第一篇:【问号教育·原创自主编制】教案复习教案:第8课时一次函数的图像1
教学目标:
1、使学生会画出一次函数和正比例函数的图象;
2、结合图象,使学生理解正比例函数与一次函数的性质;
3、在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念.
4、通过画正比例函数与一次函数的图象,培养学生的动手能力; 教学重点:
正比例函数的图象及性质,因为图象是研究性质的前提,而研究性质又是进一步研究函数的基础. 教学难点:
由函数的图象归纳得出函数的性质及对性质的理解.因为由图象归纳函数的性质是学生首次接触,学生没有基本思路,而且学生思维的深刻性和全面性也不够. 教学过程:
一、新课引入: 提问:
1、上节课我们介绍了两种特殊的函数,是哪两种?
2、什么是一次函数?什么是正比例函数? 由学生口答之后互相评价,纠正出现的错误.
这节课我们将要进一步研究这两种函数,主要来研究它们的图象和性质.(板书)
二、新课讲解:
提问:1.以前我们曾画过y=x的图象,它的图象是什么样的?
2.上节课的作业我们曾在同一直角坐标系中画出了三个函数图象:y=2x,y=2x-1,y=2x+1,这个函数图象是什么样的?
3.函数y=x,y=2x,y=2x-1,y=2x+1各是什么函数? 4.正比例函数与一次函数有什么样的关系?
5.你能否由此猜测:一次函数的图象是什么样的?
由上述问题,学生很容易得到结论:一次函数的图象是一条直线.教师再加以强调总结并板书.
6.由几何知识可得,要画一条直线只要知道几点就可以了?
由此问题可给出画一次函数图象的方法:只要先描出两点,再连成直线就可以了. 练习一:画正比例函数y=0.5x与y=-0.5x的图象.(出示幻灯)提问:你准备取哪两点来画这两个图象?为什么?
由学生充分讨论,对比之后,得出两点,让学生明白取这两点的好处.然后由一名同学上黑板画图,其他同学在练习本上完成.最后再加以总结板书:画正比例函数y=kx的图象,通常取(0,0)和(1,k)两点连线.
提问:1.看y=0.5x的图象,随着x的值增大,y的值有怎样的变化趋势? 2.再看y=-0.5x的图看,随着x的值增大,y的值有怎样的变化趋势? 3.你认为这两个函数图象的变化趋势不同,是由什么因素影响的?
这几个问题可由学生讨论回答,有助于培养学生的观察、分析问题的能力和思维的深刻性.在学生回答的基础上,教师加以总结和板书:
一般地,正比例函数y=kx有下列性质:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.
我们知道正比例函数是一次函数的特例,那么,正比例函数的这个性质一次函数是不是具有呢?看练习:(出示幻灯)
练习二:在同一直角坐标系中画出下列函数的图象:y=2x+1,y=-2x+1. 提问:要画这两个函数的图象,你认为取哪两点较好?
由学生进行充分的讨论,适当地向学生提示:在坐标平面内,什么样的点好找?(轴上的点)由此启发学生恰当地找出两点,便于画图,形成规律.然后由一名同学上黑板画图,其他同学在练习本上完成.最后加以总结,板书:
2.P.117中2填在书上,口答;
3.(出示幻灯)画出函数y=3x+12的图象,利用图象:
(2)求y=3,9,-3时对应的x的值;(3)求方程3x+12=0的解.
分析:(1)这道题是利用图象解决问题,所以应先画出图象.由一名学生板演,其他同学在练习本上完成.
注意:由于本题的数值问题,所以x轴和y轴最好取不同的长度表示不同的数值.(2)若已知x(或y)的值求与它对应值y(或x),应怎样在图上找呢?例如:已知x=-2时,求y的值.由学生先讨论,然后动手作,找到y的对应值,最后回答是怎样作的.(作垂直)
(3)你能否找到余下的x与y的对应值? 学生作图之后,口答结果.
(4)若求方程3x+12=0的解,看方程3x+12=0与函数y=3x+12的关系,实际就是求什么?
学生讨论回答,然后加以总结:求方程3x+12=0的解其实就是看函数y=3x+12的图象当y=0 时对应的x的值,也就是看图象与x轴交点的横坐标.
