第一篇:倍数和因数教案
倍数与因数
教学目标:
1、理解和掌握因数和倍数的概念,认识他们之间的联系和区别。
2、学会求一个数的因数或倍数的方法,能够熟练的求出一个数的因数或倍数。
3、知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。教学重难点:掌握找一个数的因数和倍数的方法;理解和掌握因数和倍数的概念。教学准备:课件,正方形纸片 教学过程:
一、智力竞猜,引入新课
师:这是老师国庆外出游玩拍摄的一张图片,秋高气爽的季节,公园里许多人在划船。看到这里,我想到一个脑筋急转弯:一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(局部同学能猜出三个人分别是爷爷、爸爸、和孙子)师:同学们脑筋转的很快,一下就解决了这个问题。这三个人分别是爷爷、爸爸、和孙子。爷爷、爸爸、孙子的名字分别是韩广发、韩有才、韩韩。请同学以韩有才为中心介绍—下三个人的关系。(同学可能会说出“韩有才是爸爸”,“韩有才是儿子”的语句,这时引导同学说出“谁是谁的爸爸”“谁是谁的儿子”。)
师:上述“父子关系”是一种互相依存的关系,在表述时一定要完整。在生活中除了父子关系是相互依存关系之外,还有例如师生关系,同桌关系等都是相互依存的关系。在数学王国里,在整数乘法中也存在着这样相互依存的关系,这节课,我们一起探讨两数之间的倍数与因数关系。(板书课题:倍数与因数)
二、探究新知(一)认一认
1、师:请同学们拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并在老师准备的草稿纸上写下相应的乘除法算式。
生独立思考,请学生汇报不同的摆法以及相应的乘除法算式。
师总结并用课件展示出学生的摆法。(向学生说明:假如一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让学生将重复的图形和算式去掉。)
2、师:好的,那现在我们一起看乘法算式3×4=12。在这个算式中3和4都是什么数?(乘数)这些乘数与积有什么关系呢?(1)师引导学生理解乘数与积的关系。
(12是3的4倍,12是4的3倍。)
师引出因数与倍数:因为3x4=12,所以12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。或者说12是3和4的倍数,3和4是12的因数。也就是说:在整数乘法:乘数X乘数=积 中,积是两个乘数的倍数,两个乘数是积的因数。
2.课件出示书本第31页例图:运动会上两个班同学分别排出下面两种队形,算一算两班各有多少人?
让学生先观察,再算一算两班各有多少人。学生列式计算,汇报。
追问:你能说出哪个数的是哪个数的倍数,哪个数是哪个数的因数吗?
学生在小组内交流。教师巡视指导学困生。
学生汇报。
教师小结:为了方便,我们在研究因数与倍数时,我们所说的数是整数,一般不包括0.特别要注意的是,我们在说倍数和因数时通常是说“()是()的倍数”或者说“()是()的因数”,所以倍数和因数是相互依存的,不能单独存在。
(二)说一说
1、师:现在大家对倍数和因数的关系了解的怎样了呢?我们一起来看两个小练习。课件出示:25x3=75,,20x5=100.生交流汇报。
2、师:看来大家对倍数和因数的关系已经有了一定的了解了,那谁来说一道乘法算式考考大家。(指名生说一说)
3、让其他学生来说一说谁是谁的因数谁是谁的倍数。(注:可以让几位学生互相说一说。)
4、看来都难不住你们,那老师来考考你们:18÷3=6在这道算式中,谁来说说谁是谁的因数谁是谁的倍数。
(三)议一议
1、师:看来大家都是学习小能手,那能不能请各位小能手帮老师解决一个小问题?
下面哪些数是7的倍数?与同桌交流你的想法。(课件出示)7、14、17、25、77 学生先独立找一找,再与同桌交流想法。学生汇报。
2、引导学生说说自己的想法。
质疑:为什么17和25不是7的倍数?
