第一篇:利用几何画板辅助教学的体会
利用几何画板辅助教学的体会 长沙市十二中学 王幼珍
近年来,不少教师,特别是年轻教师,利用《几何画板》辅助教学作了许多有益的探索与实践,受到了较好的教学效果,本文谈谈笔者的体会。
1、《几何画板》具有学习容易,操作简单,功能强大的特点
作为教师,如果已经有了操作WINDOWS的基础,要掌握《几何画板》的基本功能是不难的,只要认真阅读它的《参考书册》就可以了,若能经过三、四天的培训,就可以比较熟练地掌握它,还可以象圆规、三角板一样,十分方便地使用它,并可以“完美地”实现自己的“创意”,《几何画板》。不同于其他的计算机绘图软件,他所作出的图形、图象都是动态的,而且注重数学表达的准确性,最突出的优点就是使图形、图象在变动的状态下,保持不变的几何关系,线段的中点永远是中点,平行的直线永远是保持平行。这样就可以帮助学生从动态中去观察、探索和发现对象之间的数学关系与空间关系。它是培养跨世纪创新人才不可多得的辅助教学的软件,是中学数学教师理想的CAI工具之一。
2、利用《几何画板》是提高知识的形成过程,培养学生的探索发现能力
2.1 《几何画板》提供了测量和计算功能,能够对作出的对象进行度量,如线段的长度、弧长、角度、面积等,还能对测量的值进行计算,并把结果动态地显示在屏幕上,用鼠标拖动任意一个对象,使其变动时,显示出这些几何对象大小的量也随之改变,对学生发现问题,讨论问题提供了很好的园地。例如:传统的教学方法是把三角形内角和定理告诉学生,然后再加以证明。利用《几何画板》我们可以在屏幕上展示,无论拖动三角形的一个顶点怎么移动,虽然这个三角形的三个内角的大小动态地改变着,但是显示三内角和的数值不变,并且可以以表格形式展示在屏幕上(如下表)。46.5 81.5 105.1 123.2 46.2 19.2 25.3 34.4 87.3 79.3 49.6 22.4 180.0 180.0 180.0 180.0 A B C A+B+C
学生经过直观地观察,探索归纳出三角形内角和的性质,然后再引导学生证明。又如在学习相交弦定理时,任意改变圆内相交弦AB、CD的交点P的位置时,屏幕上显示AP•PB、CP•PD的数值总保持相等,准确地表达了定理。如果把这点拖到圆外,又可以表现为割线定理。
2.2 利用《几何画板》可让学生参入教学过程,实现了对知识意义的主动建构,较深刻地理解了所学的内容,有效地化解了难点。如在平行线分线段成比例定理的推出是个难点,教材是通过平行线等分线段的定理举例,说明它的正确性,学生没有足够的体验,很难达到对定理的理解,如利用《几何画板》做好课件,在网络教室中,让学生在电脑上亲自去度量线段的长,计算线段的比,然后验证线段的比是否相等,这样做,教学中发现了“定理”。另外,通过平行移动图中线段的位置,学生很容易“发现”该定理的两个推论,即它的两个变示图形。
a A D A a D A
b B E b B E B c C F c c C F C F 图1 图2 图3
这样的课件设计,突出了学生的主体地位和探索观察的实验意识,从一般到特殊,从形象到抽象,学生经过这样一番试验、观察、猜想、证实之后,再引导学生给出证明,这样较难讲清的问题,就在学生的试验中解决了。
3、利用《几何画板》的辅助教学,有利于学生素质的提高
把《几何画板》引入中学数学教学,学生主动参与讨论,做“数学试验”,参与教学实践活动,他们不再是知识的被动接受者,而是知识的主动探索者,问题的研究者,《几何画板》的运用使抽象、枯燥的数学概念变得直观、形象,使学生从害怕、厌恶数学变为对数学的喜爱,有效地激发他们的学习兴趣,增强他们学好数学的信心,调动了学习的积极性,特别是需要反复认识的概念,反复学习的内容,少数学生课堂上弄不清楚的,可以把软件拷贝回家,再反复观察、反复认识、反复学习,给学习困难的学生提供了再学习的机会,把电脑辅助教学“辅”到了不同层次的学生身上。
实践证明,《几何画板》给数学教学带来了新型的教学模式,对于数学教学有着十分重要的意义。
第二篇:几何画板辅助教学之我见
几何画板辅助教学之我见
最初认识“几何画板”,我认为它只是一个数学教学辅助软件,只是替代了直尺、圆规的一个画图工具而已。但在自己的教学和制作课件过程中,认识到了它的强大功能以及特有的随机计算能力和交互能力,使我为它的魅力所折服。《几何画板》提供了一个全新的学习数学的学习环境,学生在感性认识的基础上,调动了学习的主动性、提高了动手能力,培养了学习的探索与创造的能力。利用《几何画板》可让学生参与教学过程,实现了对知识意义的主动建构,较深刻地理解了所学的内容,有效地化解了难点。
“几何画板”的特点一:简明。它的制作工具少,制作过程简单,学习掌握容易。“几何画板”能利用有限的工具实现无限的组合和变化,将制作人想要反映的问题表现出来。学习掌握它较为容易,不需要花很多的精力和时间来学习软件本身,而强调软件对学科知识的推动和理解。不能否认目前也有许多优秀的课件制作工具软件,但这些软件往往较难掌握,或者制作过程与学科本身知识相差很远,只是对某一问题的模拟再现。“几何画板”制作过程较为简单,对问题的反映是在对学科知识理解基础上,甚至是利用学科知识本身来解决问题,因而使用“几何画板”制作出的课件更符合学科知识本身的要求。
“几何画板”特点二:朴素。它的界面清爽干净,仅一块白板而已,制作出的课件也没有过多华丽的装饰,只是体现出制作者想要表达的主题。也正是因为它的朴素,从而使它对问题的反映显得直接而清楚,使课件本身对问题的阐述、剖析及对难点的突破显得有效而又有针对性,使课件的作用发挥到了极限。这正是一个好的教学辅助软件所必备的条件——针对性。