(三)重点、难点的学习与目标完成过程 本节课的重点是画正比例函数与一次函数的图象及由图象总结得出函数的性质.为了能使学生顺利地掌握画图的方法,首先给学生一个明确的感性认识:一次函数的图象是一条直线,再通过几何知识得到,画一条直线只要知道两点即可,然后又通过实例总结出画正比例函数图象与画一次函数的图象找哪两点较好,加以总结,形成规律,便于学生的记忆和应用.在画完图象的基础上,由学生对图象进行观察,然后教师提出关于变化的问题,对学生加以引导,使学生很顺利地得到正比例函数与一次函数的性质.整节课的关联性较强,一环扣一环,便于学生的思考.
三、课堂小结:
教师提问,学生思考回答:
(1)画正比例函数y=kx 的图象取哪两点?(2)画一次函数y=kx+b的图象取哪两点?(3)正比例函数y=kx与一次函数y=kx+b 的性质是怎样叙述的?你认为只要记住哪个函数的性质就可以?(一次函数的性质)为什么?(正比例函数是一次函数的特例,一次函数具有的性质正比例函数必具备.)
(4)我们是由什么得到函数的性质的?
(5)能否考虑由解析式得到正比例函数y=kx与一次函数y=kx+b的性质呢? 由学生讨论,看学生的程度决定是否向学生介绍这个问题. 答:实际上,看y=0.5x.
任取两对对应值(x1,y1)(x2,y2),如果x1>x2,由k=0.5>0,可得0.5x1>0.5x2,即y1>y2.也就是说,对于y=kx,若k>0,则y随x的增大而增大.
类似地,可以说明y=-0.5x的性质和y=2x+1,y=-2x+1的性质.
四、布置作业
1.教材P.111中1、2.
2.选做:P.112B.1.
第二篇:【日出书屋·原创自主编制】教案复习教案:第7课时一次函数
教学目标:
1、使学生初步理解一次函数与正比例函数的概念;
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式. 教学重点:
一次函数与正比例函数的概念及根据实际问题中的条件确定一次函数与正比例函数的解析式.因为一次函数与正比例函数是学生接触到的具体函数中最简单的,以后学习其它函数的基本思路都按照研究一次函数的方式,而研究一次函数的性质和图象,都是从其解析式出发的. 教学难点:
根据实际问题中的条件确定一次函数与正比例函数的解析式.因为现在的数学教育中培养学生用数学的意识是很重要的一点,而现在的学生往往缺乏实际经验,对从实际问题中抽象出数学模型的训练又不多. 教学过程:
一、新课引入:
前几节课我们学习了一些与函数有关的知识点,它们都是一些一般性的问题.从这节课开始,我们将来研究几个特殊函数的解析式和图象.首先,我们来研究一次函数.(板书)
提问:1.什么是函数? 2.函数有哪几种表示方法? 3.你能否举出几个函数的例子?
若学生举的例子正是一次函数,就把它写在黑板上,用于讲解;若学生举的例子不适合,可采用书上给出的例子讲解.
二、新课讲解:
提问:(1)这些式子表示的是什么关系?(函数关系)(2)这些函数中的自变量是什么?函数是什么?
这个问题主要是使学生明确函数就是等号左边的s和y;而自变量是x和t之后,明确等号右边其实是一个代数式的形式,以便回答下一个问题.
(3)在这些函数式中,含有函数的自变量的式子,分别是关于自变量的什么式子? 这个问题是给出一次函数的概念的关键问题,若学生没有想到用“一次式”这种方式表示,教师可直接向学生提出“是关于自变量的几次式”这个问题,再由学生回答.
(4)结合我们学过的一元一次方程的有关知识,你能否说出x的一次式的一般形式是什么样的?
由学生讨论回答,及时纠正可能出现的错误,最后加以总结:x的一次式是kx+b(k≠0)的形式.
由上面的问题结果综合得到:(板书)
一般地,如果y=kx+b(k、b是常数,k≠0),那么,y叫做x的一次函数. 提问:(1)k、b是常数的含义是什么?
答:对于一个特定的函数式,k和b的值是固定的.(2)对于函数y=2x+3和y=-2x-5,你能否指出其中的k和b?
这个问题一方面是为了向学生进一步说明k和b是常数的含义,另一方面也是为了培养学生思维的灵活性和深刻性,充分体会一次函数标准形式的表示方法,能正确分清其中的k和b,为以后学习一次函数的图象和性质打下良好的基础.强调学生在回答时,注意k和b的符号.
