椭圆及其标准方程教学反思

时间:2019-05-15 01:26:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《椭圆及其标准方程教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《椭圆及其标准方程教学反思》。

第一篇:椭圆及其标准方程教学反思

椭圆及其标准方程教学反思

椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。

在第一课时中我从书中的小实验出发给学生演示并重点讲解动点在运动的过程中始终保持不变的几何特征即到两个定点的距离之和为定值(绳长)并通过改变两个定点的距离让学生直观体会椭圆的圆扁度与定点距离的关系,并提出思考若绳长和定点的距离相等及大于绳长时动点的轨迹又是什么?随后通过对学生分组进行讨论及总结给出定义;我在此时结合图形强调这个定值一定要大于两个定点的距离的理由,随后提出坐标法的基本思想并带着学生回顾动点轨迹方程的一般求法然后提出问题:椭圆的方程是什么引入第二部分即标准方程的推导;在推导椭圆标准方程时重点讲清楚坐标系的建立过程,并让学生总结建系的方法及原则;在椭圆标准方程的推导过程中由于是带有两个根式的方程化简对于我们学校的学生来说基础比较弱可能从来没遇到过,因此主要通过我在黑板上的推导及演算让学生看清过程,掌握推导方法并及时对动点轨迹方程的一般求法步骤再次进行学习引导并进一步深入总结。

得到椭圆标准方程后,让学生重点分析两个问题,第一个就是课本中的探究活动,让学生在图形中找到b的几何意义,并强调a>b>0;a>c>0b,c大小关系不确定;第二个就是提出方程的建立与坐标系有关,不同的坐标系方程是不同的,引出学生对焦点在y轴上的椭圆标准方程的推导产生兴趣,并自我完成推导过程,并通过分组讨论总结完成对椭圆标准方程推导。最后通过课本例1让学生初步体会椭圆定义及标准方程的应用。

本节课的重点是椭圆的定义及标准方程的推导,难点是标准方程推导过程中的建系过程和方程化简过程。在椭圆定义的教学中我充分运用多媒体演示及课堂学生的动手试验突出椭圆定义中到两个定点的距离为什么要大于两个定点的距离;另一方面从图形出发让学生注意三角形两边之和大于第三边也可以解释;在标准方程建立的过程中建系是难点,学生很难入手,在这里我充分引导学生建系的目的是用坐标表示点,用方程表示曲线,引导学生关注两个定点的坐标及距离公式好表示,并强调建系要关注椭圆的对称性。在推导完方程后通过不同的坐标系让学生观察分析方程的推导变化进一步体会坐标系建立过程中关注点的坐标及曲线的对称性的重要性。在方程化简过程中我同过课堂上学生自主推导焦点在y轴上的标准方程进一步让学生自己体会化简的过程和运算技巧,让学生能初步的解决类似问题,本节课我采取做,讲,练结合,师生之间有充分互动的过程,学生能从做实验,听讲解,自主练习的过程中体会椭圆标准方程的获得过程,能够从中体会发现和发明的乐趣并对知识的产生过程有很深入的体会,真正的做到了学生为主体,教师为主导的教学理念。

第二篇:椭圆标准方程教学设计

椭圆标准方程推导教学设计

类比的思想学:新旧知识的类比。

引入:自然界处处存在着椭圆,我们如何用自己的双手精确的画出椭圆呢?

回忆圆的画法:一个钉子,一根绳子,钉子固定,绳子的一端系于钉子上,抓住绳子的另一端,固定绳子的长度,绕钉子旋转一圈就得到圆。

下面我们介绍椭圆的画法:找两个钉子和一根绳子,把两个钉子固定,两个钉子的距离小于绳子的长度,把绳子的两端分别系在两个钉子上,绷紧绳子旋转一周就得到椭圆。(以上是画法上的对比)

回忆圆的定义:平面上到顶点的距离等于定长的点的集合。

(根据刚才椭圆的画法及类比圆的定义,归纳得出椭圆的定义。)椭圆的定义:平面上到两个定点F1,F2的距离之和为定值(大于F1F2)的点的集合。

(以上是定义上的对比)