(因为:17÷7和25÷7不能整除,它们的商是整数还有余数。)
追问:那能不能再找出7的其他倍数来呢?试一试。
学生找一找在小组内交流。
引导学生归纳出:7的倍数有7、14、21、28、35、42······
3、提问:你们是怎么找出来的?(先找7的1倍,就是7x1=7,2倍就是7x2=14,3倍就是7x3=21·····)
追问:你们能找的完吗?(不能)
师明确:一个数的倍数有无限个,最小的倍数就是它本身。
质疑:一个数的倍数有无限个,那一个数的因数的个数也是无限个吗?(不是)请你找出12的所有因数。
师:根据因数的意义我们知道,如果()X()=12,两个数相乘的积是12,那么这两个数都是12的因数。
生独立思考,师巡视指导,并选择有代表性的作品展示。
师:怎样找才能不重复也不遗漏呢?(从1X12=12开始,一对一对的找,并从两端写起)
大家再试试找一找15和16的因数。师小结:一个数的倍数有无限个,最小的倍数是它本身,没有最大的倍数。因数的个数是有限的,最大的它本身,最小是1.也就是说一个数最小的倍数是它本身,最大的因数也是它本身。
三、巩固练习
1、完成教材第32页“练一练”第1题。
学生先独立完成。师巡视指导。小组内交流说一说,学生汇报。
2、完成教材第32页“练一练”第2题。
学生在小组中直接说一说,再让学生在班上说一说。
3、完成教材第32页“练一练”第5题。
学生先找出4的倍数,再找出6的倍数。
让学生理解既是4的倍数又是6的倍数的含义。
四、课堂小结:
通过今天这节课的学习,你有什么收获?
学生汇报这节课的学习所得。
师:今天我们学习了倍数与因数,知道一个数的倍数是无限的,其中最小的是它本身,没有最大的倍数,一个数的因数的个数是有限的,最大的它本身,最小是1.五、布置作业
完成教材第32页“练一练”第3、4题。复习课本第31页。板书设计
倍数与因数
一个数的最小倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。
第二篇:因数和倍数教案
因数和倍数
朔州市怀仁县吴家窑寄宿制小学校
王存祥 教材内容:
《因数和倍数》是人教版小学数学五年级下册第二单元中的第一课时 教学目标:
1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数,知道因数、倍数的相互依存关系。
2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。教学重点
理解因数、倍数概念模型内涵,掌握找一个数因数的方法。教学难点
理解因数、倍数的相互依存的关系。教学过程
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是„„?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是„„?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、探究新知
(一)学习因数和倍数的概念
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12 所以12÷2=6,12÷6=2 因此2是12的因数,6也是12的因数; 12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
4、师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
现在,请同学们小组合作小结一下因数和倍数的概念。(小组合作探索,教师引导)最后让一名学生代表在黑板上写出:如果数a能被数b整除,a就是b的倍数,b就是a的因数。
(二)、学习求一个的因数或倍数的方法。
A、找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些? 学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=„;用乘法一对一对找,如1×18=18,2×9=18„)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
老师举错例(1,2,3,4,6,6,9,12,18,36)后提问:这样写可以吗?为什么?
指名回答(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42„„)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
B、找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗? 汇报:2、4、6、8、10、16、„„
师:为什么找不完? 你是怎么找到这些倍数的?
(生:只要用2去乘
1、乘
2、乘
3、乘
4、„)那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报
3的倍数有:3,6,9,12
改写成:3的倍数有:3,6,9,12,„„
你是怎么找的?(用3分别乘以1,2,3,„„倍)
5的倍数有:5,10,15,20,„„
师:通过上面的学习,我们知道一个数的因数的个数是有限的,那么一个数的倍数的个数是怎么样的呢?同学们能回答吗?
生答:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
投影出示:
1、说一说谁是谁的因数,谁是谁的倍数。
36和9
28和4
7和49
5和40
72和8
10和4
2、判断。
(1)3是因数,9是倍数。()
(2)8是16的因数。()
(3)4.2是0.6的倍数。()
(4)15的因数有3和5两个。()
(5)13的因数只有1和13。()
(6)在1~40的数中,36是4的最大倍数。()
3、游戏。(学生拿出老师发给的学号卡片)规则:老师说一个数,同学们看自己卡片上的数是否符合下面的条件,符合的请举起自己的卡片,其他同学互相评判。①老师:4,谁是我的倍数?我是你们的什么数?
②老师:18,我找我的因数。③老师:请1~8号的学生举起卡片,让6号同学指出自己的因数。④1,我是谁的因数?