(3)k≠0这个条件能否省略不写?
由学生讨论回答,指出若k=0,则y=kx+b变形为y=b,b是关于x的0次式,因此不是一次函数,不必向学生交待常函数的意义.
(4)上述一次函数的定义中,限制了k≠0,那么b能否为0呢?若b=0,上述式子变形为什么样?
这个问题主要是为了引出正比例函数的概念,同时,通过这种引法,也可以使学生体会到正比例函数与一次函数是有关系的.
由问题(4)总结,板书:
特别地,当 b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.
提问:(1)正比例函数与一次函数有怎样的关系? 答:正比例函数是一次函数的特例.
(2)小学时,学过正比例的知识吗?是怎样叙述的?请你回忆一下.
小学叙述时,是强调两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.写成式子是
练习一:P.105中1 口答.
注意:一定要让学生说清原因.
刚才我们学习了一次函数和正比例函数的概念,下面我们来看一下,能否根据实际问题自己列出一次函数和正比例函数的关系式呢?(出示幻灯)
例1 一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;
(3)求经过几秒小球的速度可变化为10米/秒.
分析:v与t是正比例关系,若学生有困难,可出示下表帮助学生理解:
例2 拖拉机开始工作时,油箱中有油40升,如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式,并求出自变量的取值范围.
这道题学生会感到有困难,以提问的方式分析:(1)油箱中的油为什么会减少?(耗油)(2)余油量与什么有关?(原油量与耗油量)(3)耗油量与什么有关,怎样表示?(4)你能否确定这个函数关系式?
(5)这道题是实际问题,拖拉机能否一直工作?什么时候拖拉机不能工作了呢? 练习二:P.105中2 填在书上,口答,注意单位(万元).
本节课的第一个重点是一次函数与正比例函数的概念,为了便于学生的理解,教师不是上来就给出概念让学生背,而是通过一些函数的解析式让学生归纳总结一次函数概念,然后通过一次函数概念中的一些条件的分析得出正比例函数,使学生很清楚地看到一次函数与正比例函数的关系.
关于本节课的第二个重点和难点,教师更是要给学生充分的思考时间,并把问题层层剖析,使学生能理解实际问题的含义,由此自然而然地达到把实际问题抽象成数学模型的目的.
三、课堂小结:
教师提问,学生思考回答:
1.这节课我们学习了几个特殊的函数? 2.你能分别说出它们的一般形式吗? 3.正比例函数与一次函数有怎样的关系?
4.确定实际问题的自变量取值范围应注意什么?
四、布置作业
1.教材P.106中 1、2、3、4、5;
2.选做:教材P.106中B1、2
第三篇:【日出书屋·原创自主编制】教案复习教案:第5课时函数的图像1
教学目标:
1、使学生初步认识函数的图象;
2、使学生能通过函数的对应值表,了解函数的列表表示法;
3、通过函数的图象,了解函数的图象表示法;
4、通过函数的多种表示法,使学生加深对函数意义的了解. 教学重点:
在了解列表或画图方法表示函数的基础上,会用描点法画出函数的图象.因为本章主要学习函数的图象,而以后画函数的图象都是用描点法. 教学难点:
正确而合理地选择列表数值,因为描点法作图的关键是找准点的位置,而点的位置就是由自变量的值和它对应的函数值确定的. 教学过程:
一、新课引入: 提问:
1、上节课我们学习了一种表示函数的方法,是什么?
2、它是不是唯一的表示函数的方法呢?
这节课我们就来学习函数的其它表示方法以及怎样表示.(板书课题)
二、新课讲解:
看实例:一种豆子每千克售价2元,即单价是2元/千克,豆子总的售价y(元)与所售豆子的数量x(千克)之间的函数关系式应怎样表示?你能否指出其中的自变量和函数?
这两问可分别由两名同学来完成,适当找层次较低的学生来回答,这样既可以给学生一次成功的表现机会,又可以体现出面向全体学生.
提问:1.你能否指出这个函数中自变量的取值范围?这个问题主要是为了明确列表时从哪个数值开始.
2.你能算出当x=0,0.5,1.5,2,2.5,3时的函数值吗?由学口答完成.