怎样推导椭圆的标准方程呢?(类比圆的标准方程的推导步骤)求动点方程的一般步骤:坐标法

(1)建立适当的直角坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件P(M);(3)用坐标表示P(M),列数方程;(4)化方程为最简形式。

y♦探讨建立平面直角坐标系的方案yyyF1OOO设P(x, y)是椭圆上任意一点,yF2P(x , y)xF10F2yMMOF2椭圆的焦距|F1F2|=2c(c>0),则F1、F2的坐标分别是(c,0)、(c,0).xF1xxxOP与F1和F2的距离的和为固定值2a(2a>2c)由椭圆的定义得,限制条件:|PF1||PF2|2a由于得方程|PF1|(xc)2y2,|PF2|(xc)2y2x方案一方案二原则:尽可能使方程的形式简单、运算简单;(一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.)(对称、“简洁”)(xc)2y2(xc)2y22a(问题:下面怎样化简?)移项,再平方(xc)2y24a24a(xc)2y2(xc)2y2a2cxa两边再平方,得刚才我们得到了焦点在x轴上的椭圆方程,如何推导焦点在y轴上的椭圆的标准方程呢?由椭圆的定义得,限制条件:|PF1||PF2|2a由于得方程|PF1|x2(yc)2,|PF2|x2(yc)2(xc)2y2a42a2cxc2x2a2x22a2cxa2c2a2y2整理得(a2c2)x2a2y2a2(a2c2)由椭圆定义可知2a2c,即ac,所以x2(yc)2x2(yc)22aa2c20,设a2c2b2(b0),(问题:下面怎样化简?)b2x2a2y2a2b2两边除以a2b2得x2y21(ab0).a2b2椭圆的标准方程x2y21(ab0).a2b2焦点在x轴(xc)2y2(xc)2y22a♦再认识!♦椭圆的标准方程的特点:YMMF1(-c,0)OF2(c,0)XOF1(0,-c)XYF2(0 , c)标准方程x2y2+=1 a>b>0a2b2yPx2y2+=1 a>b>0b2a2yF2Pxx2y21(ab0)a2b2y2x21(ab0)a2b2不同点图形F1OF2xOF1焦点坐标F1-c , 0,F2c , 0F10,-c,F20,c(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1(2)椭圆的标准方程中三个参数a、b、c满足a2=b2+c2。(3)由椭圆的标准方程可以求出三个参数a、b、c的值。(4)椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上。相同点定义a、b、c 的关系焦点位置的判断平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹a2=b2+c2分母哪个大,焦点就在哪个轴上

第三篇:7《椭圆及其标准方程》的教学反思

《椭圆及其标准方程》的教学反思

感受数学,爱上数学,爱学数学

高二年级数学组

张婧

11月5日对《椭圆及其标准方程》进行教学,上完这节课后我认真地进行了反思,具体内容如下: 一.教学设计

新课标指出:数学不仅要考虑数学自身的特点,更要遵循学生学习数学的心理规律,强调从学生的已有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力,情感态度价值观等过方面得到进步和发展。本着这个原则我进行了教学设计。

1、新知引入:

(1)说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题。

(2)手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的 两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。

问题引领(1)轨迹上的点是怎么来的?

(2)在这个运动过程中,什么是不变的?

2、进入新课:(1)通过学生手工操作演示椭圆的形成,引导学生探究椭圆的形成过程,使学生认识到椭圆轨迹上的动点与两个定点距离之和不变。

(2)观察图形,提示学生归纳总结出椭圆的定义。(3)根据定义小组合作推导椭圆标准方程。(4)讲解例题,巩固基本知识,提高自身素质。

二、成功之处

1、教学方法上:结合本节课的具体内容,和16班学生的具体情况确立启发探究式教学,体现了认知心理学的基本理论。

2.学习的主体上:课堂尽力不“一言堂”,设计问题引领学生参与,顺着学生思维发展规律,给学生的主动参与提供时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),基本做到:凡是学生能够自己观察的、讲的(口头表达)、思考探究的、动手操作的,都尽量让学生自己去做,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识为自己的知识。

3.学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利。在我的启发鼓励下,让学生充分参与进来,进行交流讨论,共同进步。

4、“三维”课程目标的实现上:既关注掌握知识技能的过程与方法,又关注在这过程中学生情感态度价值观形成的情况。

5、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题,进行主动探究学习,形成师生互动的教学氛围。

三、不足之处

1.本节课课堂容量偏大,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后要合理地安排每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。

