《椭圆及其标准方程》说课教案专题

时间:2019-05-15 05:31:42下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《椭圆及其标准方程》说课教案专题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《椭圆及其标准方程》说课教案专题》。

第一篇:《椭圆及其标准方程》说课教案专题

高中数学第二册第八章第一节《椭圆及其标准方程》说课教案 我说课的题目是全日制普通高级中学教科书(试验修订本.必修)《数学》第二册、第八章《圆锥曲线》、第一节《椭圆及其标准方程》。

一、概说:

1、教材分析:

椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。

2、教学分析:

椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。

3、学生分析:

高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。

引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

我设定的教学重点是:椭圆定义的理解及标准方程的推导。

教学难点 是:标准方程的推导。

二、目标说明:

根据数学教学大纲要求确立“三位一体”的教学目标。

1、知识与技能目标:

理解椭圆定义、掌握标准方程及其推导。

2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。

3、情感、态度和价值观目标:

(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。

(2)进行数学美育的渗透,用哲学的观点指导学习。

三、过程说明:

依据“一个为本,四个调整”的新的教学理念和上述教学目标 设计教学过程。“以学生发展为本,新型的师生关系、新型的教学目标、新型的教学方式、新型的呈现方式”体现如下:

(一)对教材的重组与拓展:根据教学目标,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。

(二)在教学过程 中的体现:

1、新课导入

:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。

2、新课呈现:

学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。

3、巩固应用

根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。

4、继续探究:

(1)观察椭圆形状,不同原因在哪里;

(2)改变绳长或变换焦点位置再画椭圆,发现关系;

(3)用几何画板交流画图,观察形状变化;(4)如何描述形状变化?

引导学生探究欲望,开展研究性学习。

四、评价说明:

本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。

(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。

(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。

(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。

五、说课总结:

这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。

第二篇:椭圆及其标准方程说课教案

《椭圆及其标准方程》说课教案

我说课的题目是全日制普通高级中学教科书(试验修订本.必修)《数学》第二册、第八章《圆锥曲线》、第一节《椭圆及其标准方程》。

一、概说:

1、教材分析:

椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。

2、教学分析:

椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。

3、学生分析:

高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。

引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

我设定的教学重点是:椭圆定义的理解及标准方程的推导。教学难点是:标准方程的推导。

二、目标说明:

1、知识目标:掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程。

2、能力目标:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力。通过椭圆的标准方程的推导提高学生运用坐标法解决几何问题的能力。

3、思想目标:通过本次课的学习渗透数形结合和等价转化的思想方法,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。

三、过程说明:

1、新课导入:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。

2、新课呈现:

学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。

3、巩固应用

根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。

4、继续探究:

(1)观察椭圆形状,不同原因在哪里;

(2)改变绳长或变换焦点位置再画椭圆,发现关系;(3)用几何画板交流画图,观察形状变化;(4)如何描述形状变化?

引导学生探究欲望,开展研究性学习。

四、评价说明:

本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。

(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。

(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。

(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。

五、说课总结:

这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养

第三篇:《椭圆及其标准方程》说课教案2

高中数学第二册第八章第一节《椭圆及其标准方程》说课教案

今天我说课的题目是是《椭圆及其标准方程》,下面我对本课题进行分析。

一、教材分析:

《椭圆及其标准方程》是选自人教版高中数学第二册第八章第一节。本节共分两个课时。我说课的内容是第一课时。椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。二.教学目标分析

1、知识与技能目标:

理解椭圆定义、掌握标准方程及其推导。

2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。

3、情感、态度和价值观目标:

(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。

(2)进行数学美育的渗透,用哲学的观点指导学习。

三、说教学的重难点

本着《椭圆及其标准方程》新课程标准,在吃透教材基础上,我确定了以下教学重点和难点。

教学重点是:椭圆定义的理解及标准方程的推导。

教学难点 是:标准方程的推导。

为了讲清教材的重难点,使学生能够达到本课题设定的教学目标,我再从教法我学法上谈谈。

四、学情分析:

高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。

引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

我具体来谈谈这一堂课的教学过程

2、教学分析:

椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。

五.教学过程

1、新课导入

:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。

2、讲授新课:

学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。

3、巩固应用

根据定义及其标准方程,设计两道例题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。

4、继续探究:

(1)观察椭圆形状,不同原因在哪里;

(2)改变绳长或变换焦点位置再画椭圆,发现关系;

(3)用几何画板交流画图,观察形状变化;

(4)如何描述形状变化?