“几何画板”的特点三:短小。(1)投入人力少,在使用“几何画板”制作课件时,一个教师花十几分钟,最多一、二个小时就能制作出一个好的课件,教师只要利用一些零星时间就能开发制作课件;(2)投入财力少,“几何画板”对计算机的要求不高,目前一般学校的条件都能满足;(3)占用空间小,一个用“几何画板”制作的课件只不过几KB而已,大的也不过几十KB,而其它软件制作的课件往往上百KB,甚至上几MB,这也使“几何画板”制作的课件便于携带和交流,也使制作过程变得随机性,上课也变得简单,不再需要拿硬盘或刻录光盘来上课。
“几何画板”的特点四:精悍。(1)由于它和学科知识联系紧密,故对学科知识的反映准确,使课件对问题的突破更为直接有效。(2)由于它的强大计算功能,使有些数值的变化不再是原来的一些特殊值,而是变成连续值,使问题变得清楚。例如讲“正、余弦函数”这一节时,在这一课件设计思想里,我抛弃了原来上课时取特殊值作波形图的方法,而是通过学生自己观察课件演示,得出结论,让学生真正掌握波形图形成的原理。(3)“几何画板”有很强的交互性。由于在制作中利用学科知识,使课件中包含若干个变量,在“几何画板”制作的课件里,这几个变量是可随机变化的,这样在利用课件上课时,通过演示课件,控制变量的变化,使学生更好地理解问题中各个数量的关系。例如在讲“三角形内角和”这一节时,以往是教师画出一个三角形后,量出度数,得出结论。但我用“几何画板”制作的课件里,利用课件的动态特点,先引导学生观察三角形中每一个角的大小发生变化时,但内角和仍保持180度不变,给学生一个理性认识,并且避免了手工作图引起的误差,使整个教学过程变得简单有序。
利用《几何画板》的辅助教学,有利于学生素质的提高。把《几何画板》引入中学数学教学,学生主动参与讨论,做“数学试验”,参与教学实践活动,他们不再是知识的被动接受者,而是知识的主动探索者,问题的研究者,《几何画板》的运用使抽象、枯燥的数学概念变得直观、形象,使学生从害怕、厌恶数学变为对数学的喜爱,有效地激发他们的学习兴趣,增强他们学好数学的信心,调动了学习的积极性,特别是需要反复认识的概念,反复学习的内容,少数学生课堂上弄不清楚的,可以把软件拷贝回家,再反复观察、反复认识、反复学习,给学习困难的学生提供了再学习的机会,把电脑辅助教学“辅”到了不同层次的学生身上。
总之,“几何画板”使我们的教学变得形象、直观、灵活、有效。
第三篇:利用几何画板进行探索性教学
利用“几何画板”进行探索性教学
————《一次函数的图象》教学案例
温州四中
王克局
[案例背景] “几何画板”是美国Key Curriculum Press公司制作的教育软件,他给师生创造一个实际“操作”几何图形的环境,学生可以任意拖动图形、观察图形、猜想和验证结论。在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景,从而更有助于学生对数学的学习和理解。
“函数”是中学数学中最基本、最重要的概念,它的概念和思维方法在初中数学中就有了一定的要求;同时函数是用运动变化的观点对显示世界数量关系的一种刻划,这就决定了它是对学生进行素质教育的重要材料,也是新的课程标准理念所在。正如华罗庚所说:“数缺形少直观,形缺数少入微。”函数的两种表达方式(解析式和图象)之间常常又需要进行对照,解决数形结合的问题。在有关函数的传统教学中多以教师手工绘图“列表---描点---连线”,但手工绘图不精确、速度慢。利用“几何画板”就能快速直观地显示其形成和变化过程,克服手工绘图的弊端,提高课堂效率,进而达到事半功倍的目的。
[案例描述] ■ 教学目标
1、了解一次函数图象的意义;
2、会画一次函数的图象;
3、会求一次函数的图象与坐标轴的交点。■ 教学重点:一次函数的图象
■ 教学难点:验证图象的完备性(坐标满足一次函数解析式的点在直线上)、纯粹性(图象上的点的坐标满足函数解析式),学生不容易理解其意义。■ 教材分析
对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。本节课,函数的图象直观地反映了函数的性质,为后续学习函数的性质打好基础,并且函数图象本身在解决实际问题中有许多应用,因此学好本节课显得至关重要。
[教学过程]
一、创设情境
我的妈妈有一个激励我学习数学的好方法:每次我数学成绩考满分,就奖励我2元人民币。在5次考试后,我得到x次满分。求:我得到的y元人民币关于x的函数关系式,并写出自变量的取值范围。
y2x(x0,1,2,3,4,5)。但有些学生会错认为是y2x(0x5)),教师提示让学生自己说出:x只能取整数。
回顾函数的三种表达方法:解析法;表格法;图象法。
(板书其表格法)函数的解析法和表格法我们都会,而函数的图象应该怎么画呢?(引起学生学习函数图象法的兴趣,使之有强烈的欲望去将其弄明白。)
二、探索图象
学生自主分组讨论,并动手画图。大部分学生画出来的是一条线段,也有一部分学生画出来的是六个点,教师提示:
除这六个点以外的其他点取得到吗?这是由什么决定的?生:x的取值范围。教师利用“几何画板”操作:[列表---绘制点](如图1)。
图1
图2
变形1:请画出函数y2x(0x5)的图形?这时,学生都能马上说出这个函数的图形是一条线段。教师操作演示:画线段。(如图2)
师:实际上这里函数图象有多少个点组成?(无数个)(让学生体会“线是有点构成的”)变形2:请画出函数y2x的图形?(直线)师:函数图形是由什么基本元素构成的呢?(点)
得出函数的图象概念(板书):把一个函数的自变量x与对应的函数y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,这些点组成的图形叫做该函数的图象。