三、课堂小结
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
板书设计:
因数与倍数
如果数a能被数b整除,a就是b的倍数,b就是a的因数。
一个数因数的个数是有限的,最小的因数是1最大的因数是它本身。
一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
教学反思:
1、教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。
2、采用小组合作的学习模式,激发了学生主动学习和参与的兴趣,引导学生感悟到生活中处处有数学,数学就在身边。
3、在利用乘法算式说明因数和倍数含义的基础上,让学生体会了倍数与因数的相互依存关系,并逐步让学生领会到了一个数的倍数的个数是无限的。
第三篇:因数和倍数教案
吴正宪《整除复习课》课堂实录
师:同学们今天这一节课我们要做一节有关数的整除的综合复习课,大家看到课前我在黑板上零零散散的贴出了这么多卡片,那么这些卡片上写的都是有关数的整除中的一些有关数的概念,那么我不知道当我们把这些知识学完以后,今天的复习第一件事我们能不能根据这些有关数的概念它的意义和他们之间的联系,把这些零零散散的概念做一次梳理,你认为哪个概念最重要你可以举例说明也可以呢根据他内在的联系和你认为他的数学概念把它整理一个比较系统的知识网络图,这事原来干过吗?没干过。今天我们一起来试一试好不好!我不知道你们怎么分组,四人以小组还是怎么样分你们自己结合好不好?你认为哪个概念最重要它的概念下面又可以派生出哪些新的概念,那我们把这些做一个整理,好吗?把时间先给同学们,下面就自愿结合按照你们的老规矩,开始。学生分组整理 小组汇报
生1:我们小组觉得整除是最重要的。
师:整除最重要是吗?那么整除最重要的你要把它先第一个出来是吗?那这样我就先把它放在最重要的位置。生1:整除它还可以分为奇数和偶数。
师:整除还可以分为奇数和偶数?奇数和偶数是从整除这个角度去分的吗?同学们摇头呢!有意见呢!你选一位同学。生1:赵俊艺
师:赵俊艺有不同看法。生2:我觉得整除它可以分为因数和倍数。师:你为什么在整除下面分得出因数和倍数?
生2:因为整除一个数,因数然后乘以倍数等于一个数,那么这个数可以除以因数等于倍数。
师:那么我的问题是,假如说数a能够被数b整除的话,那么想一想数a和数b一定有一个什么样的关系?你同意吗? 生2:同意
师:谁是谁的倍数? 生2:a是b的倍数 师:接着
生2:b是a的因数 师:你们同意这意见吗? 生:同意
师:她的意见说在整除的前提下一定会产生一种概念,什么? 师生齐声:因数和倍数
师:你为什么不同意她的意见呢?她说把奇数和偶数分出来就行了,你们可以有些讨论吗?
生2:我觉得偶数和奇数应该不算在整除里面,它应该是数的名称。师:偶数和奇数是在什么前提下产生的?它跟谁有关系?跟整除有关系没错,在具体点,我们怎么确定这个概念呢?是跟整除有关系,能在具体点吗?在什么情况下我就认定它是偶数了? 生2:能被2整除的 师:接下来,说完整,老说一半 生2:能被2整除的那些自然数都是偶数 生2:不能被2整除的那么就是奇数
师:那你的意思偶数和奇数一定和一个重要的数有关系,是吗? 师:和谁? 生2:2 师:同意吗? 生:同意
师:她说能被2整除的就是? 生:偶数
师:不能被2整除的就是? 生:奇数
师:那好,这样啊,你既然提出来了这个问题我把这2先补充到这里好不好,我先假如说补充到这里,那么跟它有关系的赶快拿啊,偶数和奇数 学生拿卡片
师:你认为他们有关系,是这个意思吗?能被2整数和不能被2整除的,对吗?他们的关系你们同意吗? 生:同意
师:他们认为在整除的前提下一定有一对非常重要的概念,是什么?一起说
生:倍数和因数 师:你们认可不认可这样的观点? 生1:认可
师:那赶快找出来 学生找卡片
师:这样啊,既然跟它有关系我帮你们放在上面好不好 粘贴卡片因数、倍数
师:你们的意思就是说当数a能被数b整除的时候,数a就是数b的倍数,那么数b就是数a的因数,是这意思吗? 生:是
师:接下来继续说,因数还能接着往下说吗? 生:有公因数和公倍数,那么赶快跳出来啊 学生找卡片
师:又在下面的前提下产生了公因数和公倍数,你认为应该贴在哪里就贴下来,不同意见的赶快上来啊 学生贴卡片
师:贴在着跟他有关系是不是啊,你认为倍数和公倍数有关系,是吗? 师:他认为因数公因数有关系,是吗?还有吗? 生:还有最大公因数和最小公倍数
师:那么你们的意思就是说因数可以引出公因数这个概念,对吗? 生:对
师:那请问什么叫公因数?
生:公因数就2个数共有的因数叫做公因数 师:共有的因数对不对? 生:对
师:那什么叫最大公因数啊? 生:就是2个数最大的公因数
师:几个数公有的因数,其中最大的一个是它的什么? 生:最大公因数
师:那你们能接着把这段概念总结完吗?
