第一篇:新理念下小学数学统计与概率教学
新理念下小学数学统计与概率教学
小学数学统计与概率的教学,必须注重儿童的日常经验,必须从儿童的生活出发,在儿童充分活动的基础上,在一个具体情境中的活动中去体验,去认识,去建构。因此,不能将这部分知识的学习,单纯当作统计量的计算、统计图表的制作以及概念识记等活动来组织。
一、统计知识的教学
按新的课程标准要求,小学阶段的儿童学习统计知识,从数学活动看,主要应经历如下一些学习:对数据的统计活动有初步的体验;解读和制作简单的统计图表;在活动中获得对一些简单的统计量(如平均数、众数、中数等)的意义理解;等等。
(一)注重儿童的生活经验
内容的组织与呈现要充分考虑到儿童已有的日常经验与他们的现实生活,使儿童在现实的和经验的活动中去获得初步的体验。
例如,分类、排列和比较是统计的基础活动,但对初期接触数学学习的儿童来说,他们参与这类活动的对象不宜是些抽象的数据,而是一些具有现实意义的实物。因此,在组织教学的时候,应较多地考虑选择什么样的合适的情境,能更好地激发儿童投入到分类、排列和比较等这样的数学活动中去?一些比较有效的做法是,向儿童呈现一堆杂乱的物品,让他们去尝试进行分类,在分类活动的过程中,他们逐渐学会了如何将这些物品按一定的规则标准进行排列,并逐渐理解了按不同的规则标准就会有不同的分类结果,为今后对数据整理与分析的学习打下基础。
又如,儿童对统计全过程的理解可能是有困难的,因为他们习惯的是面对已经给定的甚至是已经被处理过的一些数据进行思考和判断。因此,可以根据儿童的日常经验和兴趣,去设计并呈现一些特定情境下的现实问题,让他们通过自己的多次尝试去不断体验。一些比较好的方式是设计诸如“班级要组织„六一‟联欢会,买些什么样的水果更好呢?”等情境,开始时,儿童们可能会依照自己的喜好随意判断,但是,多次的交流后就会体验到这样是不行的,因为联欢会是大家一起参加的活动。于是,他们就会尝试着先调查每一个人的口味和喜好。可是,面对一大堆杂乱的数据怎么办呢?这时已经构建的分类与排列思想就会提供帮助,他们可能就会将调查得来的那些数据(甚至可能是代表具体实物的图片)贴在教室的黑板上,于是就构成了一幅象形统计图。接下来,学生们可能就会进一步讨论,喜欢哪一种水果的同学多些?同学们比较喜欢的集中在哪几种水果?喜欢哪一种(和几种)水果的同学最少?于是,不仅帮助学生对“购买水果”的行为选择提供了帮助,而且对统计与统计量的意义也提供了理解上的帮助。
再如,在统计量中,描述数据集中趋势的特征的一个重要的概念就是“平均数”,如何来组织这个内容帮助儿童理解它的意义就显得非常重要。一些比较好的方式是,向学生呈现诸如“小明身高是1.4米,他根本还会游泳。那么,他到一个平均水深1.2米的游泳池中,会不会有生命危险?”“小强所在的班级平均身高是1.5米,而小明所在的班级平均身高是1.4米。能不能判断小强和小明谁更高些?”。等具有现实意义的实际问题,让学生通过多次辨识来真正理解平均数的意义。
(二)强化数学活动
课程所组织的教学要有利于学生的动手操作,使他们在经历一个数学活动的过程中去体验和理解知识的内在意义。因此在教学组织的过程中,不要将一些统计知识简单地当作对那些表示概念的词汇的识记,或者将它简单地当作一种程序性的技能来反复操练,而要尽可能地用一些活动来组织,以增加学生在学习过程中的体验。
例如,统计图表的制作不只是一个简单的技能问题,而是有制作过程中体验和理解统计图表意义的问题。即不是一个简单的数据堆砌的过程,而是一个对数据理解的过程。当向学生呈现“调查一下自己出生时到六个月后,每个月体重变化的情况”这样一个问题时,对儿童来说,就不是一个简单的数据获得的问题,更重要的是如何处理这些数据的问题。一个最简单的方法,就是将这些数据列成一张统计表(表9-2)
表9-2
出生六个月的婴儿体重统计表 年龄0(出(月)生)体重3(kg)
然而,这些数据被这样罗列后,只是反映一事实,却还不能反映出某种具有规律性的趋势。于是,学生可能就会去进一步尝试将这些数据用条形统计图的方式呈现出来。可是,这样的图虽然直观地反映了在不同月份的体重的不同,但还是不能反映某种变化的规律性趋势。因而,学生可能就会再进行尝试,将这些数据用另外一种方式呈现出来。就这样,在一定的时间段内,自己体重的变化情况被用更合适的方式呈现了出来(折线统计图)。因为折线统计图能够明显反映出从出生到1月,以及从5月到6月,是两个体重增长最快的时段。
(三)将知识运用于现实情境
儿童对统计知识的学习,重点并不是能记住几个概念,能计算几个习题,能制作几个统计图表,关键是要能学会一些初步的和简单的统计思想和统计方法,能将知识运用于现实情境。因为,一些普通的数学规则(知识)和特殊情境之间是有区别的,通常在特殊的情境中往往并不明确显示那些数学的规则性的成分。所以,在现实情境中发展儿童的数学素养是一个重要的途径。儿童可以在这些问题解决的过程中,有效地获取知识和技能,增进理解;运用数学知识发现和解决一系列现实生活问题;处理由课程其他领域或其他学科提出的问题;对数学内部的规律和原理进行探索研究等。
例如,小明和小东进行投篮筐比赛,他们约定比赛六次,每次都是投掷10次,投进一次记1分,没有投进记0分。由于种种原因,小东比小明少投了一次。他们投掷的结果如下(表9-3)。你将如何比较他们投篮的成绩?能不能解释一下你的依据?