师:从而我们得到了当自变量为任意实数的时候,正比例函数的图象是一条直线,那么是不是所有的一次函数的图象都是一条直线呢?(这时学生的积极性极高,教师趁热打铁给出一个一次函数。)
变形3:请画出一次函数y2x2的图象?(直线)
三、研究画法
师:画一次函数的图象基本步骤应该是怎么样呢?(先…然后…最后…)生:先找点。师:怎么找?(随意)
师:非常对。同学们回答的都非常好。刚才大家取的点的坐标都是整数,取小数可以吗?(可以)大家会不会这样去做?(不会)为什么?(麻烦)所以我们习惯都是取整数点。
总结画一次函数图象的步骤:(1)列表(找点)(2)描点(3)连线。这种方法叫做描点法。师:函数y2x和y2x2的图象有什么关系? 生:平行,可以通过平移得到。
师:对,非常正确。但是具体是经过怎么平移的呢?我们以后会学到,如果有兴趣的同学可以在课余时间去查阅资料。
师:是不是满足一次函数y2x的点都在直线y2x上吗?y2x2呢?反过来在直线y2x上取一些点的坐标都满足y2x吗?(通过使用“几何画板”精确地描出任意给出的点坐标在图象上的位置[表格---绘制点],以及能够读出在图象上任意描出的点的坐标[右击---坐标]。)如图3、4。
图3
图4
结论:满足一次函数的解析式的点都在图象上,图象上的每一个点的坐标都满足一次函数解析式。想一想,说一说:
1、下列各点中,哪些点在函数y=4x+1的图象上?哪些点不在函数y=4x+1的图象上?为什么?
(2,9),(5,1),(-1,-3)
2、若函数y=2x-4 的图象经过点(1,a),(b,2)两点,则a=_______,b=_________。
3、点已知M(1,4)在一次函数y=ax+1的图象上,则a的值是________。
四、例题分析
例1。在同一坐标系作出下列函数的图象,并求出它们与坐标轴的交点坐标:
1y3x,yx2
3分析:回顾画函数图象的基本步骤:(1)列表(找点)(2)描点(3)连线。师:要找几个点?很多很多个?生:只用两个就可以。师:为什么?生:两个点确定一条直线。教师介绍“两点法”。
教师在讲函数图象与坐标轴的交点时必须严格板书其步骤,让学生注意格式。
引导学生自己说出:正比例函数ykx与坐标轴的交点只有一个:原点。一次函数ykxb(k,b0)与坐标轴有两个交点。
五、练习巩固
在同一坐标系中画出下列函数的图象;
y=3x-1,y=-2x+4
六、课堂小结
说说你的收获„„
1、知道了什么是函数图象。
2、画函数图象的方法。
3、一次函数ykxb(k,b都为常数,且k0)的图象跟自变量的取值范围有关。
[案例分析和思考]
1、突出数学课堂教学中的探索性。
真知的形成往往来源于真实的自主探究,只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
本节课,关于一次函数图象的引出,笔者没有像教材那样直接给出一个图象,然后求出它就是一次函数的图象;而是由引例的一个函数只有几个点的出发,让学生去画一画、讨论讨论的方式,使学生通过对直观图象观察、归纳和猜想,自己去发现结论,然后在自变量的取值范围上设计了几个一次函数,其图象是由点线段直线,让学生感受一次函数图象跟自变量的取值范围息息相关。
2、引进计算机《几何画板》技术
本课在验证图象的完备性(坐标满足一次函数解析式的点在直线上)、纯粹性(图象上的点的坐标满足函数解析式)时,通过使用《几何画板》精确地描出任意给出的点坐标在图象上的位置,以及能够读出在图象上任意描出的点的坐标,这样使得初中平面几何教学发生了重大的变化,充分调动了学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣,而且比过去的教学更能够使学生深刻地理解几何。当然,本教学案例在这方面的探索还是初步的,设想今后通过计算机技术的进一步开发与应用,初中平面几何能够给学生更多动手的机会,让学生以研究的方式利用计算机来学习几何,进一步突出学生在学习中的主体地位。
3、开放课堂,张扬学生的自主能力。
尊重学生的思维主体和独特感受,相信学生的生活经验和数学能力。给学生更多的自主思考、自由表达和自我感受。本着这一教学理念,本课无论对情境信息的交流,还是一次函数图象的认识,无论是对数形结合思想的理解,还是对描点法注意事项的说明,都给学生以充分的时间和空间,畅所欲言,尽情展示,最终达到“答案由学生找,结论由学生说”的理想境界。
第四篇:用几何画板辅助初中数学教学研究
目录
摘 要..................................................2 1引言...................................................3 2几何画板辅助初中数学教学...............................4 2.1应用几何画板解决初中数学的平面几何问题..............4 2.2为学生验证问题搭建技术平台,使几何画板成为“数学实验室”.......................................................9 2.3应用几何画板解决初中数学的函数问题.................13 3结论..................................................16 4结束语................................................17 参考文献...............................................18 致谢...................................................19