生:2个数公共倍数就做公倍数,其中最小的一个就叫做最小公倍数 师:同意吗? 生:同意
师:你们这么一说还挺有道理,的确,从因数当中我们可以引出公因数的概念,还可以引出最大公因数的概念,是这样吧?那么,从倍数当中我们可以引出公倍数的概念,那么其中最小的一个是最小公倍数,有没有意见? 生:没有
师:接下来还有这么多的概念那,你有不同意见,那你可以上来啊。谁有的说前面来,你们现在都在动脑筋想啊。生:合数
师:和数怎么啦?
生:我觉得合数也可以贴几个上来
师:你认为贴在哪里?把它拿出来。你们自己来不讲也可以,把它自己贴上去,谁愿意来?合数贴在哪? 生:合数的下面找到了,合数不知道贴在哪里
师:合数的家找不到了,合数是从哪出来的啊?我们怎么判断它是合数啊?别着急,它的合数找不到了,它的下面能找到是吗? 生:是的
师:那你别着急,那你等着找下面。现在合数的上家谁能找到? 生:偶数除了2都是合数
师:偶数里面除了2都是合数,有问题吗? 生:没问题
师:你想把它贴在偶数旁边是吗?有没有意见? 生:
9、25也是合数
师:那些奇数当中也有合数啊,那么请问合数的概念是怎么产生的?你是根据什么判断它是合数的?这个合数旁边一定还有它的朋友呢?你把朋友找过来也可以啊
生:我觉得它合数的话,就是说它除了自己本身以外还有其它的因数。师:这个同学他发现这个合数是跟那个谁有关系? 生:跟因数有关
师:跟因数什么关系?你们仔细听啊
生:这个合数除了它本身和1以外还有其它的因数
师:你的意思就是说合数会跟因数有关系,是这意思吗?那它除了1和它本身这两个因数以外还有? 生:其它的因数。
师:那你认为合数贴在哪里比较合适呢? 生:我觉得贴在因数这比较好
师:她说把合数贴在因数这比较合适,跟它有关系对不对?那么跟因数有关系的只有合数吗?它跟谁有关系? 生:还有它跟质数有关系 师:质数跟谁有关系? 生:质数也跟因数有关系
师:既然有关系放在这行不行?有什么关系?上级现在明白了,这2个数都与自然数因数的个数有关系,对吗? 生:对
师:有什么关系啊?这个数就2个因数,叫什么? 生:质数
师:除了1和它本身还有别的因数那叫什么数? 生:合数
师:看来这个小姑娘找的这个位置你们赞同吗? 生:赞同
师:是有关系啊,只有1和它本身两个因数的数叫质数,除了1和它本身还有别的因数的数叫做什么? 生:合数
师:那么自然数作为一个大的集合圈我们说过整除这个单元是在非0的自然数里面研究的,对吧? 生:对
师:那么把自然数作为一个大的集合圈,从因数的个数来分我们就说有质数有合数两大类,赞同我的意见请把手举起来,谢谢同学们的支持,反对的请举手,同学们都支持老师,你们都还在反对,听听他们的意见好吗?你们作为支持的代表谁愿意跟他们对话,站起来,不同意的站一边,你们对话。
生1:那请问一下1只有1这个因数,那请问它是质数吗? 生2:不是质数
生1:既然你说了它不是质数那么它是合数吗? 生2:不是
生1:既然它既不是质数也不是合数,那请问他因该是什么数呢? 师:请问它是什么数呢?你不想问个什么问题吗?两个问题问得好啊,第三个问题它既然不是质数也不是合数,那么自然数这样一个集合圈,你就分成两类
生3:自然数当中分成质数和合数,那1分给哪一类? 生4:整数
师:我们今天研究这个整数,我们讲的是自然数非0的情况下对不对,那么把它作为一个集合圈有质数有合数两类就够了吗? 师:请人家想一想 生4:3类
师:终于从牙缝里蹦出个数3类。几类? 生:3类
师:不2类了,那看来这1还是挺重要的对不对,那这1也不能放在质数里也不能放在合数里,它应该放在哪里? 师:单独一个,那好同学们自然数从因数的个数分分成几类? 生:3类
师:只有一个因数的是谁? 生:1
师:只有1和它本身两个因数的是? 生:质数
师:除了1和它本身还有别的因数的是? 生:合数
师:那么你们认为这三个分类和因数有关对不对? 生:对
师:你还有下阶吗?你下阶是什么? 生5:我的下阶是分解质因数 师:为啥贴在那,讲道理 学生贴卡片 师:贴在哪里
生5:合数下面,如果把合数拆开的话就变成质因数 师:有道理没有?