表9-3 第一次第二次第三次第四次第五次第六次
(分)
(分)
(分)
(分)
(分)
(分)小明 小东 4 6 5 4 5 5
如果按总分算,当然小明成绩要好些,因为他投中的总数是29次,而小东却只是25次。但是,显然这样比较不合理,因为小东少投掷了一次。如果按平均每次投中率来算,两个平均成绩,一个是5分,一个是4.8分,几乎相等。但是,从比赛的角度看,小明成绩的离散程度很大,而小东的成绩主要都分布在5分左右,按这样的趋势算,如果小东第六次也投了,很有可能就会比小明的成绩高些。同样的,如果比赛不是投掷6次,而是投掷10次,那么,小东的成绩可能就会更好些。
又如,学生应当了解收集与分析信息的价值,懂得如何去收集信息,如何去解读这些信息,是这部分内容学习的一项任务。因此,可以设计一些实地调查的任务,譬如调查每天上午7:30到8:00这30分钟内,经过学校门口的机动车辆的情况。学生就需要分析,为什么要选择早上的这段时间去调查?将这些机动车辆如何进行分类更能说明问题?要调查多少天才比较合理?得到的数据应如何来整理?从这些调查获得的数据中,可以获得什么样的解释?等等。概率知识的教学
按《数学课程标准》要求,小学阶段的儿童学习概率知识,从数学活动看,主要应经历如下一些学习:对不确定现象有初步的体验;知道事件发生的可能性有大小,并能体验事件发生的等可能性和游戏规则的公平性;能在活动中计算一些简单事件发生的可能性;等等。在这些学习内容的教学组织中,一般的看,有如下一些策略可以重点予以关注。
(一)活动的体验性
儿童对现实世界的不确定现象是通过大量符合日常生活经验的和有趣的活动来获得体验的。在开始学习这部分内容前,经验已经支持了学生对一些诸如“肯定”、“经常”、“偶尔”、“不可能”等词汇的理解与运用,一个比较好的教学组织策略就是,设计一些有趣的日常生活情境,让学生通过活动去进一步体验这些不确定事件的存在以及一些事件发生的可能性的大小。
例如,组织一些让学生去尝试判断事件发生的可能性活动,诸如“下周一本地气温下降”、“小明外语朗诵成绩全班第一”、“从装满红球的袋子里摸出的都是红颜色的球”、“天阴沉沉的,马上要下雨了”、“小明有自己的父母”等来让学生体验有些事件的发生是确定的,而有些事件的发生是不确定的。需要指出的是,在组织这类活动的时候,要注意儿童的经验和已有的知识基础在里面起到了很大的作用,因此,像对“水加热到100摄氏度时就会沸腾”的判断,对一个低年级的儿童来说,可能就缺乏经验与知识的支持。
又如,让儿童去反复抛掷一个三面写有数字4,其他三面分别写有数字1、2、3的正方体骰子,他可能就会体验到,每一次抛掷骰子后,正面朝上的数字是不确定的,但是,正面朝上的数字是4的可能性要大些。
再如,让学生通过收集一些“民谚故事”,来了解为什么有“燕子低飞蛇过道,大雨马上要来到”这样的民谚,知道通过多次反复的观察,总结出一些带有规律性结果,则有些事件发生的可能性是可以预测的。例如,前面所说的小明和小东投篮比赛的事件便是如此。还可以设计一些“调查一下两支球队以往多次比赛胜负的情况,预测下一次比赛谁可能会获胜”的活动,来增加学生的体验。
(二)游戏的引导性
大量的实践表明,利用游戏来引导儿童体验事件发生的可能性以及等可能性是一个非常有效的策略。喜欢游戏是儿童的天性,很多时候,儿童是在游戏中体验与建构数学知识的。因为游戏不仅能激发儿童的思维,还能促进儿童策略性知识的形成。