用几何画板辅助初中数学教学研究
数学系本0703班 臧宏文
指导教师:曹萧
摘 要: 20世纪以来,随着信息技术的迅猛发展,数学教育教学方式的改革也在快速的,推进对数学教学改革中充分应用多媒体教学,尤其是如何更快﹑更有效地利用“几何画板”有着重要的现实意义。利用建构主义的学习理论,根据教学内容,应用《几何画板》创设新奇的学习情境,可以极大地激发与调动学生的学习积极性,提高课堂教学效率。进一步探索新课标下中学数学课堂教学新理念、新方法和新思路。利用几何画板实现初中数学中相关知识点的教学辅助设计,如图形的对称,旋转,平移,三角形的全等、相似等等。并结合课堂教学实际,设计相应的教学案例,以此分析、总结和探索中学数学教学的新理念、新方法和新思路。
关键词: 初中几何,几何画板,直观动态性,案例。
1引言
在数学的学习过程中,大多数同学说数学科目比较难,那么数学到底难在哪,我认为难在其抽象。数学有些知识太抽象,使学生只记住一些理论、符号、公式,学生不能把概念转换为图形语言,不能从图形中理解抽象的概念,而且对具体事实及事物的本质特征没有完全感知,使感性与理性脱节,学习也就望而却步。
传统教学模式下,教师要利用三角板、直尺等教学工具用粉笔在黑板上做出很多有关教学内容的具有代表性的图形,并结合学生生活的具体实际,借助日常生活中学生熟知的经验知识,对典型图形进行分析、描述,引导学生认真观察、辨认,启发学生比较、联想。这样的教学虽然对学生认识图形、理解概念、奠定学习几何的形态式语言基础、建立起图形与概念之间的本质联系、深化对概念的认识有着重要的作用。但是这样的教学手段难以进行“动态处理”,学生难以形成良好的运动观,在这些内容中,应该充分利用计算机技术,将数形结合起来,使动点的运动过程活生生的展现在学生面前,使学生从观察动点的变化过程中发现规律。这就需要一个辅助初中数学得教学软件,而几何画板中的动画、追踪轨迹等功能就恰好填补了探索动态运动规律的空白,为教学提供了有效的手段。《几何画板》新颖生动、感染力强,是一种模拟性、启发性的直观教学手段,由于它不但容易激发学生的学习兴趣,诱发学生的学习动机,而且可以打破时间、空间上的限制,能够让学生清楚地看到事物发展的全过程,化静为动、化繁为简、化虚为实,使枯燥的知识趣味化,抽象的语言形象化,深奥的道理具体化,有利于学生加深对知识的理解、巩固和记忆。因此,它对全面提高学生能力,培养学生素质,有着不可估量的作用。综上,研究《几何画板》在中学数学教学中的应用已是十分迫切与必要的。它还适用于平面几何教学和学习,也可以用于代数、立体几何、解析几何等的教学和学习中。
《几何画板》(The Geometer’s Sketchpad)软件是由美国的优秀教育软件, 它是由 Nicholas Jackiw 设计,Nicholas Jackiw 和 Scott Steketee 程序实现,Steven Rasmussen 领导的 Key Curriculum 出版社出版。它的全名是《几何画板——21 世纪的动态几何》。几何画板是全国中小学计算机教育研究中心在 CAI(Computer Assistant Instruction)中推广使用的软件之一。《几何画 3
板》是一个能够构建数学模型、揭示数学规律、直观反映数学变化、动态保持形数关系的软件。它以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画、跟踪轨迹等, 显示或构造出千变万化的图形。为教师和学生提供了直观、方便、快捷、准确的图形表现工具;使学生在图形的运动和变化的过程中,观察、归纳出图形的数量关系和图形性质。具体来说,《几何画板》提供了画点、画线、画圆的工具, 如通过画线工具可画出线段、射线、直线, 通过画圆工具可画出正圆;通过“作图”菜单提供的画平行线、垂线、以圆心和圆周上的点画圆等命令可准确作图。所有这些作图都能够体现数学概念表达的准确性,因而可以绘制所有尺规作图,演绎欧式几何。它提供的旋转、平移、缩放、反射等图形变换功能,可以按指定值、计算值或动态值对图形进行变换,进而可以研究某些非欧几何问题。使用“度量”和“图表”菜单你可以在直角坐标系和极坐标系中测定图形的特征,包括测量线段长度、斜率,测量角的度数以及多边形、圆、弓形、扇形的面积,提供直线和圆的方程等功能,还能对测出的值进行运算(四则运算、幂函数、三角函数等),因此,许多定量问题可在《几何画板》中进行研究。在教学中,了解学生思路和对概念的掌握程度是相当重要的一个环节,利用《几何画板》的“记录”功能是了解学生几何作图思路的重要工具,而且利用“记录”还可创造出新的绘图工具以扩充其功能。
2几何画板辅助初中数学教学
几何画板进入课堂改变了教学内容的呈现方式,改变了教师的教法与学生的学法,使数学教学过程发生了重大变化——新的教学模式出现,教育观念在不断更新,数学课堂教学改革进入了一个新的阶段。而且几何画板在抽象的问题上发挥着巨大的作用,几何画板的动态性和直观性,可有效的解决几何教学、函数教学当中较为抽象和复杂的问题,下面就应用几何画板辅助初中数学教学谈谈自己的几点感受:
2.1应用几何画板解决初中数学的平面几何问题
平面几何是研究平面图形的形状、大小和位置关系的一门数学学科。它的精髓在于在不断变化的几何图形中,研究不变的几何规律。由于几何内在规律的复杂性及其受尺规作图手段的限制,传统的教学往往是直接将规律给予学生,然后 4