师:他说把合数拆开,拆开的意思是什么意思? 生5:就是把它分解了
师:这词更准确,那么你们来看吴老师在做什么?别着急,这是一个? 板书12=2×2×3 生:合数 师:我把它? 生5:分解了
师:分解了,对不对啊? 生:对
师:那么这个过程叫什么? 生5:分解质因数 师:有没有意见? 生:没有
师:所以你把它? 生5:贴在合数下面
师:那么他把它贴在合数的下面,任何一个合数都能写成几个这样的形式吗? 生6:能
师:你说能。你们又能想起? 生7:质因数
师:什么叫质因数?
生8:就是分解以后它只剩下质数没有合数 师:你的意思是说分完了没有合数 生8:就称为质因数
师:就以这题为例谁是谁的质因数? 生8:2和3是12的质因数
师:看来在分解质因数的过程当中我们又发现了这样的几个质数是这个合数的什么? 生:质因数
师:质因数在哪里?赶快贴过去,贴到这好不好,同意吗? 生:同意
师:这个分解的过程,而这个过程当中的几个质数就是这个合数的什么? 生:质因数
师:有没有意见?你的下阶找完了吗? 生5:还有互质数
师:互质数想不起来了,没关系,你问,有人能想起来它放哪? 生5:有人能想起来吗?谁能想起来这个互质数帖哪? 点一名学生上来帖 师:我们看她贴哪里
生9:互质数就是2个数除了1以外没有别的公因数 师:你把它放在谁的旁边? 生9:公因数
师:你放在这里的意思你在解释一下什么叫互质数? 生9:互质数就是2个数除了1以外没有别的公因数 师:这2个数就是? 生9:互质数
师:所以你认为互质数跟公因数? 生9:有关系 师:你就放在它的? 生9:下面 师:有道理吗? 生:有
师:当两个数的公因数只有1的时候这两个数就成为了互质数,同意吗? 生:同意
师:到这了,不着急,刚才你们说能被2整除的数叫什么数? 生:偶数
师:不能被2整除的数叫做? 生:奇数
师:那看来这还有点关系,对不对?偶数和奇数是对2而言的,对吗? 生:对
师:那我请问,当我把自然数作为一个集合圈的话,我说除了偶数就是奇数赞同的请举手,反对的请举手 学生举手
师:赞同我的意见,我认为自然数除了奇数就是偶数,有支持我的吗?来过来,就我们2和他们对势就行了,提问题,谁提谁问? 生1:请问0是什么数? 生2:是偶数
生1:它不能被2整除
生2:0除以任何数都是等于偶的,所以它是偶数 生3:那负数呢?
师:同学们首先我们上课的时候限定了今天我们讲的整除这个单元是在什么,非0的自然数这样一个范畴内研究的,对不对啊?对吗?因此,我们所说的是非0的自然数,是在这个范畴吗?那么我请问在这样的情况下除了偶数就是奇数,有没有意见,没意见的坐着,有意见的站着 学生坐着
师:是这样吗?同学们,那么我刚才问了一个问题啊,被2整除的数也就是2的倍数对吗?在这个单元里除了学过2的倍数还学过几的倍数的特征呢?3,对吗?是吗?被3整除的数有什么特征啊?记得吗?有什么特征?谁拿着话筒谁说吧
生1:能被3整除的数它各个数位相加的和也能被3整除
师:各个数位上的数相加的和能被3整除,这个数就一定能被3整除,这样说就比较完整。还学过被几整除的数啊?被几啊?被5整除有什么特征啊?你来说
生2:数的个位除了5就是0的数能被5整除
师:除了5就是0的数对吧?个位上是0和5的数能被5整除,那么被2整除的数的特征呢?记住了吗?是什么?得是0、2、4、6、8对吗,能被2、5同时整除的数,想一想有什么样的特征?什么特征? 生3:末尾是0的
师:要是同时被2、3、5整除的数呢?末尾的怎么样?你来说 生4:要是他们的,应该是0 师:末尾是0,还有别的要求吗? 生5:各个数相加起来的和都是3的倍数