例如,设计一个“摸豆”游戏:预先在布袋中放入有色小豆(如三红七蓝),让两组儿童来做这种摸豆的游戏。每组在地上划一条长10米的线,等分成10格,上面分别标上1到10。每组分别让一个儿童站在5上面。规则是两个组的参赛学生依次去摸一粒豆,并猜豆子的颜色,猜对的,所在组的那个儿童就朝数字大的方向走一格,猜错的,所在组的那个儿童就朝数字小的方向走一格,看哪一组先到10。此外,让每一个组将每一次摸的颜色记录下来,到游戏结束后,再让各组猜袋子里各色豆子的数目,猜对的再得奖。这是概率和数据相结合的游戏,它贯穿课改的精神,让儿童体验和了解“可能事件”、“必然事件”、“机遇”等观念。
(三)方案的尝试设计
所谓方案设计,实际上就是将知识运用于现实情境的一种策略。儿童可以通过这种将知识运用于现实情境的活动,进一步体验知识的内在涵义,并进一步体验知识对现实生活的价值。
例如,小明和小光玩跳棋游戏,他们决定用掷骰子的方法来确定谁先走。规则是,两人各掷骰子一次,哪一个骰子朝上面的数字大,谁就先走。小光的骰子上面有1、6、8各点,每点两个面。而小明的骰子上面有3、5、7各点,也是每点两个面。你认为他们用这样的骰子来决定谁先走合理吗?如果你认为不合理,可以做怎样的改进? 又如,运动鞋厂在元旦的时候想进行一次产品促销活动,他们设想,每一位顾客在购鞋时,每购得一双鞋,都可以参加一次摸彩。又考虑到产品的成本以及销售的利润,因此,希望顾客在每10次的摸彩中,最多只能有3个人中奖。请你为他们设计一个方案(包括摸彩的用具和方法,如:相同质地但颜色不同的小纸卡;每种不同用具的个数;不同的转盘等)。
典型课例介绍—— “统计”教学片段
师:小朋友们好!小朋友们,我们先来听个故事好吗?
生:好!
(伴随着轻柔的音乐声和计算机演示,教师讲起了孩子们最爱听的故事——小猫钓鱼。)
师:这一天是星期日。瞧!太阳公公早早地就起床了!快看!池塘边来了三位小客人,他们是谁呀?
生:是小花猫、小白猫知小黑猫
师:对!原来他们要比赛钓鱼。预备——开始!滴答、滴答、……时间过得可真快呀!不知不觉中比赛就要结束了。小朋友们,你们想知道比赛结果吗?
生:想!
师:那就让我们先来猜一猜三只小猫各钓了几条鱼,好吗?
生:好!
师:谁先来猜?
生:小花猫钓了1条鱼,小白猫钓了8条鱼,小黑猫钓了4条鱼。
生:小白猫钓了10条鱼,小花猫钓了6条鱼,小黑猫钓了5条鱼。
生:小黑猫钓了2条鱼,小白猫钓了5条鱼,小花猫没有钓到鱼。
师:为什么小花猫没有钓到鱼?
生:因为小花猫一会儿捉蝴蝶,一会儿捉蜻蜓,三心二意地,所以一条鱼也没有钓到!
师:那这说明了什么?
生:这说明做事情要一心一意!
师.你说得很对!
师:现在,请大家想一想:为了记住三只小猫各钓了几条鱼,我们该怎么办? 生:要认真看!生:要坐好!不乱说话!生:要把结果记在脑子里!师:那万一忘记了,怎么办? 生:把结果写在纸上!
师:对!为了记住三只小猫各钓了几条鱼,我们要认真记录,记录的过程就叫“统计”。
(板书课题并领读:统计)
师:下面就请每一位小朋友准备笔和纸!好了吗?
生:好了!
师:请大家仔细观察、认真统计!
(计算机逐次演示三只小猫钓鱼的条数)
师:谁来说说三只小猫各钓了几条鱼?
生:我知道小白猫钓了5条鱼,小黑猫钓了4条鱼,小花猫钓了2条鱼。
师:对吗?
生:对!
师:大家统计得非常准确!接下来,请大家用一块积木表示一条鱼在桌面上搭一搭,谁钓了几条鱼就在谁的上面搭几块积木!比一比看谁搭的又好又快!
(学生动手操作,教师巡视,请一名学生上台演示,并说明自己是怎么搭的,然后进行集体订正。)
师:刚才,我们用一块积木表示一条鱼,那老师想用一个方格表示一条鱼,行吗?
生:行!