引导学生探究欲望,开展研究性学习。

四、评价说明:

本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。

(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。

(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。

(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。

五、说课总结:

这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。

第四篇:椭圆及其标准方程教案

椭圆及其标准方程教案

教学目标:

(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程,会由标准方程求出椭圆的交点和焦距;

(二)能力目标:通过对椭圆概念的引入和标准方程的推导,培养学生分析、探索的能力,增强学生运用代数法解决几何问题的能力;

(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。

教学重点:椭圆的定义和椭圆的标准方程的推导。教学难点:椭圆标准方程的推导。

教学方法:探究式教学法(教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。)

教具准备:自制教具(圆柱体、细绳)。

教学过程:(一)启发诱导,推陈出新

1、复习旧知识:拉直一根细线,一端固定,作一个圆,由此回忆圆的定义(到一点的距离等于定长的点的轨迹),圆的标准方程;

2、提出新问题:到两点的距离等于定长的点是什么轨迹呢? 尝试作图;

3、创设情境,引出课题:“椭圆及其标准方程”。(二)小组合作,形成概念

下面请同学们思考下面的问题:

1、在作图时,视笔尖为动点,线的两个固定的端点为定点,动点到两定点距离之和符合什么条件?其轨迹如何?

2、改变两端点之间的距离,使其与绳长相等,画出的图形还是椭圆吗?

3、当绳长小于两图钉之间的距离时,还能画出图形吗?

学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆、线段、不存在。

归纳出椭圆的定义:平面内到两个定点F1、F2的距离之和等于定长(大于F1F2)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

(三)椭圆标准方程的推导

1、建立适当坐标系(让学生根据自己的经验来确定)

原则:尽可能使方程的形式简单、运算简单;主要应使曲线对于坐标轴具有较多的对称性。

2、标准方程推导过程如下:

①建立直角坐标系:以直线F1F2为x轴,线段F1F2的垂直平分线为y轴,建

立如图所示的坐标系;

②确定点的坐标:设F1F22c,则F1c,0,F2c,0,设Px,y是椭圆上的任意一点;

③设定长为2a,由条件PF1PF22a得

xc2y2xc2y22a;

x2y2④化简:得到椭圆方程为221。

ab(通过学生自己动手推导方程是学生构建知识的一个过程。)

3、归纳方程特点,巩固上述知识。

4、延伸:①焦点在y轴上:F10,c,F20,c

y2x2②方程:221

ab③a,b,c的关系:b2a2c2,ab0,ac0

(四)例题讲解

例1:平面内两个定点的距离是8,写出到这两个定点距离的和是10的动点的轨迹方程。

解:这个轨迹是椭圆,两个定点是焦点,用F1、F2表示。

取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴。2a10,2c8

a5,c4,b2a2c252429,即b3

x2y2x2y2这个椭圆的标准方程是221,即1

25953(例1是巩固椭圆的定义及标准方程)

x2y2x2y21与椭圆c2:1的焦点。

例2:分别求椭圆c1:433解:43

椭圆c1的焦点在x轴上,椭圆c2的焦点在y 轴上

a24,b23,ca2b21

1,椭圆c1的两个焦点分别是0和1,0 0,是1和0,1。

椭圆c2的两个焦点分别(例2会由椭圆的标准方程求出椭圆的焦点坐标和焦距)

(五)课堂练习

课本P61 A 1(2)(3)2(3)(4)(五)课堂小结

1、椭圆定义

2、焦点分别在x轴和y轴上的椭圆的标准方程(结合图形,表述焦点坐标,焦距,系数的关系等)