师:好了,我听懂同学们的意见了,你们听懂了吗?同学们,刚才黑板上一堆零零散散的那样的有关数的概念的卡片,这么一整理怎么样,清清楚楚,谢谢你们。俗话说啊书越读越薄就是这个道理,那么多的概念经过我们集体的智慧把它整理成一个比较系统的有关数的整除的概念的这样一个网络图,那么有问题吗?你能给大家提出点问题让大家讨论吗?那我第一个发言好不好,我希望同学们学会提出问题,我的第一个问题是质数和质因数只是一字之差它们有什么相同的地方和不同的地方吗?这是我的问题,想好啦,你想回答,不急,我就找一个没举手的,说 生1:没想好
师:没想好啊,没关系的,看来同学们是碰到了困难,比如说我问的问题是质数和质因数有什么相同的地方和不同的地方,回答的时候能不能从概念出发去解释,然后再做一下比较就非常这个了,那你知道什么是质数吗?这个同学 生2:质数是,忘了
师:我来帮你们回复记忆,不是刚刚复习完吗?什么是质数啊?你来试试看
生3:除了1和它本身没有其它因数就是质数
师:记住了,你记住了小姑娘,记在心里啊,慢慢就恢复了。那么只有1和它本身没有其它因数的叫质数。什么叫质因数? 生4:质因数是由一个合数解开来的质数
师:别着急,他说的很快,他会用自己的语言来表达自己对概念的理解,他说是一个合数给解开的那个东西,我理解,就是刚才我把一个合数用几个质数相乘的形式表示出来,对吗?那么他说质因数也得只有,那么质因数首先得是什么数? 生4:质数
师:能当质数才能当质因数,对不对,他用概念解释啦,那么我在问问同学们,2是质数同意的请举手,2是质因数同意的请举手,为什么? 生5:因为2没有合数
师:说得多好啊,你叫什么名字? 生5:我叫李文怡
师:李文怡是女同学有没有意见 生:没有
师:李文怡是姐姐有没有意见? 生6:有
师:你有什么意见? 生6:她不是我姐姐
师:是啊,就好像2是质数一样,李文怡是女同放学可以独立存在,对不对,李文怡是姐姐就好像2是质因数一样它是谁的质因数啊?它是12的质因数,它是10的质因数,它能是9的质因数吗?因此,他一说质因数一定依附在谁的身上,也就是说质数可以独立存在而质因数不能独立存在,清楚了坐下来。向我这样提出问题,你能够文大家吗?还有能?你能给大家提个问题吗?你们平时没这习惯是吗?好这个男孩拿话筒说。
生7:质数和互质数有什么不同? 师:有什么不同?
生8:质数有一个就可以了,而互质数必须要有2个
师:啥意思啊?质数有1个就可以了,你的意思,他的意思你听懂了 生9:质数是单独的一个数,而互质数是相互的数
师:同意这意见吗?质数是单独的一个数,对一个数而言,对不对,而互质数对几个数而言 生:2个
师:其实有的时候啊,一字之差我们做一点思考就会发现他们有相同的地方和不同的地方,听懂了吗?这么多的数学概念我们怎么去理解应用它呢? 课件出示
在1----20的自然数中,有()个奇数,有()个偶数,有()个质数,有()个合数,奇数中的()是合数,偶数中的()是质数,既不是质数也不是合数的数是()。师:快速回答 学生回答 课件出示
把下面的数按照不同的标准分成两类,你能想到几种? 2 15 8 17 20 学生分类
生1:按照奇数和偶数分 师:还可以怎么分类?
生2:我把8、15、20分一类,2和17分一类,请大家猜猜我是怎么分的?
生3:她是按照质数和合数分的
师:你猜对了,真是质数合数分的,好啦,同学们,我迟疑了一下,但是我还是决定把这个题给你们 课件出示
两个质数的和即是11的倍数又是小于50的偶数,这两个数可能是多少?
师:马上告诉我,你现在在想什么? 生4:这两数是哪两个数
师:这两个数是哪两个数啊?你呢? 生5:跟他一样
师:这两个数究竟是几啊?有没有不这么想问题的?听听这位同学的意见
生6:这两个数的和是几?