2.过高估计学生的能力,小组合作推导椭圆标准方程时没能达到预期效果,计划是互教互学,共同进步,并从中体会解决问题的成就感,从而增进学生的合作意识和团队精神,但是因为班上只有一小部分同学基础比较扎实,大部分同学的计算能力不过关,只有一个小组完成较好,其他均半路夭折。课后,我认为如果能将小组合作问题提前让学生预习,学生在课下就进行研究,并找到自己解决不了的地方,课上小组解决,教师指导,应该会有好的效果。

总之,在本次课堂教学循环听课中我认为:问题引领学生自主探究,带着问题进入课堂,教师在课上点拨学生主要问题,强调重点问题,并可以进行拔高。这样既可以使学生动起来,由被迫获取变为主动学习,通过课前自主学习,课上小组相互学习,教师点拨,足以将知识很好的掌握,这样也可以使教师从总是不放心中解脱出来,不用总是面面俱到的讲,学生会的不讲,学生可以突破的不讲,只讲学生疑惑的难以解决的问题,从而使课堂高效,并且学生也不用一直听一直听,听觉疲劳,然后昏昏欲睡。但是要进行这样的课堂,学生课前学习的时间必须保证,学生的主动性要充分调动,并且应有合理的奖惩办法让学生全员参加,避免一些学生滥竽充数。作为教师课前预设的问题一定要有梯度,有层次,适合学生思维发展规律。以上是我的一些小小想法,我会努力去尝试,不断地学习,使学生爱上数学,爱上学数学。

第四篇:《 椭圆的标准方程》教学设计

《 椭圆的标准方程》教学设计

1.1本章内容的数学分析

《圆锥曲线与方程》是选修2-1第二章的内容,是高中数学中重要的内容,圆锥曲线的许多几何性质在日常生活、生产和科学技术中都有着广泛的应用。《2.2.1椭圆及其标准方程》是整个解析几何部分的重要基础知识,从知识上说,它是运用坐标法研究曲线的几何性质的一次演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础.所以说,无论从教材内容,还是从教学方法上都是起着承上启下的作用,它是学好本章内容的关键。因此搞好这一节的教学,具有非常重要的意义。通过对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力,为后续知识的学习奠定了基础。1.2学情分析

在学习本节内容以前,通过对必修3《直线与圆》以及选修2-1《2.1曲线与方程》的学习,学生已经学习了直线和圆的方程,初步了解了用坐标法求曲线的方程及其基本步骤,对曲线的方程的概念有一定的了解,这为进一步学习椭圆及其标准方程奠定了基础。同时,经过两年的高中学习,学生的计算能力、分析解决问题的能力、归纳概括能力、建模能力都有了一定的提高,使得进一步探究学习本节内容成为可能。但是,在本节课的学习过程中,椭圆定义的归纳概括、方程的推导化简对学生是一个考验,可能会有一部分学生探究学习受阻,教师要适时予以指导。

1.3 教学对策

有效学习的关键在于学生学习的主动性,而主动性与学习的动机、所学内容的价值性、趣味性和学习任务是否具体清楚等都有非常密切的关系,这些相关的积极因素越多,学习的主动性就会越强。这就需要教师在教学中,充分挖掘积极因素,促进学生主动地学习。

本节作为圆锥曲线的起始课,在激发学生学习主动性上应给予更多的关注。本课在设计上先动员学生查找圆锥曲线的资料,促使学生了解数学在人类文明发展中的作用。在《椭圆》的教学活动中,通过让学生展示圆锥曲线在实际中的应用的资料以及折纸活动,使学生感受数学的文化背景,增加用数学的意识。对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力。2 教学过程 2.1课前准备 发给学生的如下资料:

