与度空前高涨。成功之处:
通过落实分层学案,使学生找到适合自己的学案,这不仅有利于课上有意注意的保持,而且方便学生在课后及时复习,写出反思;
力求将全班学习、小组讨论和个人独立研究三者有机结合,给学生以思考、讲解和展示的机会,采用小组学习法,组内强弱搭配,组的每位学生的能力得到均衡,培养学生的协作意识和参与意识,使学生参与课堂的主动性都有所增强;
2.生活引入,又从生活结束。让学生体会到数学源于生活,贴近生活。整堂课效果还是满意的,但是还是存在一些问题。比如:
1.组与组之间搭配不太合理;
2.没有充分挖掘第一层次的学生的潜力,而且第三层次的学生到达第三类题目时,一看数学应用题直接放弃了。存在问题,解决问题。本着这一原则,我会继续努力。
圆的标准方程教学反思 4
圆的标准方程,这节内容我安排了两节课的时间,这节课主要是圆的标准方程的推导和一些简单的运用。在平面解析几何中,我认为这节内容很重要,因为它的研究方法为以后学习圆锥曲线提供了一个基础模式,如果学生掌握得好,后面的学习会轻松许多。
由于我所面对的学生初中数学基础不是很好,所以提前复习了旧知识,之后我引入了生活中的一个常见问题引发学生的疑问,产生认知冲突形成学习的氛围,进而提高学生学习本节内容的兴趣。
圆的'标准方程是求曲线方程的一个具体表现,但学生对圆的标准方程还是很陌生,难以将圆与圆的标准方程紧密联系起来。基于此,我想通过学生的切身体验;来发现圆的决定要素,让学生明确一个圆对应一个方程,在此基础上借助求曲线方程的基本步骤,由学生自主探究推导出以(2,3)为圆心,2为半径的圆的标准方程,再由特殊到一般,利用化归的思想归纳出以(a,b)为圆心,r为半径的圆心的标准方程。并引导学生找出方程的特征,以帮助学生理解和记忆,及时掌握。
例题教学的设计,还是紧密围绕圆的标准方程这一目标展开,主要加深对圆的标准方程的理解及一些简单的应用。例题安排不多,但变式较多,变式的设计由特殊到一般,由简到繁,由浅入深,层层入深,让学生的思维得以提高,比较符合学生的认知规律,这样学生接受起来比较容易。
课堂练习,是对本节课目标落实情况的检测,让学生明确本节课应该到达什么样的目标,题不多,很基础,主要是激发学生的兴趣和增强学习的自信。
整个教学设计,我的希望是以学生自主学习为主,所以很多问题都由学生独立思考或讨论完成,教师仅仅是一个引路人,让学生的主体地位得到充分体现,注重学生思维的形成过程,并将数学思想方法渗透到教学中。
总的来说,这节课几乎是按自己的教学设计在进行,而且顺利地完成了。应该说在学生动手,双基落实方面还不错,学生的活动也比较充分,教师仅是及时的引导和
点评,让学生的主体性得到了较为充分的体现。另外,在教学中不断的渗透数学思想和方法,让学生思维得到提升。
当然,这节课还有很多不足的地方。比如:在变式练习时,未写出切线的方程,缺乏解题和板书的完整性;另外,后面的课堂练习也没有得到及时的反馈,这是较遗憾的。
从这堂课的教学设计和教学的过程中,我得到了锻炼和提高,这对我在今后的教学有很大的帮助。
圆的标准方程教学反思 5
今天开一节新课,课题是《圆的标准方程》。教学上,我用了奥运五环旗来引入,通过五环的圆形状,让学生举例生活中的圆,借以活跃课堂的气氛并提出本节研究的课题。接下来,设计两个问题作为课堂的串联。问题一:如何作出一个圆?先让学生上来画圆,再结合画圆的呈现的情境,引导学生回顾圆的定义;问题二:如果圆心为C(a,b),半径为r,如何求圆的方程?教师根据学生作出的圆,添上坐标轴,让学生根据求曲线方程的步骤推导圆的方程。两个问题一解决,圆的标准方程也就浮出水面了。