师:他没这么想问题,两个数是几啊?这两数究竟是几啊?这两个数跟它一样到底是几啊?而这位同学说他们的和是几啊?你们觉得是向第一种想的好还是第二种好,第二种,那你们说吧,它的和是几啊?一起说吧,11的倍数有:11、22、33、44,下于50的偶数淘汰谁? 生:
11、33
师:它的和找到了吗?你想说是什么?说
生1:3和19,7和15,5和17,别着急,先坐下来,同学们结果并不重要,最重要的是思考问题的方法,我们回忆一下,三个同学站起来说这2个质数是几?茫茫大海去捞针,而这位同学,他马上想到两个数的和是多少,在茫茫大海中一下子把包围圈缩小啦,因此我们写出了1、2、3、4,你们又在喊要淘汰11和33,包围圈也就更小了,一步步缩小包围圈,然后顺藤摸瓜,这样一组组的两个数都被脱颖而出,如果这个同学她说加起来也是22啊,错在哪里啊? 生7:15不是质数
师:所以她顾了和是22却忽视了一个重要的条件15不是质数,顾此失彼,因此我们在学习数学的时候首先用缩小包围圈的方法找到题眼然后还得顾这,还得顾那,同学们下课的铃声拉响了有收获吗?有收获啊,好啦同学们感谢你们,那么今天有些同学把概念忘掉了没关系回去以后在复习复习,好不好? 生:好
师:我建议全体起立面向着我们这边的老师一起说一声老师们辛苦了 生:老师们辛苦啦
第四篇:因数和倍数教案
因数和倍数》的整理与复习
教学设计 刘福娟
教学目标:
1、通过整理和复习,使学生对因数与倍数的相关概念的理解更系统、牢固。
2、进一步弄清各概念之间的联系与区别。
3、初步学会在系统复习的基础上理清知识脉络,掌握有序整理的方法,提高学习能力。
4、通过整理和复习,学生感悟到数学知识内在联系的逻辑之美。教学重点:
理清知识脉络,深化理解概念之间的联系与区别,有效地形成知识网络。教学难点:
熟练掌握概念间的联系与区别。教学准备:
游戏用的纸条,多媒体,小黑板。教学过程:
一、激趣导入
师:同学们我们已学完了“因数和倍数”这一单元,今天我们就对这部分知识进行整理与复习。出示课题:《因数和倍数》整理与复习
二、知识回顾梳理
师出示29届奥运中国冠军图问:知道照片上这些人吗?北京奥运会中国代表团共得多少块金牌?多少块银牌?多少块铜牌?共获得多少块奖牌?(根据学生回答教师板书数字29 51 21 28 100)
师:这届在中国北京举办的震撼世界的盛会又一次充分展示了我们祖国的强大。祖国的强大表现在各个方面。
师:同学们还记得我们在这儿重温2003年10月“神州五号”上天时激动人心的时刻吗?那一次让我们记住了航天英雄杨利伟,2005年10月“神州六号”发射成功,聂海胜,费俊龙成为家喻户晓的航天英雄,今年的10月“神州七号”至少承载3人上天,让我们共同期待这一天的到来。(板书:1 2 3)
师:同学们看这些数字能想到第一单元里的哪些概念知识,能用一句话说说吗?同时把你想到的概念写到黑板上。
师:这些数字让我们想到这么多概念,这些概念在黑板上这样出现你有什么感觉?(乱)
师:这些概念既有区别又有联系。昨天我们留了一项作业是:让大家根据概念的发展及它的含义,找一找他们的联系,设计一个有个性的网络图。你们都做了吗?请拿出你的网络图给小组同学展示并说一说你的设计思路。(学生在小组交流)
师: 谁愿意为大家介绍你设计的网络图? 学生到实物投影前展示汇报,其他学生可以补充。
师:老师也将它们设计出了网络图(略),同学们看看有没有疑问。
师:能把你理解得最透,记得最熟的概念说给大伙听听吗?
师小结:世间万物都有联系,原来数学知识间也有这么大联系。我们要善于寻找知识的联系,才能达到举一反
三、触类旁通的境界。
三、巩固练习
师:同学们既然没问题了,那你们敢不敢接受我的挑战呢?
生:敢。师:你们真勇敢。我们首先进入挑战第一关---填空
1、自然数中最小的奇数是(),最小的质数是()。
2、个位上是()或()的数是5的倍数。3、1--20各数中最大的质数是(),最 小的合数是()。师:恭喜你们顺利闯过第一关。本周五的社会实践活动珊瑚馆可以参观了。下面欢迎你们进入第二关—判断关
要求:错的说明原因。
(1)一个自然数不是奇数就是偶数,不是质数就是合数。()(2)一个数的倍数一定比它的因数大。()(3)2的倍数一定是合数。()(4)所有奇数都是质数。()(5)所有偶数都是合数。()
(6)质数只有1和它本身两个因数。()(7)一个合数至少有3个因数。()
(8)个位上是3、6、9的数是3的倍数。()师:再一次恭喜你们顺利闯过第二关。海兽馆的大门已向你们打开。