1、同学们,你们能告诉我什么是圆锥曲线吗?它们为什么叫圆锥曲线呢?圆锥曲线的发现确实是一个伟大的发现.德国天文学家开普勒(公元1571年~1630年)在长期的天文观察及对记录的数据分析中,发现了著名的“开普勒三定律”,其中第一条是:“行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上”,后来哈雷又利用圆锥曲线理论及计算方法准确地预测到哈雷慧星与地球最近点的时刻,1758年在哈雷逝世16年之后,哈雷慧星与地球如期而遇,这引起了全欧洲、乃至全世界的轰动,也进一步推动人们对圆锥曲线研究兴趣的提升。在我们的实际生活中处处都有圆锥曲线.你能举出一些例子吗?椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。这些应用的原理和性质是什么呢?又比如圆形纸片被垂直光线照射随着纸片角度的变化得到的影子,它是什么图形呢?结合本章卷首语,请你查找圆锥曲线的相关资料。

2、同学们愿意做一个折纸的游戏吗?用一张纸剪一个圆,在圆内选一个异于圆心C的点F,在圆上取点M1,折纸使得M1与F重合,再打开纸,就得到一条折痕,画出折痕与相应半径的交点,再在圆上取点M2,折纸使得M2与F重合,再打开纸,又得到一条折痕及相应交点,„„如此进行下去,折痕越多越好,并且圆上各个位置都要有选取的点,然后,用平滑的曲线连接,你会发现,所得的这些交点构成的曲线是什么?

设计意图:①动员学生查找圆锥曲线的资料,充分挖掘积极因素,促进学生主动地学习。促使学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。②折纸问题可以激发学生学习的兴趣以及求知欲。2.2问题引入

问题1:同学们,你们能告诉我什么是圆锥曲线吗?它们为什么叫圆锥曲线呢?

说明:教师需要课前先收集同学的资料,让学生展示什么是圆锥曲线,它们为什么叫圆锥曲线。以及介绍圆锥曲线的产生及应用。

设计意图:通过帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。使学生意识到在我们的实际生活中处处都有圆锥曲线,本章的学习是研究这些问题的基础。2.3学生活动

活动1:准备一根绳子,把它对折,一端固定在一个定点上,把粉笔插在另一端,拉紧绳子,得到的曲线是什么?(圆)。如果变为两个定点,把绳子拉紧,得到的曲线会是什么呢?在黑板上给出两个定点F1,F2,使它们之间的距离均大于绳长,请两个同学合作,一个同学将绳的两端固定在定点处,另一个同学拉紧细绳画图。通过作图,由学生得出椭圆的定义。

问题2:请学生观察曲线上的点满足的几何特征,并类比圆的定义给椭圆下定义。

说明:用“以上定义是否有不严谨之处?若有,请做出补充”等问题,引导学生逐步完善定义。

设计意图:从学生的思维特点和学习规律出发,展示知识形成的过程,使学生经历了观察、猜测、类比、交流、反思等理性思维过程,培养了学生的严谨思维习惯。

问题3:同学们,课前希望大家做一个折纸的游戏,用一张纸剪一个圆,在圆内选一个异于圆心C的点F,在圆上取点M1,折纸使得M1与F重合,再打开纸,就得到一条折痕,画出折痕与相应半径的交点,再在圆上取点M2,折纸使得M2与F重合,再打开纸,又得到一条折痕及相应交点,„„如此进行下去,折痕越多越好,并且圆上各个位置都要有选取的点,然后,用平滑的曲线连接,你会发现,所得的这些个交点构成的曲线是什么?

学生回答:他的边界是椭圆。

教师提问:为什么会是椭圆?(几何画板演示)适时用如下问题引导学生:

(1)我们将M1与F重合,得到的折痕是什么?(2)CP+PF= r,说明什么?

设计意图:加深学生对椭圆定义的理解,尤其是对a、c的几何意义的理解。2.4推导椭圆的标准方程

问题4:要研究椭圆更多的性质,就要建立坐标系,得到椭圆的方程,利用方程研究它们的性质,如何建立坐标系呢? 说明:由学生建立坐标系,求椭圆的方程,过程中提醒学生注意要适当建系,坐标系建立应使题中关键点的坐标、曲线的方程要尽量简单,让学生观察椭圆的图形,发现椭圆应该有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

问题5 :我们设点并且得到方程,如何化简?