结合例题,教师对圆的标准方程的结构作了进一步说明,特别强调了圆心在原点的情况,然后,就进入了练习巩固阶段。本节课设置了三个题组,题组一(4题):已知圆的.标准方程,口答圆的圆心坐标和半径;题组二(4题):已知圆的圆心坐标和半径,写出圆的标准方程;通过题组一、二,教师引导学生强化了确定圆方程的关键是明确圆心坐标和圆半径,如果条件不成熟,则需根据条件先求出圆心坐标和半径。于是,给出题组三,都是要求学生先作出草图并求圆的标准方程,条件分别如下:(1)已知圆心和过圆上一点;(2)以A、B两点为圆的直径;(3)已知圆心,且圆与一直线相切;(4)已知圆过两点和半径r。
四道题目,让学生先作简单的思考,然后叫四位学生分别上来板演。这样的安排,也是经过深思熟虑的,但放手让学生做之后,结果却不尽如人意。尤其是3、4两题,两位学生耗费了近15分钟时间,虽然第4题得到了解决,但离下课仅剩下2分钟。结果只能对学生的板演作匆匆忙忙的说明,未能对解题思路作进一步的延伸,是为本课一遗憾。
在课后,几个同事进行了交流,认为题组三的给出太过突然,应该先设置一个类似的例题作缓冲,而且题4在本节课显得难度过高,应当放在下节课再讲。思索再三,确实同事的见解很到位,本节课还是题量设置过大了一些,在教学中,题组三应该一题一题地给出,然后尽可能详细地引导学生对解题思路和过程进行分析,讲多少题,应根据课堂的情况进行调整。如此,弹性会更大,课堂也会进行得更从容。
看来,如何放手给学生?放手到什么程度?总有很多让人品味的地方。
第四篇:抛物线及其标准方程 教学反思
关于《抛物线及其标准方程》教案设计与反思
我是一名高中数学老师,我选取的教学资源片断是《抛物线及其标准方程》的教案设计,下面就此片断谈谈我对如何提高有效教学能力,进而促进学生有效学习的看法。
此片断的设计意图是让学生通过椭圆与双曲线第二定义的对比,总结出抛物线的定义;通过抛物线的定义推导出(焦点在x轴上,开口向右)抛物线的标准方程,进而通过对比写出(不用推导)焦点在x轴开口向左、焦点在y轴开口向上、焦点在y轴开口向下三种情况抛物线的标准方程;对上述四种形式抛物线标准方程进行列表总结,加深印象、帮助理解;会直接运用定义解决一些简单的抛物线问题,进而会从生活实例中抽象出抛物线问题解决;培养学生的观察、联想、对比的能力,渗透类比、数形结合、建模的数学思想,进而提高学生建模和解决实际问题的能力。
上完这节课后,我的预期目标基本完成。我认为此教案设计的优点有:
1、课前,我认真备课做了充分的准备:制作了课件,运用多媒体教学,这样既节省了作图时间图形又很规范;教学流程循序渐进、学生更容易接受;
2、对比椭圆与双曲线第二定义的异同引入新课,符合逻辑,引入抛物线的定义、推导抛物线的标准方程、列表总结抛物线四种形式的标准方程、最后是抛物线标准方程些简单应用,循序渐进的教学流程、井然有序的教学过程,让学生对抛物线的理解更为深刻;
3、在教学过程中,充分体现了学生的主体性和教师的主导性,引导学生主动思考、发现问题并解决问题,如引导学生发现离心率的范围的问题引出抛物线的定义,进而推导出抛物线的标准方程及其它三种形式的标准方程;
4、列表总结,抛物线四种形式的标准方程及相应的图形、焦点、准线,学生自己总结,帮助理解并加深印象;
5、在教学过程中,渗透类比、数形结合、建模的数学思想,培养学生观察、类比、对知识的迁移能力和归纳总结能力。使学生感受到数学不是纯理论的“纸上谈兵”,而是可以并且也就是为了解决实际问题的存在,体现了数学是基础学科的不可撼动的地位!,最为一名刚上班一年的年轻教师,此片断可能也存在一定的问题,有些地方也值得进一步探讨。如:如何进一步调动学生的学习积极性,激发学生的学习兴趣,让学生多思考、多讨论,突出课堂教学中学生的“主体性”地位等。因此,我要更加努力,多向指导老师请教、多与同事交流,不断改进、力求进一步提高自己的有效教学能力!