3、考虑一下将椭圆平移到坐标轴任意位置时的坐标,留给同学们课后思考

4、布置作业:课本P61 A 1(1)(4)2(1)(2)

第五篇:椭圆及其标准方程教案

椭圆及其标准方程教案

湖北郧阳中学

梁学文

教学目标:

使学生理解椭圆的定义,掌握椭圆的标准方程及标准方程的推导过程

培养学生运用坐标解决集合问题的能力

培养学生发现规律、寻求规律、认识规律和用规律解决问题的能力 教学重点:

椭圆的定义及标准方程的推导 教学难点:

椭圆定义的理解 教学方法;探索法 教具准备:

细绳一根 教学过程:

课前引入部分:

一、明确教学目标:告诉大家开始新的章节:圆锥曲线,思考:为什么这三类曲线叫做圆锥曲线?

二、教具演示:在黑板用细绳演示到定点距离和等于定长的点的轨迹,请同学帮忙。分三类:绳长小于两点距;等于;大于。

三、探索总结:师生共同归纳得到:绳长等于点距,得到线段;绳长大于点距,得到椭圆;绳长小于点距,不能得到图形。

定义及方程推导:

一、定义引导:

平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.

学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:

(1)将穿有粉笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.

(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.即两定点的距离。

二、方程推导 1.标准方程的推导

由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.

如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.

(1)建系设点

建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.

以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).

(2)点的集合

由定义不难得出椭圆集合为: P={M||MF1|+|MF2|=2a}.(3)代数方程

(4)化简方程 化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:

①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要

(a>b>0).

关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.

示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2. 2.两种标准方程的比较(引导学生归纳)

0)、F2(c,0),这里c2=a2-b2;

-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到. 教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.

(三)例题与练习

例题

平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.

分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程. 解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.

∵2a=10,2c=8.

∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3 因此,这个椭圆的标准方程是

请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分

练习1 写出适合下列条件的椭圆的标准方程:

练习2 下列各组两个椭圆中,其焦点相同的是

[

]

由学生口答,答案为D.(四)小结 1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.

3.图形如图2-

15、2-16.

4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).

五、布置作业

课后习题

下载《椭圆及其标准方程》说课教案专题word格式文档
下载《椭圆及其标准方程》说课教案专题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    椭圆及其标准方程 教案.doc

    学习资 料 教学目标 1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程; 2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 3.通过对椭圆概念的引入......

    椭圆标准方程教学设计

    椭圆标准方程推导教学设计 类比的思想学:新旧知识的类比。 引入:自然界处处存在着椭圆,我们如何用自己的双手精确的画出椭圆呢? 回忆圆的画法:一个钉子,一根绳子,钉子固定,绳子的一......

    椭圆的定义及其标准方程教案

    §14.2椭圆的定义与标准方程 一、教材分析 本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识......

    椭圆及其标准方程教案2(精)

    椭圆及其标准方程教案2 教学目的 使学生理解椭圆的定义,掌握椭圆的标准方程; 通过椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能......

    《 椭圆的标准方程》教学设计

    《 椭圆的标准方程》教学设计 1.1本章内容的数学分析 《圆锥曲线与方程》是选修2-1第二章的内容,是高中数学中重要的内容,圆锥曲线的许多几何性质在日常生活、生产和科学技术......

    《椭圆及其标准方程》教学设计

    《椭圆及其标准方程》教学设计 山西省太原师范学院附属中学 薛翠萍 一、教学内容解析椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作......

    椭圆及其标准方程教学设计

    椭圆及其标准方程教学设计 作者:杨宇廷 单位:抚顺市清原县第二高级中学 学科:高中数学 地址:抚顺市清原县第二高级中学 邮政编码:113300 手机号码:*** 电子邮箱:qyegsxz@16......

    椭圆的标准方程教学设计

    篇一:椭圆的标准方程教学设计 《椭圆的标准方程》教学设计——桑宏德《椭圆的标准方程》教学设计 篇二:椭圆及其标准方程教学设计椭圆及其标准方程教学设计 青铜峡市高级......