说明:由于学生对坐标法解决几何问题掌握还不够,对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。

但同时,这也是培养学生的思维方式,加强了运算能力的时机,这里可以让学生充分展示化简方法,直接平方,移项平方,根式有理化等等,从中选择一个大家都认可的方法课上完成,其他留作课下完成。在化简过程中,教师要以“是否保证变形等价,如何使方程更加完美简捷”等等问题,不断激发学生做更深入的思考。2.5课堂练习

说明:课堂例题应该以课本例题为主,目的在于巩固椭圆的定义,使学生熟练掌握椭圆的标准方程,会根据所给的条件确定椭圆的标准方程。2.6课后作业

(1)课本练习,进一步巩固学生对椭圆定义及其标准方程的认识.(2)完成其他方法的椭圆标准方程的推导.(3)对于折纸问题,如果将“在圆内选一个异于圆心C的点F”改为“在圆外选一个异于圆心C的点F”得到的曲线会是什么?曲线上的点有什么几何特征呢? 3教学反思

数学概念是构建数学理论大厦的基石,是导出数学定理和数学法则的逻辑基础,是提高解题能力的前提,是数学学科的灵魂和精髓。3.1在体验数学概念产生的过程中认识概念

数学概念的引入,应从实际出发,创设情境,提出问题。通过与概念有明显联系、直观性的例子,使学生在对具体问题的体验中感知概念,形成感性认识.本节课首先把一根绳子对折,一端固定在一个定点上,把粉笔插在另一端,拉紧绳子,得到了学生熟悉的曲线--圆,然后提出“如果变为两个定点,把绳子拉紧,得到的曲线会是什么呢?”这个问题,通过让学生观察曲线上的点满足的几何特征,类比圆的定义给椭圆下定义;之后,再用“以上定义是否有不严谨之处?若有,请做出补充”等问题,引导学生逐步完善定义。挖掘概念的内涵与外延,有利于学生对概念的理解。3.2在运用数学概念解决问题的过程中巩固概念

数学概念形成之后,通过具体例子,进一步认识概念,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生对数学概念的巩固,以及解题能力的形成。本节课设计的折纸问题是课前留给学生的问题,它的起点低但延展性好,它的特点是具有“活动性”,学生必须实际操作,在折纸过程中观察、思考,使学生尽快地投入到新概念的探索中去,从而激发了学生的好奇心以及探索和创造的欲望,使学生在参与的过程中产生内心的体验和创造。各种水平的学生都可以得到自己的发现。这个问题今后还可以深入研究,(从轨迹问题到包络线问题)安排在这里的作用限于加深学生对椭圆的定义以及a、c的几何意义的理解。此外,这个问题结合几何画板,得到圆锥曲线形成的动态过程,使学生得到数学发现的乐趣和美的愉悦。

此外,椭圆的标准方程的推导,可使学生进一步掌握求曲线方程的一般方法,渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力.也是这节课的难点,此处的处理方式以学生为活动主体,给学生较多的思考问题的时间和空间,教师的作用在于帮助学生不断的发现问题(比如:如何化简无理式,是否保证变形等价,如何使方程更加完美简捷等等)从而使学生通过主动的思考形成自己独立的观点,而不是成为一个被动接受的容器。

第五篇:《椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计

山西省太原师范学院附属中学 薛翠萍

一、教学内容解析

椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点 同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点

学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识

但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受

所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点

圆锥曲线是平面解析几何研究的主要对象

圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础 教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位

通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础

学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力

二、教学目标设置:

1.知识与技能目标

(1)学生能掌握椭圆的定义 明确焦点、焦距的概念.

(2)学生能推导并掌握椭圆的标准方程.

(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.

2.过程与方法目标:

(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.

(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.

(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.

3.情感态度与价值观目标:

(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.

(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.

(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.

三、学生学情分析

1.能力分析

①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.

2.认知分析

①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,③学生已经初步掌握研究直线和圆的基本方法.

3.情感分析

学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.

四、教学策略分析

教学中通过创设情境,充分调动学生已有的学习经验,让学生经历 “创设情境——总结概括——启发引导——探究完善——实际应用” 的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.

课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:

1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.

2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.

这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.

在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.

五、教学过程:

(一)复习引入

1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.

意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.

(2)、使学生更直观、形象地了解后面要学的内容;

2. 手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.

意图:

(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性

(2)多媒体演示向学生说明椭圆的具体画法,更直观形象.