师:那好!请看:像这样用来记录统计数据的图就叫“统计图”。
(计算机出示“小猫钓鱼条数统计图”)
师:图上有一条直线(闪动),直线上面是“小猫钓鱼的条数”(闪动)。请注意:这里表示鱼的条数的小方格要同样大小!
(随教师讲解,表示每只小猫钓鱼条数的小方格横向、纵向逐次闪动。)
师:请仔细观察这张漂亮的统计图。谁能说说从这张统计图中,你都知道些什么?
生:我知道小白猫钓的鱼最多,小花猫钓的鱼最少。
生:我知道小白猫比小花猫和小黑猫一起钓的鱼少一条。
生:我知道小黑猫给小花猫1条鱼,它俩钓的鱼就同样多了。
生:我能把三只小猫钓鱼的条数按顺序排列:就是5条、4条、2条。
生:我也能把三只小猫钓鱼的条数按顺序排列:就是2条、4条、5条。我是按照从少到多的顺序排列的。……
评析:以上教学片段中,教师注重结合一年级儿童的心理特征和年龄特点创设了丰富多彩的教学情境,注重关注孩子们的兴趣态度与合作交流;关注孩子们的数学情感与情绪体验,最大限度地激发孩子们的学习热情和参与情绪;唤起他们的主体意识,引导他们自主探究、学习搜集和整理数据的简单方法;认识了最简单的统计图,经历用统计方法解决问题的过程。整节课上孩子们学得相当主动、积极、兴趣盎然、思维活跃。在这样充满活动的数学学习中,孩子们真正体验到了发现的喜悦和探索的快乐,进一步激发了他们强烈的求知欲!
第二篇:新课标《小学数学统计与概率》学习体会
新课标《小学数学统计与概率》学习体会
学习了《小学数学统计与概率》的知识,我对数学统计与概率有了更新的认识。随着社会的发展,实际生活已经离不开对数据的分析,离不开统计,统计的应用越来越广泛。新课程标准理念下也将统计与概率作为重要的学习内容。
对于这个领域的学习,重要的绝不仅仅是画统计图、求平均数等技能的学习,而是要让孩子“亲近”数据,加强对孩子数据分析观念的培养。课标强调学生要更新学习观念,学习有用的数学,教师也要更新教学观念,注重学生学习的可持续发展。我觉得统计与概率的学习对学生日后的社会实践生活是非常有用的,新课标就非常重视学生的“数据分析观念”,当中有这样的描述:“了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面说明只要有足够的数据就可能从中发现规律。数据分析是统计的核心。”新课标将统计与概率中的“统计观念”改名为“数据分析观念”,体现了新课标对这一模块的重视。更体现了统计与概率这一知识在小学阶段学习的重要性。总之,统计与概率的内容,主要是让学生感受生活中的数学知识,联系实际,体会统计思想给我们带来的方便,通过调查实际生活的问题,调动起学习的积极性,转化为数学知识,并用学过的知识解决实际问题。培养学生的“数据分析观念”对学生将来的发展非常有用。特别是对于当下的信息社会,“数据分析观念”显得尤为重要。
第三篇:小学数学统计与概率教学的过程与方法
小学数学统计与概率教学的过程与方法
小学数学统计与概率的教学,必须注重儿童的日常经验,必须从儿童的生活出发,在儿童充分活动的基础上,在一个具体情境中的活动中去体验,去认识,去建构。因此,不能将这部分知识的学习,单纯当作统计量的计算、统计图表的制作以及概念识记等活动来组织。
一、统计知识的教学
按新的课程标准要求,小学阶段的儿童学习统计知识,从数学活动看,主要应经历如下一些学习:对数据的统计活动有初步的体验;解读和制作简单的统计图表;在活动中获得对一些简单的统计量(如平均数、众数、中数等)的意义理解;等等。
(一)注重儿童的生活经验
内容的组织与呈现要充分考虑到儿童已有的日常经验与他们的现实生活,使儿童在现实的和经验的活动中去获得初步的体验。例如,分类、排列和比较是统计的基础活动,但对初期接触数学学习的儿童来说,他们参与这类活动的对象不宜是些抽象的数据,而是一些具有现实意义的实物。因此,在组织教学的时候,应较多地考虑选择什么样的合适的情境,能更好地激发儿童投入到分类、排列和比较等这样的数学活动中去?一些比较有效的做法是,向儿童呈现一堆杂乱的物品,让他们去尝试进行分类,在分类活动的过程中,他们逐渐学会了如何将这些物品按一定的规则标准进行排列,并逐渐理解了按不同的规则标准就会有不同的分类结果,为今后对数据整理与分析的学习打下基础。又如,在统计量中,描述数据集中趋势的特征的一个重要的概念就是“平均数”,如何来组织这个内容帮助儿童理解它的意义就显得非常重要。一些比较好的方式是,向学生呈现诸如“小明身高是1.4米,他根本还会游泳。那么,他到一个平均水深1.2米的游泳池中,会不会有生命危险?”“小强所在的班级平均身高是1.5米,而小明所在的班级平均身高是1.4米。能不能判断小强和小明谁更高些?”。等具有现实意义的实际问题,让学生通过多次辨识来真正理解平均数的意义。