给出演绎的证明,最多对一些浅显且易于演示的几何规律给出一些图形解释。这样使得几何规律及其证明过程存在着不透明性,忽略了从感性认识到理性认识的过程,至使教师教起来枯燥,学生学起来乏味,并且学生受心理年龄的限制,缺乏足够的抽象思维能力、一定的生活经验、学习的耐心和良好的学习习惯,这些因素也将导致他们畏惧几何的学习。因此,几何教学是中学数学教学的一个难点,难就难在学生看不到知识的形成过程, 学生的学习处于被动状态。《几何画板》提供一目了然的教学意图、教学步骤及操作方法,可以在很大程度上弥补这一缺陷,激发学生的兴趣,突出重点,分散难点,提高教学效果。那么我们来看几个重要的案例:
案例1 在教学《三角形的中位线》时,用几何画板做如下图所示:
AAD E=54.40 AB C=54.40 AE D=58.31 AC B=58.31 DE =2.86 厘米BC =5.72 厘米DE
作△ABC,取AB的中点D、AC的中点E,连联结D、E;接着测算出DE,BC,∠ADE,∠AED,∠ABC,∠ACB等,甚至把∠ACB,AB,AC也测量出来(干扰观察),这些数据都动态地展现在屏幕上.然后让学生观察:你发现了什么?学生的任何发现,利用《几何画板》,只要拖动点A(或B,或C),就可立即验证其正确如何.这为激发学生的学习兴趣,培养他们的观察力,想象力,归纳等诸能力,创设了极好的“情景”,增强了教学的自主性、学生的参与性。
再如在三角形的中位线教学中,对四边形各边中点所围成的四边形是特殊的四边形,且与原四边形对角线的有一定关系这一问题的理解,内容比较多,可用几何画板软件制作如图所示的动画演示效果(如图):
BC 5
DEA运动点矩形菱形正方形等腰梯AC垂直BDAC垂直相BD等BFH
GC
学生对四边形ABCD的变化过程中四边形EFGH的特征能直观感受到,并且加深了印象,而这个效果与教师简单把结论教给学生或不断画图来说明都是不可比较的。
案例2 《等腰三角形》是初中几何的一个重点内容,这部分有很多定理.教材在处理方法上引入了较多的动手操作和直观感知,通过折纸、观察、归纳等方法很直观地得出等腰三角形的有关性质和识别。但是由于学生在制作等腰三角形的模型时,存在一定的误差,导致结论不是很准确。而且学生所制作的模型带有一定的局限性,无法更好地解释这种结论的一般性。应用几何画板就可以模拟这些折叠、翻转的动画效果,而且可以达到很准确的效果。然后还可以通过拖动等腰三角形的顶点任意改变它的形状和大小,直观地说明结论的正确性,从而也便于论证结论的一般性。具体过程如下:
(1)等腰△ABC纸片中,AB=AC,(图1-1)将AB与AC重合在一起折叠,(图1-2)观察→两部分会完全重合→等腰三角形是轴对称图形,折痕AD是对称轴,B与C重合,BD与CD重合→∠ABC=∠ACB,即等边对等角。(图1-3)通过引导学生对折痕AD的分析,也就能很容易得出“三线合一”的性质.用这种直接的方式得出结论,就可以避免烦琐的推理过程,而且也让学生更容易记住结论。
(2)在画△ABC,使∠ABC=∠ACB,D为BC中点,连结AD,(图1-4)沿AD为折痕对折,观察→两部分会完全重合→AB与AC会完全重合,△ABC是等腰三角形,即等角对等边。(图1-5)
(3)拖动等腰△ABC的顶点A,改变三角形的形状,得到不同形状的符合条件的三角形,然后重复上述的步骤(1)和步骤(2),也得到同样的结论。让学生掌握以上结论的一般性,AAB = 4.74厘米CA = 4.74厘米AB = 4.74厘米ACA = 4.74厘米BD图1-1CBE折叠三角形图1-2C
ACA = 4.74厘米AB = 4.74厘米ABC = 45.11结论1.BD=CD2.ABC = 49.65ACB = 49.65BC折叠三角形图1-3DB折叠三角形图1-4DCAACB = 45.11D为BC中点
AABC = 45.11ACB = 45.11结论AB=ACBC折叠三角形图1-5D
案例3 讲三角形内角和定理,以前都是用剪纸、拼接和度量的方法让学生直观感受,但由于实际操作起来都有误差,很难达到理想的效果。现在利用“几
何画板”随意画一个三角形,度量出它的三个内角并求和(图1-1——图1-2),然后拖动三角形的顶点任意改变三角形的形状和大小(图1-3的钝角三角形和图1-4直角三角形),发现:无论怎么变,三个内角的和总是180度。这无疑大大激发起学生进一步探究“为什么”的欲望。
ABC = 56.02AACB = 51.05BAC = 72.93ABC = 56.02AACB = 51.05BAC = 72.93B图1-1CBABC+ACB+BAC = 180.00图1-2C
ABAC = 90.00ABC = 44.78ACB = 45.22AABC = 109.36BAC = 41.28ACB = 29.36BABC+BAC+ACB = 180.00图1-3CBABC+BAC+ACB = 180.00图1-4C
案例
4在学习三角形的三条角平分线(三条中线、三条高或高的延长线、三边的垂直平分线)相交于一点时,传统教学方式都是让学生作图、观察、得出结论,但每个学生在作图中总会出现种种误差,导致三条线没有相交于一点,即使交于一点了,也会心存疑惑:是否是个别现象?使得学生很难领会数学内容的本质。但利用信息技术就不同了,我们可以在几何画板里只要画出一个三角形(图1-1),用菜单命令画出相应的三条角平分线,就能观察到三线交于一点的事实(图1-2),然后任意拖动三角形的顶点,改变三角形的形状和大小,发现三线交于一点的事实总是不会改变的(图1-3)。特别是像高这样有特征情况的线,还可以通过拖动得出交点的三个不同位置。(图1-4,图1-5,图1-6,)