(二)讲解新课 由学生画图及教师演示椭圆的形成过程,引导学生归纳定义.椭圆定义:

平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距

练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离

之和等于8,则P点的轨迹是

练习2:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离

之和等于6,则P点的轨迹是

通过两个练习思考:椭圆定义需要注意什么(2a大于

意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点.

(1)、当2a>|F1F2|时,是椭圆;(2)、当2a=|F1F2|时,是线段;(3)、当2a<|F1F2|轨迹不存在.)

2.根据定义推导椭圆标准方程:

要求

(1)学生在画板上建立适当的坐标系,(2)根据定义推导椭圆的标准方程.

同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤

意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.

正确推导过程如下:

解:取过焦点

则,又设M与

距离之和等于

()(常数)为椭圆上的任意一点,椭圆的焦距是

(). 的直线为轴,线段的垂直平分线为

轴,化简,得

由定义义)

令 代入,得,,(学生通过自己画图建系的过程找到的几何意,两边同除得

此即为椭圆的一个标准方程

它所表示的椭圆的焦点在轴上,焦点是程

学生思考:若坐标系的选取不同,可得到椭圆的不同的方程

如果椭圆的焦点在轴上(选取方式不同,调换

轴)焦点则变成,中心在坐标原点的椭圆方,只要将方程

中的调换,即可得,也是椭圆的标准方程

请学生观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;过程中要渗透数学对称美教学.

理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在个轴上即看 与这两个标准方程中,都有分母的大小 的要求,因而焦点在哪3.精心设计课堂练习使学生在实际应用中进一步巩固知识,运用知识突破重难点:

(1)判断下列方程是否表上椭圆,若是,求出 的值 ① ;②;③;④

意图:学生感悟椭圆标准方程的结构特点.

(2)椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为)

A.5

B.6 C.4

D.10

意图:学生理解椭圆定义与标准方程关系.

(3)椭圆的焦点坐标是()

A.(±5,0)

B.(0,±5)C.(0,±12)

意图:学生感悟椭圆标准方程中焦点位置以及a,b,c的关系.

(4)化简方程:

意图:培养学生运用知识解决问题的能力.

.(±12,0)(D

下载椭圆及其标准方程教学反思word格式文档
下载椭圆及其标准方程教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    椭圆及其标准方程教学设计

    椭圆及其标准方程教学设计 作者:杨宇廷 单位:抚顺市清原县第二高级中学 学科:高中数学 地址:抚顺市清原县第二高级中学 邮政编码:113300 手机号码:*** 电子邮箱:qyegsxz@16......

    椭圆的标准方程教学设计

    篇一:椭圆的标准方程教学设计 《椭圆的标准方程》教学设计——桑宏德《椭圆的标准方程》教学设计 篇二:椭圆及其标准方程教学设计椭圆及其标准方程教学设计 青铜峡市高级......

    椭圆的标准方程教学案例

    《椭圆的标准方程》教学案例 一、案例概述: 《椭圆的标准方程》选自数学选修2-1。选这个内容的原因有二:(一)椭圆是一个非常重要的几何模型,具有很多优美的几何性质,这些重要的......

    椭圆及其标准方程教案

    椭圆及其标准方程教案教学目标: (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程,会由标准方程求出椭圆的交点和焦距; (二)能力目标:通过对椭圆概念的引入和......

    椭圆及其标准方程教案

    椭圆及其标准方程教案 湖北郧阳中学 梁学文 教学目标: 使学生理解椭圆的定义,掌握椭圆的标准方程及标准方程的推导过程 培养学生运用坐标解决集合问题的能力 培养学生发现规......

    《2.2.1椭圆及其标准方程》教学设计

    《2.2.1椭圆及其标准方程》说课稿 巨野县第一中学 张福想 各位评委大家上午好!我说课的题目是《椭圆及其标准方程》,我准备从四个方面来介绍我的教学设计思路及理念: (一)、说......

    椭圆及其标准方程 教案.doc

    学习资 料 教学目标 1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程; 2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 3.通过对椭圆概念的引入......

    椭圆及其标准方程教学设计[5篇范例]

    424042955.doc 椭圆及其标准方程教学设计 桐城二中倪向东 【设计理念】: 本节借助多媒体辅助手段,创设问题的情境,充分体现学生的主体地位和教师的主导地位,让学生在思维参与中......