这两个问题既巩固了上节课的知识,又直接为下面的列表服务.用幻灯出示下表:
上面,通过列表给出x与y的对应值,或可以表示y与x的函数关系,这种表示函数的方法叫做列表法.
提问:你认为用列表法表示函数有什么样的特征?
由学生讨论上述问题,在讨论的过程中,学生自然要与解析法相对比,可以使学生进一步分清各种表示法在不同情况下的优与劣,培养学生看事物要深刻,而且一分为二的辩证唯物主义观点.
答:(1)直观,可直接从表中找到x与y的对应值;(2)局限性,只能表示函数的一部分.(特殊情况除外)
提问:1.看上表,给出的实际是一列实数对,如果规定把自变量x的值写在前面,函数y的值写在后面,我们就得到一列什么样的实数对?
2.想一想,有序实数对与什么有关?有什么样的关系?
通过这两个问题,可使学生很自然地把上面的列表与坐标平面联系起来,就可以顺利引出函数与坐标平面内的图形的联系.
3.能否把上表中给出的有序实数对在坐标平面内描出相应的点? 此图可由一名同学板演,其他同学在练习本上完成,互相批改.
注意:(1)若自变量的值与函数值的差别较大,可以在x轴与y轴上用不同的长度表示不同的单位;
(2)在表中给出的数越多,相应地在坐标平面内描出的点也就越多. 下面我们来看一个简单的函数y=x. 提问:1.能否指出自变量的取值范围?
2.能否列出x与y的对应值表?你认为选什么样的自变量的值较好?讨论,回答. 这个问题主要是让学生明确在列表时,为了以后描点的方便选什么样的值较好. 答:(1)选绝对值较小的数;(2)选整数. 3.你能否根据表中给出的有序实数对,在直角坐标系中描出相应的点?一名同学板演,最好有事先准备好的专用的画有坐标平面的小黑板,其他同学在练习本上完成.
教师边讲边板书:一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.我们也可以用图象来表示一个函数,把这种方法叫做图象法.
提问:图象法表示函数有怎样的特征?可让学生讨论回答. 答:(1)形象,直观;
(2)可以表示事物变化的全过程;
(3)有局限性,只能画出函数图象的一部分.(特殊情况除外)
提问:在讨论列表法和图象法时,说到它们的局限性时,我们都说到了特殊情况除外,能不能不说“特殊情况除外”呢?
提这个问题主要是为了扩展学生的思维,加强学生思维的深刻性.
由学生讨论,举适当的例子回答上述问题.只要想到自变量的取值范围有限即可. 练习:P.101中1、2 只要求填表、描点.
本节课的重点是用描点法画出函数的图象,为了解决这个难点,在本节课一开始,就用实际问题给出了用列表法表示函数.有了列表法之后就引导学生明确x、y的一对对应值就是一组有序实数对,而每一组有序实数对在坐标平面内就对应着一个点.把有限个点用平滑曲线连结起来,就是函数的图象表示法.这个过程是教师引导学生一步步完成,这样学生思路清晰,也为学生今后自己画函数图象有了可操作的方法.
在函数的列表表示法和图象表示法都有个自变量的取值问题,在以往的教学中了解到学生初次接触,有时取值过大或过小,给画图造成困难,所以开始就提出“怎样选平面坐标系中的单位长度与怎样选自变量x的值?”的问题,让学生边讨论边实践的方法,让学生自己动脑、动手来尝试来解决这个难题.
三、课堂小结:
让学生看教材,回忆本节课的内容,回答下列问题:
1.到目前为止,我们共学习了几种表示函数的方法?各是什么?
2.这几种表示方法各有怎样的特征?(使学生养成归纳总结的习惯.)
四、布置作业
教材P.103中4,P.103B.
1、2(只要求填表、描点.)
第四篇:【问号教育·原创自主编制】教案复习-函数及其图像专题-函数的图象1+教案
一、素质教育目标
(一)知识教学点:1.使学生初步认识函数的图象;2.使学生能通过函数的对应值表,了解函数的列表表示法;3.通过函数的图象,了解函数的图象表示法;4.通过函数的多种表示法,使学生加深对函数意义的了解.
(二)能力训练点:1.通过函数的三种表示法的介绍,培养学生分情况、分类别讨论问题的方法;2.通过函数图象的教学,向学生渗透数形结合的思想方法.