OB画任意三角形图1-1CB画三个内角平分线且交与一点O图1-2C
EHFBEC = 90.00AFB = 90.00AGB = 90.00OB任意拖动角平分线仍交于O点图1-3CBG三条高交点在内部图1-4C
AACB = 90.00ADC = 90.00ADC = 90.00DAMAMC = 90.00ANB = 90.00BEA = 90.00BHCNB三条高交点在顶点图1-5CE三条高交点在外部图1-6H
2.2为学生验证问题搭建技术平台,使几何画板成为“数学实验室”
在解决数学问题中,由于问题本身的抽象性和推理的复杂性,花费了很多时间都未能把问题证明出来,此时,产生对问题的疑义并对问题真实性进行验证是一种极为可能并欲想去做的事。验证一方面可以缓解心理紧张和心理焦虑,变换思维角度,对问题进行再认识;另一方面可以调节心理平衡,重塑解题信心。学生在通过实验验证得出问题是真实的时,将会激发起信心,增强解决问题的动力。从而,有效地克服推理过程中产生的心理障碍。使用几何画板进行数学试验
教学,巧妙地将传统的基础知识教学与几何画板教学软件的特色有机结合,使几何画板教学软件成为学生自主使用的认知、探究手段和解决问题的工具,构建学生自主学习、发现性学习、创造性学习、探究性学习和研究性学习的教学环境,提高了学生自主获取信息,加工处理及应用信息的能力,分析和解决问题能力,交流与合作的能力;整合中使我们的教师、学生,学习伙伴能进行多元化的信息交互,从而达成互动教学,转变传统的教与学的方式。例如:
案例1 如学生证明:“三角形中,如果有两个角的平分线相等,则这个三角形是等腰三角形。”的问题时,由于该题目的证明思路很不容易被找到,学生尝试用多种方法思考证不出来时,提出了“老师,你让我们证明的题目是正确的吗?”这样的问题来。我提示学生用几何画板对题目进行验证。
AAB =5.87 厘米CA =5.87 厘米EFCE =6.10 厘米BF =6.10 厘米
BC
学生做出了图形,并测量了有关的线段的长度,当通过拖动如图所示的M、N两点,在找准使AM与BN相等的点时,学生得到AC与BC的值总是相等的。于是,在验证了结论是正确的这样一种良好心理支撑下,学生兴奋的告诉说:“老师,题目的结论是正确的,我要再试试如何证明。”
案例2 利用几何画板可以为教师培养学生探究性地建构知识提供环境,为学生进行猜想提供技术平台,从而让学生在探索中学习,在探究中自主地建构知识,提出猜想的结论,实现创新。
如学习了“相交弦定理”后,教师可以这样提出问题,启发学生去进行探索:“如图所示,ADPAABBCCDPCDP
根据相交弦定理,我们知道PA*PB=PC*PD,那么,如果P点在☉o外,PA*PB=PC*PD这个结论还成立吗?特别地如果P点在过A、B、C、D中某一点的切线上时,结论又怎样”? 此问题的探索大致可以按下述四个步骤进行:
1、测量PA、PB、PC、PD的值,并计算PA??PB,PC??PD;
2、用鼠标将P点从圆内拖到圆外;
3、观察PA??PB,PC??PD的值的变化情况,仔细查看当P点在圆外变动时变化了的PA??PB,PC??PD的值是否相等。
4、得到结论。
对于切线位置,可以过某一点(如C点)作圆的一条切线(CM),在该切线上任取一点H(H点最好不与C点重合),然而,用选择工具选择P点按住Shift键后再选H点,使两点都被选中,用鼠标选择【编辑】下的【操作类按钮】下的【移动】命令,为从P点移动到H点设置一个运动按钮,当双击按钮时,P会从它的当前位置移动到H点,并使P、H两点重合.通过观察PA??PB,PC??PD的值,可确立两者的值的关系,得到结论。
案例3 “勾股定理”是初中平面几何中的一个定理。如下图是用几何画板验证勾股定理的设计实例:
勾股定理的演示a^2+b^=c^色块复位a^2cc^2abb^2c
它的设计步骤如下:
1、作一个直角三角形,画一条线段AB。过B点作直线垂直于 线段AB,在直线上任取一点C。连接AC。
2、分别以AB边,BC边向三角形内作正方形,AC边向外作正方形,过E作AF的垂线EP,隐藏直线,见(a)图。
3、任取一点B1,分别使点B1按标记向量B-A,B-C平移,得到点A1,C1。连接A1、B1、C1。以三边为边作三个正方形。见(b)图
AA1cBCB1EPFD(a)(b)abC1
4、作五个小色块,用来填充(a)图上对应的块
作对应APE的色块:另画一点P’,将P’分别按向量PE和向量PA平移动,得到两点E’、A’,作这三点的内部 同样作其余四个色块
5、作“色块复位”按钮,依次选择色块上的点和(b)图上两个小正方形大的对应点作移动按钮,标签为“色块复位”
6、作另一 色块移动按钮,依次选择色块上的点和(a)图上大正方形的对应点作移动按钮,标签为“a^2+b^2=c^2”
7、隐藏点,只留A点
2.3应用几何画板解决初中数学的函数问题
《几何画板》可以解决学生难以绘制的图形,而且提供了图形“变换”的动感,丰富多彩的“动画”模型,给学生一种耳目一新的视觉感受,使学生从画面中去寻求到问题解决的方法和依据,并从画面中去认清问题的本质。在引入《几何画板》之后,给解决函数问题创造了一条便捷的通道,它可以测量各种数值以及进行各种函数运算,在图形的变化过程中,数量变化特征也可以直观地展现在学生眼前,“以形助数”,“用数解形”,这在传统教学中无法办到。几何画板中的动画、追踪轨迹等功能就恰好填补了探索动点运动规律的空白,为轨迹教学提供了有效的手段。那么我们来看几个案例:
案例1 选取底数a(a>0且a≠1)的若干个不同的值,在同一个坐标系内做出相应的指数函数的图像,观察图像,你能发现它们有哪些共同特征?