(二)强化数学活动
课程所组织的教学要有利于学生的动手操作,使他们在经历一个数学活动的过程中去体验和理解知识的内在意义。因此在教学组织的过程中,不要将一些统计知识简单地当作对那些表示概念的词汇的识记,或者将它简单地当作一种程序性的技能来反复操练,而要尽可能地用一些活动来组织,以增加学生在学习过程中的体验。例如,统计图表的制作不只是一个简单的技能问题,而是有制作过程中体验和理解统计图表意义的问题。即不是一个简单的数据堆砌的过程,而是一个对数据理解的过程。当向学生呈现“调查一下自己出生时到六个月后,每个月体重变化的情况”这样一个问题时,对儿童来说,就不是一个简单的数据获得的问题,更重要的是如何处理这些数据的问题。一个最简单的方法,就是将这些数据列成一张统计表。然而,这些数据被这样罗列后,只是反映一事实,却还不能反映出某种具有规律性的趋势。于是,学生可能就会去进一步尝试将这些数据用条形统计图的方式呈现出来。可是,这样的图虽然直观地反映了在不同月份的体重的不同,但还是不能反映某种变化的规律性趋势。因而,学生可能就会再进行尝试,将这些数据用另外一种方式呈现出来。就这样,在一定的时间段内,自己体重的变化情况被用更合适的方式呈现了出来(折线统计图)。因为折线统计图能够明显反映出从出生到1月,以及从5月到6月,是两个体重增长最快的时段。
(三)将知识运用于现实情境
儿童对统计知识的学习,重点并不是能记住几个概念,能计算几个习题,能制作几个统计图表,关键是要能学会一些初步的和简单的统计思想和统计方法,能将知识运用于现实情境。因为,一些普通的数学规则(知识)和特殊情境之间是有区别的,通常在特殊的情境中往往并不明确显示那些数学的规则性的成分。所以,在现实情境中发展儿童的数学素养是一个重要的途径。儿童可以在这些问题解决的过程中,有效地获取知识和技能,增进理解;运用数学知识发现和解决一系列现实生活问题;处理由课程其他领域或其他学科提出的问题;对数学内部的规律和原理进行探索研究等。如,学生应当了解收集与分析信息的价值,懂得如何去收集信息,如何去解读这些信息,是这部分内容学习的一项任务。因此,可以设计一些实地调查的任务,譬如调查每天上午7:30到8:00这30分钟内,经过学校门口的机动车辆的情况。学生就需要分析,为什么要选择早上的这段时间去调查?将这些机动车辆如何进行分类更能说明问题?要调查多少天才比较合理?得到的数据应如何来整理?从这些调查获得的数据中,可以获得什么样的解释?等等。
二、概率知识的教学
按《数学课程标准》要求,小学阶段的儿童学习概率知识,从数学活动看,主要应经历如下一些学习:对不确定现象有初步的体验;知道事件发生的可能性有大小,并能体验事件发生的等可能性和游戏规则的公平性;能在活动中计算一些简单事件发生的可能性;等等。
(一)活动的体验性
儿童对现实世界的不确定现象是通过大量符合日常生活经验的和有趣的活动来获得体验的。在开始学习这部分内容前,经验已经支持了学生对一些诸如“肯定”、“经常”、“偶尔”、“不可能”等词汇的理解与运用,一个比较好的教学组织策略就是,设计一些有趣的日常生活情境,让学生通过活动去进一步体验这些不确定事件的存在以及一些事件发生的可能性的大小。例如,组织一些让学生去尝试判断事件发生的可能性活动,诸如“下周一本地气温下降”、“小明外语朗诵成绩全班第一”、“从装满红球的袋子里摸出的都是红颜色的球”、“天阴沉沉的,马上要下雨了”、“小明有自己的父母”等来让学生体验有些事件的发生是确定的,而有些事件的发生是不确定的。需要指出的是,在组织这类活动的时候,要注意儿童的经验和已有的知识基础在里面起到了很大的作用,因此,像对“水加热到100摄氏度时就会沸腾”的判断,对一个低年级的儿童来说,可能就缺乏经验与知识的支持。
(二)游戏的引导性
大量的实践表明,利用游戏来引导儿童体验事件发生的可能性以及等可能性是一个非常有效的策略。喜欢游戏是儿童的天性,很多时候,儿童是在游戏中体验与建构数学知识的。因为游戏不仅能激发儿童的思维,还能促进儿童策略性知识的形成。
(三)方案的尝试设计
所谓方案设计,实际上就是将知识运用于现实情境的一种策略。儿童可以通过这种将知识运用于现实情境的活动,进一步体验知识的内在涵义,并进一步体验知识对现实生活的价值。例如,小明和小光玩跳棋游戏,他们决定用掷骰子的方法来确定谁先走。规则是,两人各掷骰子一次,哪一个骰子朝上面的数字大,谁就先走。小光的骰子上面有1、6、8各点,每点两个面。而小明的骰子上面有3、5、7各点,也是每点两个面。你认为他们用这样的骰子来决定谁先走合理吗?如果你认为不合理,可以做怎样的改进?