(三)德育渗透点:通过函数的教学,使学生体会事物是互相联系的和有规律地变化着的.
二、教学重点、难点和疑点 1.教学重点:在了解列表或画图方法表示函数的基础上,会用描点法画出函数的图象.因为本章主要学习函数的图象,而以后画函数的图象都是用描点法. 2.教学难点:正确而合理地选择列表数值,因为描点法作图的关键是找准点的位置,而点的位置就是由自变量的值和它对应的函数值确定的.
三、教学步骤
(一)明确目标
提问:1.上节课我们学习了一种表示函数的方法,是什么?
2.它是不是唯一的表示函数的方法呢?
这节课我们就来学习函数的其它表示方法以及怎样表示.(板书课题)
(二)整体感知
看实例:一种豆子每千克售价2元,即单价是2元/千克,豆子总的售价y(元)与所售豆子的数量x(千克)之间的函数关系式应怎样表示?你能否指出其中的自变量和函数?(出示幻灯)
这两问可分别由两名同学来完成,适当找层次较低的学生来回答,这样既可以给学生一次成功的表现机会,又可以体现出面向全体学生.
提问:1.你能否指出这个函数中自变量的取值范围?这个问题主要是为了明确列表时从哪个数值开始.
2.你能算出当x=0,0.5,1.5,2,2.5,3时的函数值吗?由学口答完成. 这两个问题既巩固了上节课的知识,又直接为下面的列表服务.用幻灯出示下表:
上面,通过列表给出x与y的对应值,或可以表示y与x的函数关系,这种表示函数的方法叫做列表法.
提问:你认为用列表法表示函数有什么样的特征? 由学生讨论上述问题,在讨论的过程中,学生自然要与解析法相对比,可以使学生进一步分清各种表示法在不同情况下的优与劣,培养学生看事物要深刻,而且一分为二的辩证唯物主义观点.
答:(1)直观,可直接从表中找到x与y的对应值;(2)局限性,只能表示函数的一部分.(特殊情况除外)
提问:1.看上表,给出的实际是一列实数对,如果规定把自变量x的值写在前面,函数y的值写在后面,我们就得到一列什么样的实数对?
2.想一想,有序实数对与什么有关?有什么样的关系? 通过这两个问题,可使学生很自然地把上面的列表与坐标平面联系起来,就可以顺利引出函数与坐标平面内的图形的联系.
3.能否把上表中给出的有序实数对在坐标平面内描出相应的点? 此图可由一名同学板演,其他同学在练习本上完成,互相批改.
注意:(1)若自变量的值与函数值的差别较大,可以在x轴与y轴上用不同的长度表示不同的单位;
(2)在表中给出的数越多,相应地在坐标平面内描出的点也就越多. 下面我们来看一个简单的函数y=x. 提问:1.能否指出自变量的取值范围?
2.能否列出x与y的对应值表?你认为选什么样的自变量的值较好?讨论,回答.
这个问题主要是让学生明确在列表时,为了以后描点的方便选什么样的值较好.
答:(1)选绝对值较小的数;(2)选整数.
3.你能否根据表中给出的有序实数对,在直角坐标系中描出相应的点?一名同学板演,最好有事先准备好的专用的画有坐标平面的小黑板,其他同学在练习本上完成.
学生描完点之后,教师可根据情况进行总结评价,然后提问:
你认为我们可以根据解析式得到多少有序实数对?对应地可描出坐标平面内的多少点?你试试看,这无数多点组成了怎样的图形?为什么?
后两问可由学生讨论之后再回答,总结:因为图形上的每一点到x轴与y 轴的距离相等(x=y),由几何知识可知,这样的点组成的图形是以这两条轴为边组成的角的角平分线,因此这个图形是一条直线.这条直线就是函数y=x的图象. 教师边讲边板书:一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.我们也可以用图象来表示一个函数,把这种方法叫做图象法.
提问:图象法表示函数有怎样的特征?可让学生讨论回答.
答:(1)形象,直观;
(2)可以表示事物变化的全过程;(3)有局限性,只能画出函数图象的一部分.(特殊情况除外)
提问:在讨论列表法和图象法时,说到它们的局限性时,我们都说到了特殊情况除外,能不能不说“特殊情况除外”呢?
提这个问题主要是为了扩展学生的思维,加强学生思维的深刻性. 由学生讨论,举适当的例子回答上述问题.只要想到自变量的取值范围有限即可.