利用几何画板的作图功能,根据学生选取的底数a做出相应的指数函数的图像,随着多个函数图像的显示,学生已慢慢地感觉到底数a对函数性态的影响。这时,教师慢慢地拖动点a,改变a的取值,屏幕上便出现了一个个底数不同的指数函数的图像,经纬分明,学生深深地被画面所吸引,已不自觉地投入到函数性质的探索中。从画面的变化规律中,学生预测到函数性质,接着我指导学生分组讨论,探索函数性质的规律,顺利地突破教学难点,突出教学重点。
S1:当底数a取不同的值时,所有的图像都过定点(0,1)。S2:所有的图像都位于x轴的上方。T:这说明了怎样的一个数学事实?
S2:(思考后)指数函数的值域为(0,+∞)。
S3:黑色区域的图像对应的函数的底数a>1,函数在R上是增函数;同样可看出当0时,函数在R上是减函数。
S4:从图像上可以看出当a>1时,随着a的增大,函数的图像无限地趋向于x轴、y轴;当0时,随着a的增大,函数的图像无限地趋向于x轴、y轴。
S5:从画面上看,在第一象限,当a>1时,函数的图像位于红线(y=1)上方;当0时,函数的图像位于红线(y=1)下方。
T:这又说明了什么?
S6:这说明当a>1时,若x>0则y>1;当0时,若x>0则0
S7:当两个指数函数的底数为互为倒数时,它们的图像关于y轴对称。
案例2 对“一次函数y=kx+b(k≠0)的性质”的学习,如果学生不清楚y=kx+b(k≠0)在k>0或k<0时表示了什么样子的图像,不知道b的取值对函数图像的作用和影响,那么根据图像确定k、b的取值范围,学生解起来就会觉得棘手.利用几何画板,可以很容易地让学生直观地看到一次函数y=kx+b(k≠0)的图像,通过上下来回拖动下图中的K、B两点,教师不用说什么,学生也能归纳出一次函数的性质,并于认识上有深层的理解,完成基础问题的解答.这样的利用几何画板辅助教学,能加强学生的记忆和理解,为学生更好地学习提供帮助.
又如,在三角函数 yAsin(x)的图像教学中,往往就参数的几个特殊的取值,做出几个函数的图像(如A=1,A=2)就开始归纳参数A的几何意义,不能令人信服,学生的印象不深,教学效果不理想。而“几何画板”能够及时计算出因参数变化而引起的函数值的变化,从而展示所引起的图像形状的变化,形象、直观,教学效果好。在同一个图像上,不仅可以改变A的值,而且也可以改
变的值,您只需要轻轻拖动点A或就可以了(如下图)。
案例3 在讨论二次函数y=ax2+bx+c(a≠0)或y=a(x+h)2+k(a≠0)中,二次函数图像与常量a、b、c、h、k之间的关系时.可作以下设计:
1.在演示画面中,实时显示抛物线的顶点坐标、与y轴的交点坐标和对称轴。
2.拖动有向线段a,改变a的取值.观察抛物线开口方向及大小
3.归纳:当a>0时,开口向上,开口大小随a的增大而变小;当a<0时,开口向下,开口大小随a的减小而变小;当a=0时,二次函数退化成为一次函数y=kx+b(说明:一次函数不是特殊的二次函数)4.拖动有向线段c,改变c的取值.观察可发现抛物线随c的值变大、变小而升高或降低.并可观察抛物线与y轴交点的纵坐标和c的取值相等,从而得到抛物线y=ax2+bx+c与y轴交于点(0,c)15
5.拖动有向线段h、k,改变h、k的取值.观察得抛物线随h、k的变化而左右平移或上下平移.顶点坐标是(h、k),也就是(-b/2a,(4ac-b2)/4a).从而归纳出抛物线的顶点坐标与对称轴和h、k的关系,并将实验观察所得结论,进行推理论证
案例4 函数y=2x的图像与y=㏒2x的图像有什么关系?可否利用y=2x的图像画出y=㏒2x的图像?