第四篇:2011-2012下 概率统计B
武汉大学2011--2012第二学期概率统计B试题
(54学时A)
学院____________________专业______________学号____________姓名________________
一、(10分)若事件B和A独立,而且P(A)0.5,P(B)0.6
求 ⑴P(AB);⑵P((AB)A)。
二、(10分)口袋里有4只红球,6只黑球,不放回摸球二次,一次一只,如果第二次摸到黑球,求第一次摸到黑球的概率。
三、(10分)随机变量X 服从二项分布B(5,0.5);
⑴求 关于y的方程y22Xy10有实根的概率;
⑵对X进行2次独立观测,以Y表示上方程有实根的的次数,写出Y的分布函数。
四、(12分)若随机变量(X,Y)的联合概率密度为
6x0x1,xy1 ; f(x,y)其他0
⑴求随机变量X和Y的边缘概率密度fx(x);fy(y);
⑵X和Y是否独立 ?(3)求ZXY的概率密度。
WXY,ZXY。
五、(12分)随机变量X,Y 独立而且服从相同的正态分布N(0,1);
(1)求Cov(W,Z),说明W,Z是否独立。
1(W2Z2)服从2分布。并计算E(),D()k
六、(10分)若一批元件优等品率为0.8,取此元件10000个,试分别用切比雪夫不等式和(2)选取适当的参数k,使中心极限定理估计优等品数介于7800和8200之间的概率。
七、(12分)若随机变量X服从正态分布N(0,1),X1,X2KXn是其样本,X1(X1X2...Xn),YiXiX,i1,2...n n
求(1)YiXiX,i1,2...n的方差D(Yi)。(2)Cov(Y1,Y2)。
八、(12分)若随机变量X 服从区间(,1)的均匀分布,X1,X2KXn是其样本,求
1;2;并判别他们的无偏性。(1)参数的矩估计(2)参数的极大似然估计
九、(12分)某班64位同学,概率论测验的平均分数为86.2,标准差4.8,若认为他们成绩服从正态分布,平均成绩是否显著大于85?(0.0)
(t0.05(63)z0.051.65,t0.025(63)z0.0251.96)
第五篇:统计与概率教案
第1课时 统计与概率(1)
【教学内容】 统计表。
【教学目标】
使学生进一步认识统计的意义,进一步认识统计表,掌握整理数据、编制统计表的方法,学会进行简单统计。【重点难点】
让学生系统掌握统计的基础知识和基本技能。【教学准备】 多媒体课件。
【情景导入】 1.揭示课题
提问:在小学阶段,我们学过哪些统计知识?为什么要做统计工作? 2.引入课题
在日常生活和生产实践中,经常需要对一些数据进行分析、比较,这样就需要进行统计。在进行统计时,又经常要用统
计表、统计图,并且常常进行平均数的计算。今天我们开始复习简单的统计,这节课先复习如何设计调查表,并进行调
查统计。
【整理归纳】
收集数据,制作统计表。
教师:我们班要和希望小学六(2)班建立“手拉手”班级,你想向“手拉手”的同学介绍哪些情况? 学生可能回答:(1)身高、体重(2)姓名、性别(3)兴趣爱好
为了清楚记录你的情况,同学们设计了一个个人情况调查表。课件展示:
为了帮助和分析全班的数据,同学们又设计了一种统计表。六(2)班学生最喜欢的学科统计表
组织学生完善调查表,怎样调查?怎样记录数据?调查中要注意什么问题? 组织学生议一议,相互交流。指名学生汇报,再集体评议。
组织学生在全班范围内以小组形式展开调查,先由每个小组整理数据,再由每个小组向全班汇报。填好统计表。【课堂作业】
教材第96页例3。【课堂小结】
通过本节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第1课时 统计与概率(1)(1)统计表
(2)统计图:折线统计图 条形统计图 扇形统计图
第2课时 统计与概率(2)
【教学内容】
统计与概率(2)。【教学目标】
1.使学生初步掌握把原始数据分类整理的统计方法 2.渗透统计意识。【重点难点】
能根据统计图提供的信息,做出正确的判断或简单预测。【教学准备】 多媒体课件。
【情景导入】
上节课我们复习了如何设计调查表,今天我们来一起整理一下制作统计图的相关知识。
【归纳整理】 统计图
1.你学过几种统计图?分别叫什么统计图?各有什么特征? 条形统计图(清楚表示各种数量多少)折线统计图(清楚表示数量的变化情况)扇形统计图(清楚表示各种数量的占有率)教师:结合刚才的数据例子,议一议什么类型的数据用什么样的统计图表示更合适?