练习第1题 只要求填表、描点.
(三)重点、难点的学习与目标完成过程
本节课的重点是用描点法画出函数的图象,为了解决这个难点,在本节课一开始,就用实际问题给出了用列表法表示函数.有了列表法之后就引导学生明确x、y的一对对应值就是一组有序实数对,而每一组有序实数对在坐标平面内就对应着一个点.把有限个点用平滑曲线连结起来,就是函数的图象表示法.这个过程是教师引导学生一步步完成,这样学生思路清晰,也为学生今后自己画函数图象有了可操作的方法.
在函数的列表表示法和图象表示法都有个自变量的取值问题,在以往的教学中了解到学生初次接触,有时取值过大或过小,给画图造成困难,所以开始就提出“怎样选平面坐标系中的单位长度与怎样选自变量x的值?”的问题,让学生边讨论边实践的方法,让学生自己动脑、动手来尝试来解决这个难题.
(四)总结、扩展
让学生看教材,回忆本节课的内容,回答下列问题:
1.到目前为止,我们共学习了几种表示函数的方法?各是什么? 2.这几种表示方法各有怎样的特征?(使学生养成归纳总结的习惯.)
第五篇:【问号教育·原创自主编制】教案复习-函数及其图像专题-平面直角坐标系2+教案
一、素质教育目标
(一)知识教学点:1.了解平面内的点与有序实数对之间的一一对应关系;2.使学生进一步熟悉根据坐标确定点和由点求得坐标的方法;3.理解各象限内及坐标轴上的点的坐标的特征,会用象限或坐标轴说明直角坐标系内点的位置,能根据点的位置确定横、纵坐标的符号;4.理解点关于x轴、y轴、原点的对称点的意义,并能求出任一点的对称点的坐标.
(二)能力训练点:1.让学生运用数形结合的思想方法解决有关问题;2.通过平面内的点与有序实数对之间的关系的教学,向学生进行对应的思想的教育;3.培养学生的观察、分析、概括、总结的能力及动手能力.
二、教学重点、难点和疑点
本节课的教学重点是掌握平面内不同位置的点的坐标的特点.因为根据点的坐标的特点就可以确定点,而确定点是研究函数图象的基础.
本节课的教学难点是总结出不同位置的点的坐标的特点及求一个点的对称点的方法.因为这需要学生通过观察,分析才能加以归纳、总结.
三、教学步骤
(一)明确目标
上节课我们学习了用有序实数对可以表示坐标平面内的点,那么有序实数对与坐标平面内的点有什么关系、坐标平面内的点的坐标有何特点呢?这就是我们这节课要研究的问题.
(二)整体感知:
提问:1.在直角坐标系中,找出下列各点:A(2,3);B(3,2);C(-2,3);D(2,-3);E(-2,-3).
由一名同学在黑板上板演,其他同学在纸上完成,把同学完成的试卷收上来,然后看黑板上的解答,纠正其中的问题.
2.在坐标平面内不同的点的坐标是否相同?不同的坐标所表示的点是否相同?那么点的坐标是用什么表示的?(答:有序实数对)你认为坐标平面内的任意一点与有序实数对有什么关系?
由学生讨论回答,若讨论时遇到困难,可以提示:数轴上的点与实数有什么关系?
教师加以总结:对于坐标平面内的任意一点A,我们可以确定它的坐标,并且这个坐标是唯一的,这就说,对于坐标平面内任意一点,都有唯一的一对有序实数对和它对应;反过来,给出任意一对有序实数对,例如(3,2),我们都可以在坐标平面内描出一个点,这个点也是唯一的,这又说明,对于任意一对有序实数对,在坐标平面内都有唯一的点与它对应.
综上所述,坐标平面内的点与有序实数对是一一对应的.(板书)提问:能否在图中指出各象限?(用练习中已画的平面直角坐标系图)由一名同学上黑板指出,其他同学给予评价.然后出示例题:(出示幻灯)例1 指出下列各点所在的象限或坐标轴:A(-2,3);B(1,-2);C(-1,-2);D(3,2);E(-3,0);F(0,1).
分析:要解决这个问题,首先要画出直角坐标系,描出给出的各点;然后,按照图中所描的点的位置,给出答案.