几何画板强大的画图功能,集表格、图像、动画为一体,资源整合,操作简易,交互性强,并能结合学生个体的实际情况,给每个学生一个合理的期望。在同一坐标系中,利用两个表格进行描点、绘制、画出函数y=2x的图像与y=㏒2x的图像,两个图像的对称性关系非常明显。这时,老师在y=2x的图像上任取一点M,并作它关于y轴的对称点N,拖到点M时会看到点N始终在y=㏒2x的图像的上运动。通过试验演示验证,改变传统用黑板画图的不准确性,改善学习环境,提高准确画图意识。当然,在利用计算机辅助画图教学时,有必要给出一定的时间来训练学生纸笔画图的能力。
3结论
当今,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。因此,要重视现代教育技术手段在教学中的创造性应用搞好计算机辅助数学教学,特别要选取一个适合辅助初中数学的教学软件,把数学学习变成一个生动活拨的、主动的和富有个性的课程。
4结束语
总之,随着现代科学技术的发展,计算机已进入各个教育领域,多媒体、网络等现代信息技术的快速发展对现代教育产生了极大的影响,有力地推动了计算机辅助教学的深化和发展。计算机在教育领域的应用,使得教育的价值、目标、内容以及学习和教学的方式产生重大的变革。数学作为一门基础学科,在中学教育过程中的作用是显而易见的。数学课程要重视运用现代技术手段,特别是要充分应用多媒体辅助教学方式,将传统的教学媒体与现代教学媒体有机地结合起来,把现代多媒体作为学生学习数学和解决问题的强有力工具,使学生从大量繁杂、重复的运算中解放出来,将更多的精力投入到现实的、探索性的数学活动中去。而《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。它在数学教学中具有传统教学方法无法比拟的巨大优势,是新课程改革中数学教学不可缺少的辅助工具。
参考文献:
[1]陶维林.几何画板——开展中学数学CAI实验的好软件[J].1999, 6(4): 12-50.[2]缪亮、朱俊杰等.《几何画板辅助数学教学》[M].清华大学出版社, 2002.[3]陶维林.《几何画板——新版特色与实用技巧》[M].清华大学出版社, 2003.[4]陶维林.《几何画板实用范例教程》[M].清华大学出版社, 2000.[5]张保祥.《几何画板》在数学教学中的应用[J].安庆师范学院学报(自然科学版)2002, 5,(11): 78-98.[6]王新敞.“几何画板”给教育带来了什么[J].信息技术教育2004, 3,(6): 123-142.[7]王竹.《几何画板》软件在中学教学中的应用[J].太原教育学院学报, 2001, 3(4): 45-69.[8] 刘胜利.几何画板制作教程[M].第二版:北京科教出社.2004: 25-
27、182-199.[9] 张景斌.中学数学教学教程[M].第二版:北京科学出版社.2000: 37-49.[10] 朱德祥、朱维宗.初等几何研究[M].第二版:北京高等教育出版社.2003: 31-35.[11]杨斌.几何画板在立体几何教学中的运用[J].中学数学教学, 2005年,第5期:40-41.[12]李中华.浅谈《几何画板》与数学学科教学的整和[J].辽宁教育,2001年第9期.致谢
时光如梭,短暂而有意义的四年大学生活即将结束,此时看着毕业论文摆在面前,我感慨万千。它不仅承载了我二年来的学习收获,更让我学会了如何求学、如何进行科学研究甚至如何做人。回想起二年的学习生活,有太多的人给我以帮助与鼓励,教导与交流。在此我将对我的恩师们,还有所有的同学们表示我的谢意!
首先,衷心感谢我的曹萧老师对我的悉心教诲和指导!在跟随曹老师的这段时间里,我不仅跟曹老师学到了许多专业知识,同时也学习到了他严谨求实、一丝不苟的治学态度和踏踏实实、孜孜不倦的工作精神,它将使我受益终生。在此我对曹老师的教育和培养表示衷心的感谢!
同时我还还要感谢学校领导和数学系的师生对我日常生活的关心和帮助,思想上的激励和启发,以及为我提供了良好的学习环境。谢谢你们!
第五篇:几何画板心得体会
学习几何画板心得体会
以前曾经学习用过几何画板制作简单的课件,但由于时间关系,一直没能进行系统的学习,今年参加国陪才想起这款比较实用的数学软件,拿过来系统学习了一下,现将体会总结如下:
《几何画板》是全国中小学计算机教育研究中心推荐的适合中学数学教学使用的计算机辅助教学软件。运用《几何画板》能帮助学生以具体的实验形式来形成抽象的数学知识,减轻学生学习负担。《几何画板》有着强大的实验功能,通过数学实验,生动、直观.准确地反映了教学内容的重点、难点,寓教于乐,为帮助教师讲授,学生理解和自我学习起到了很好的作用,不仅培养了学生学习数学兴趣,而且提高了课堂教学效率。
《几何画板》的主要功能: 1.几何作图功能
《几何画板》中有画几何图形的铅笔、直尺和圆规,利用它能准确地绘制各种几何图形,并且保持几何元素点、线、圆之间的几何关系。
2.动态演示功能
几何画板》提供了一个十分理想的“做数学”的环境,完全可以利用它来进行数学实验。当我们拿到一道几何证明题时,你可以在几何画板画出图形,用测量的方法去验证一下。
3.度量和函数计算功能 在《几何画板》中可以测量许多几何元素或图形的数值参数,如长度、角度、距离、面积、坐标等。
由于我水平有限和时间上的关系,在本学期的学习中,利用几何画板还只能制作一些简单的数学课件,但我通过感官直接获得了数学概念及数学结论。通过这种学习数学的新途径,我开阔了视野,这样获取的数学知识必将是牢靠的。《几何画板》和数学教学的结合,必将很大程度地改变当前数学教学的现状。随着计算机日益走入人们的生活,计算机辅助教学将在数学教育领域,引起内容、方法、模式等一系列方面深刻的变革,大部分算术、代数的纸和笔的数学运算将为电子技术所替代。
《几何画板》有待于继续探索,它是数学学习的有力助手,只要把创造力融学习中,《几何画板》定会淋漓尽致地展现它的风采!