组织学生议一议,相互交流。2.教学例4 课件出示教材第97页例4。
(1)从统计图中你能得到哪些信息? 小组交流。重点汇报。
如:从扇形统计图可以看出,男、女生占全班人数的百分率; 从条形统计图可以看出,男、女生分别喜欢的运动项目的人数;
从折线统计图可以看出,同学们对自己的综合表现满意人数的情况变化趋势。(2)还可以通过什么手段收集数据? 组织学生议一议,并相互交流。
如:问卷调查,查阅资料,实验活动等。
(3)做一项调查统计工作的主要步骤是什么? 组织学生议一议,并相互交流。
指名学生汇报,并集体订正,使学生明确并板书: a.确定调查的主题及需要调查的数据; b.设计调查表或统计表; c.确定调查的方法; d.进行调查,予以记录; e.整理和描述数据;
f.根据统计图表分析数据,作出判断和决策。【课堂作业】
教材第98页练习二十一第2、3题。【课堂小结】
通过本节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第2课时 统计与概率(2)
做一项调查统计工作的主要步骤: ①确定调查的主题及需要调查的数据; ②设计调查表或统计表; ③确定调查的方法; ④进行调查,予以记录; ⑤整理和描述数据;
⑥根据统计图表分析数据,作出判断和决策。
第3课时 统计与概率(3)
【教学内容】
平均数、中位数和众数的整理和复习。【教学目标】
1.使学生加深对平均数、中位数和众数的认识。体会三个统计量的不同特征和使用范围。
2.使学生经历解决问题的过程,发展初步的推理能力和综合应用意识。3.灵活运用数学知识解决实际问题,激发学生的学习兴趣。【重点难点】
进一步认识平均数、中位数和众数,体会三个统计量的不同特征和使用范围。【教学准备】 多媒体课件。
【情境导入】
教师:CCTV-3举行青年歌手大奖赛,一歌手演唱完毕,评委亮出的分数是: 9.87,9.65,9.84,9.78,9.75,9.72,9.90,9.83,要求去掉一个最高分,一个最低分,那么该选手的最后得分是多少?
学生独立思考,然后组织学生议一议,然后互相交流。指名学生汇报解题思路。由此引出课题:
平均数、中位数、众数 【复习回顾】 1.复习近平均数
教师:什么是平均数?它有什么用处? 组织学生议一议,并相互交流。
指名学生汇报,并组织学生集体评议。使学生明确:平均数能直观、简明地反映一组数据的一般情况,用它可以进行不
同数据的比较,看出组与组之间的差别。课件展示教材第97页例5两个统计表。
①提问:从上面的统计表中你能获取哪些信息? 学生思考后回答
②小组合作学习。(课件出示思考的问题)a.在上面两组数据中,平均数是多少?
b.不用计算,你能发现上面两组数据的平均数大小吗? c.用什么统计量表示上面两组数据的一般水平比较合适? ③小组汇报。
第一组数据:平均数是(1.40+1.43×3+1.46×5+1.49×10+1.52×12+1.55×6+1.58×3)÷(1+3+5+10+12+6+3)≈1.50(m)
第二组数据:平均数是(30×2+33×4+36×5+39×12+42×10+45×4+48×3)÷40=39.6(kg)
④用什么统计量表示上面两组数据的一般水平比较合适?为什么? 组织学生议一议,相互交流。
学生汇报:上面数据的一般水平用平均数比较合适。因为它与这组数据中的每个数据都有关系。2.复习中位数、众数
(1)教师:什么是中位数?什么是众数?它们各有什么特征? 组织学生议一议,并相互交流。指名学生汇报。
使学生明白:在一组数据中出现次数最多的数叫做这组数据的众数。将一组数据按大小依次排列,把处在最中间位置上 的一个数(或最中间两个数据的平均数)叫做这组数据的中位数。
(2)课件展示教材第97页例5的两个统计表,提问:你能说说这两组数据的中位数和众数吗?
学生认真观察统计表,思考并回答。指名学生汇报,并进行集体评议。【归纳小结】
1.教师:不用计算,你能发现上面每组数据的平均数、中位数、众数之间的大小关系吗?