谢谢各位评委老师,欢迎各位评委老师批评指正!
第五篇:圆的标准方程教学反思
教学反思
——圆的标准方程
圆是我们在学习了曲线方程后初次运用所学知识讨论已知曲线的方程,在初中学生已经学习过圆的几何性质,并且前面讨论了直线与方程,因此该部分的重点是运用解析几何来体现圆的性质,在第一课时的教学中,我的教学设计分了以下几步:
一、情景创设
通过多媒体展示“嫦娥二号”升空过程,指出其在宇宙中的飞行轨迹近似是一个圆,让同学类比直线与方程的思想,探究是否可以在平面直角坐标系中用方程表示圆。
该情境不仅引入本节新课的课题,还升华了学生的爱国主义情操,为我国的高科技迅速发展感到骄傲,同时也激励了学生努力学习,将来做一个对国家有用的人。
二、探究新知
提问:“如何确定一个圆?”“在给定圆心和半径的基础上,结合我们前面所学的曲线方程的求解,应该如何建立圆的方程?”
(学生推导):建立平面直角坐标系,设M(x,y)是圆上任意一点,因为点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}由两点间的距离公式,点M适合的条件可表示为
(xa)2(yb)2r ①
把①式两边平方,得(x―a)2+(y―b)2=r2 ② 根据曲线与方程思想,确定②为在平面直角坐标系中圆的标准方程。此处通过学生分组合作探究,不仅是对数学知识技能的提高,还锻炼了学生自主思考、主动探索、积极合作的能力。并且我在教学中以比赛的性质鼓励学生,通过学习上的成功引发学生继续学习的兴趣,为后续知识的学习提供了良好的环境。
三、经典例题
1、已知圆的方程为(x+1)2+(y+3)2=2;
⑴指出圆的圆心和半径(进一步分析圆标准方程的特征)⑵点A(1,-2)在圆上吗?点B(4,1)呢?能给出确定点与圆的位置关系的一般方法吗?
2、求出满足下列条件的圆的方程 ⑴圆心在(1,-3)且与X轴相切 ⑵半径为2且与X轴Y轴都相切
⑶求以点C(1,3)为圆心,并和直线3x4y70相切的圆的方程。
该部分我着重以曲线与方程思想为主体,用解析几何诠释圆的几何性质。本意是想让学生把初中所熟知的知识用新的数学语言表达,但是这里情况并不让我满意。主要体现在两个方面:第一、很多学生对之前讨论的圆的几何性质比较生疏,课前准备工作没做好,导致课堂反应速度较慢,影响课程进度。第二、由于第一次正式研究曲线方程的应用,部分同学有无从下手的感觉,不能准确找到问题的切入点,反映了对基础知识的理解还不够透彻。如果当时我给出更多的提示,充分重视数形结合思想,效果可能会更好。
最后,我对本节课的教学进行了总结、反思:
在整体的设计上,我通过适当的创设情境,调动学生的学习兴趣。然后以问题做链,环环相扣,运用前段时间学习的求曲线的方法引导学生探索方程,使学生的探究活动贯穿始终.从圆的标准方程的推导到标准方程的求解都是在问题的指引下,通过我的适度引导、侧面帮助、不断肯定,由学生探究完成并走向成功。
在教学细节上,还有以下几点值得关注:
1、从教材位置上看,本节内容安排在曲线方程概念和求曲线方程之后,三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备。同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法。
2、在解决有关圆的问题的过程中多次用到配方法、待定系数法、数形结合等思想方法,还经常用到一元二次方程的理论、平面几何知识等,教师在教学中要注意多复习、多运用,多总结,培养学生运算能力和简化运算过程的意识。
3、有关圆的内容非常丰富,有很多有价值的问题,建议适当选择一些内容供学生研究。例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题等等。