提问:题中为什么要写出“所在的象限或坐标轴”?明确坐标轴上的点不属于任何象限.
由学生完成例题之后,加以评价,然后提问:(1)坐标轴上的点的坐标有什么特征?上节课已介绍过,学生可以很容易回答.
(2)各象限中点的坐标有何特征?(若学生对此问法不太清楚,可换一种问法:坐标是由一对有序实数组成的,这对有序实数因为点的位置在不同的象限各是什么符号的数?)
学生讨论之后,结合直角坐标系图,让学生独立完成下面的图表.(出示幻灯)
根据点所在象限,用“+.-”号填表:
提问:任一点P(x,y)
(1)如果P(x,y)在第二象限,那么x,y分别是正数还是负数?(2)如果x>0,y<0,P(x,y)在第几象限?(向学生介绍这是一种表示不定点的方法)
通过这两个问题,使学生能从正、反两个方面理解坐标平面内点的坐标的特征.
例2 求出点P(-3,-2)关于x轴、y轴、原点的对称点. 用提问的方式加以分析:
(1)关于x轴、y轴对称是哪种对称?应怎样通过画图作出对称点?(2)关于原点对称是哪种对称?应怎样通过画图作出对称点?(这两个问题若学生有遗忘,可适当加以提示.)
(3)你能否在练习本上画出这些点?
可由教师或一名同学在黑板上画图,其他同学在练习本上完成,然后看黑板上的图加以评价、总结、提出问题:(用P1,P2,P3表示点P关于x轴,y轴,原点的对称点)
(1)能否说出P1,P2,P3的坐标?你的根据是什么?(根据轴对称及中心对称的定义)
(2)观察这三点的坐标与P点的坐标有怎样的关系?(把这四点的坐标都写在图上以便观察)先让学生讨论,然后加以总结:对于P(x,y).
(1)关于x轴对称,则横坐标不变,纵坐标变为相反数,即P1(x,-y);(2)关于y轴对称,则纵坐标不变,横坐标变为相反数,即P2(-x,y);(3)关于原点对称,则横、纵坐标都变为相反数,即P3(-x,-y); 提问:点P(x,-y)关于x轴、y轴、原点的对称点的坐标各是什么? 这个问题是直接运用上面总结而得的规律,使学生能正确地运用该规律,并理解之.
练习:p.10页第1,2题,互相评价. P.11中4题 填在书上,口答互相评价.
补充:如果点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)在第______象限,点Q(x-1,1-y)在第______象限. 用提问的方式加以分析,学生讨论回答:
(1)要确定点N和Q在第几象限,应知道什么条件? 答:点N和点Q的坐标的符号.
(2)点N与Q的坐标的符号与什么有关? 答:与x和y的取值范围有关.
(3)怎样才能确定x和y的取值范围呢? 答:根据点M的坐标及位置.
(4)点M(1-x,1-y)在第二象限,第二象限的点的坐标有什么特征?由此得x和y的取值范围是什么?
答:1-x<0即x>1,1-y>0即y<1.
(5)由x>1和y<1可得点N和点Q的坐标的符号是什么? 答:N(-,-);Q(+,+).(6)点N和点Q各在第几象限? 答:点N在第三象限,点Q在第一象限.(7)点N与点Q、点P是有怎样关系的点?
答:点N与点Q关于原点对称;点N与点P关于x轴对称. 通过这一道练习题既巩固了平面内的点的坐标的特征,同时也巩固了对称点的知识,而且考虑的方式与前面例题正好相反,这就可以培养学生思维的灵活性和深刻性.
(三)重点、难点的学习与目标完成过程
本节课的重点是掌握平面内不同位置的点的坐标的特点,为了回答这一问题,首先是从画图入手,通过特定点在图上的位置总结出特点之后,再通过正、负半轴围成的象限加以解释,就使这个问题既有直观的解答,又有理论依据,便于学生的理解和接受. 而对于求一个点的对称点的坐标也是从特例入手,用学生熟悉的几何知识加以阐述,使学生能达成知识间的顺利过渡,自然地突破这一难点.
最后又用了一道综合练习题使学生对上述两个问题加以复习,在检验学生掌握情况的基础上,教给学生完整的知识,培养了学生思维的灵活性和深刻性.
四、布置作业
教材习题13.1中4,5,6,7题.五、板书设计