组织学生议一议,并相互交流。指名学生汇报并进行集体评议。
2.教师:用什么统计量表示两组数据的一般水平比较合适? 组织学生议一议,并相互交流。指名学生汇报。师生共同评议。师根据学生的回答进行板书。【课堂作业】
教材第98页练习二十一第4、5题,学生独立完成,集体订正。答案:
第4题:(1)不合理,因为从进货量和销售量的差来看,尺码是35、39、40三种型号的鞋剩货有些多。
(2)建议下次进货时适当降低35、39、40三种型号鞋的进货量,根据销货量的排名来看,每种型号的鞋的进货量的比
例总体上不会有大的变化。第5题:(1)平均数:(9.8+9.7×2+9.6×4+9.5+9.4×2+9.1)÷11≈9.55(分)(2)有道理,因为平均数与一组
数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减小这种影响,在评分时就采取“去掉一个最高分和
一个最低分”,再计算平均数的方法,这样做是合理的。平均分:(9.7×2+9.6×4+9.5+9.4×2)÷9≈9.57(分)【课堂小结】
通过这节课的学习活动,你有什么收获?学生谈谈学到的知识及掌握的方法。
【课后作业】
完成练习册中本课时的练习。
第3课时 统计与概率(3)
平均数:能较充分的反映一组数据的“平均水平”,但它容易受极端值的影响。
中位数:部分数据的变动对中位数没有影响
众数:一组数据的众数可能不止一个,也可能没有。
第4课时 统计与概率(4)
【教学内容】
可能性的整理与复习。【教学目标】 1.使学生加深认识事件发生的可能性和游戏规则的公平性,会求简单事件发生的可能性,并会对事件发生的可能性作出
预测。
2.培养学生依据数据和事件分析并解决问题,作出判断、预测和决策的能力。3.使学生体验到用数学知识可以解决生活中的实际问题,激发学生的学习兴趣。【重点难点】
认识事件发生的可能性和游戏规则的公平性,会求简单事件发生的可能性,并会对事件发生的可能性作出预测,掌握用
分数表示可能性大小的方法。【教学准备】 多媒体课件。
【情景导入】
1.教师出示情境图。表哥:我想看足球比赛。表弟:我想看动画片。表妹:我想看电视剧。
教师:3个人只有一台电视,他们都想看自己喜欢的节目,那么如何决定看什么节目呢?必须想出一个每个人都能接受 的公平的办法来决定看什么节目。
提问:你能想出什么公平的办法确定谁有权决定看什么节目吗? 学生:抽签、掷骰子。2.揭示课题。
教师:同学们想出的方法都不错。这节课我们来复习可能性的有关知识。(板书课题)
【复习讲授】
1.教师:说一说学过哪些有关可能性的知识。(板书:一定、可能、不可能)
2.教师:在我们的生活中,同样有些事情是一定会发生的,有些事情是可能发生的,还有些事情是不可能发生的。下面
举出了几个生活中的例子,请用“一定”“可能”或“不可能”来判断这些事例的可能性。课件展示:
(1)我从出生到现在没吃一点东西。(2)吃饭时,有人用左手拿筷子。(3)世界上每天都有人出生。组织学生独立思考,并相互交流。指名学生汇报,并进行集体评议。3.解决问题,延伸拓展
(1)教师:用“一定”“不可能”“可能”各说一句话,在小组内讨论交流。指名学生汇报并进行集体评议。(2)课件展示买彩票的片段。
组织学生看完这些片段,提问:你有什么想法吗?
你想对买彩票的爸爸、妈妈、叔叔、阿姨说点什么呢? 【课堂作业】 1.填空。(1)袋子里放了10个白球、5个黄球和2个红球,这些球除颜色外其它均一样,若从袋子里摸出一个球来,则摸到()色球的可能性最大,摸到()色球的可能性最小。
(2)一个盒子里装有数量相同的红、白两种颜色的球,每个球除了颜色外都相同,摸到红球甲胜,摸到白球乙胜,若
摸球前先将盒子里的球摇匀,则甲、乙获胜的机会()。2.选择。
(1)用1、2、3三个数字组成一个三位数,组成偶数的可能性为()。A.B.C.D.(2)一名运动员连续射靶10次,其中两次命中十环,两次命中九环,六次命中八环,针对某次射击,下列说法正确的
是()。
A.命中十环的可能性最大 B.命中九环的可能性最大 C.命中八环的可能性最大 D.以上可能性均等
3.有一个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个
面标有“5”,其余面标有“6”,将这个骰子掷出。(1)“6”朝上的可能性占百分之几?(2)哪些数字朝上的可能性一样? 答案:
1.(1)白 红(2)相等 2.(1)A(2)D 3.(1)25%(2)标有“1”和“5”,标有“2”与“4”,标有“3”和“6”的可能性一样。【课堂小结】
通过这节课的学习,你有哪些收获?学生畅谈学到的知识和掌握的方法。【课后作业】
完成练习册中本课时的练习。
第4课时统计与概率(4)
一定 可能 不可能 必然发生 可能发生 不会发生