连闯两关同学们一定很累了,让我们来轻松一下,做个小游戏。游戏(学生任意抽一张纸条,回答纸条上的问题)①3的最小因数是几? ②最小的奇数是几? ③最小的自然数是几? ④最小的合数是几? ⑤5的最小倍数是几? 刚才我们靠集体的智慧闯过两关下面可要靠个人的真才实学闯第三关—自测关。请拿出自测卡。(题略)生:独立解题。汇报解题情况。
同学们表现得非常好,鸟语林里的小鸟们早就在欢迎你们了。别忘了和它们多照几张相。
师:同学们一定特想看白鲸和海豚的精彩表演吧?就因为每天看表演人太多,表演馆的大门新设密码,开启了密码你才有资格看表演,有没有信心开启表演馆的密码? 密码是由ABCDEFG组成: A是3的最小倍数;B是最小的质数;C是偶数又是质数;D既是奇数又是合数;E是最大的一位数;F是最小的合数的一半;G既不是质数也不是合数.密码是()
五、课堂总结,体验收获
师:这节课,同学们通过交流和梳理,对因数与倍数的相关知识进行了整理与复习。相信你们对这部分知识一定有了更深的理解,对你们以后的学习会有很大帮助。同学们,数学知识点就像一粒粒珠子,只有把它们串联起来才不会丢失,我们今后也要这样,自觉地把相关联的知识系统化;掌握一定的学习方法,才能把所学的知识牢牢掌握。
第五篇:因数和倍数教案
因数和倍数
一、教学目标:
1、通过整理复习,让学生进一步掌握整除、因数、倍数、质数、合数、偶数、奇数、分解质因数、公因数、最大公因数、互质数、公倍数、最小公倍数等概念及其概念之间的联系和区别。
2、掌握能被2、5、3整除的数的特征,会分解质因数,进一步理解和掌握求两个数的最大公因数和最小公倍数的方法,以及它们之间的相同点和不同点;进一步理解和掌握求三个数的最小公倍数的方法,以及与求两个数的最小公倍数有什么不同。
3、让学生经历数的整除的有关知识的整理复习过程,培养学生整理复习的能力,进一步完成认知结构。
4、进一步培养学生整理的意识,形成良好的学习习惯。
二、教学重、难点:
质数、合数、分解质因数、求最大公因数和最小公倍数,求三个数的最小公倍数的算理。
三、教材分析:
这个单元的教材是在学生学过整数的四则运算的基础上进行教学的。它是以后学习约分、通分、分数四则运算的基础。通过这部分内容的教学,使学生获得一些有关整数的知识,即数论中最初步的知识,还为学生到中学学习因式分解做些准备,使学生加深对整数的认识,还有助于发展他们的抽象思维。
本单元教材概念较多,内容比较抽象,知识之间的联系比较密切,系统性、连贯性强,难度比较大。用短除求最大公因数和最小公倍数的知识,学生是第一次接触,其算理比较难掌握,学习起来有一定的困难,等等。学生能否掌握好这些知识,直接影响到约分、通分等知识的学习,甚至影响学生持续性学习。
四、学生情况分析:
学生在学习时,经常把概念混淆,如奇数与质数,偶数与合数,质数与互质数、因数与倍数等弄不清楚;不善于通过找出概念之间的联系和区别来理解、记忆和运用概念,解决实际问题;求最大公因数和最小公倍数的算理不是很清楚,常常运用出差错等。
五、设计思路:
面对教学的要求,以及学生的实际情况,整理复习时,应把分散学习的知识加以整理,形成清晰的概念系统,在准确地理解各概念含义的基础上,进一步弄清概念间的联系和区别,对概念要求在理解的基础上牢记,在牢记的基础上灵活运用,特别要注意培养正确运用概念进行判断和解答实际问题的能力。整理复习时,通过回忆重现,使知识巩固化;查漏补缺,使知识完整化;融会贯通,使知识系统化;综合应用,使知识实用化。
六、知识点梳理:
奇数
能被2整除的数的特征
偶数
能被3整除的数的特征
能被5整除的数的特征 整除
质数
质因数
因数
合数
分解质因数
互质数
公因数
最大公因数
倍数
公倍数
最小公倍数
七、巩固练习:
1、填空
(1)如果数a能被数b整除,a就叫做b的(),b就叫做a的()。(2)12的最小的因数是(),最大因数是(),最小的倍数是()。(3)15的全部因数有()。(4)1 — 20中:奇数是(),偶数是(),质数是(),合数是()。
(5)1,2,15,17,24各数中,既不是质数也不是合数的是(),既不是质数又不是偶数的是(),既不是奇数又不是合数的是()。(6)在66,390,12,165,105,91各数中,能被2整除的数有(),能被3整除的数有(),能被5整除的数有(),能同时被2、3整除的数有(),能同时被2、5整除的数有(),能同时被3、5整除的数有(),能同时被2、3、5整除的数有(),(7)a和b是互质数,则a和b最大公因数是(,最小公倍数是()。(8)用0、1、2、3组成一个能同时被2、3、5整除的最小四位数是()。(9)a是b的倍数,则a、b最大公因数是(),最小公倍数是()。
(10)在 里填上适当的数字,使这个数有因数2,又是5的倍数,同时也能被3整除。2
0 4
2、判断题(对的在括号里打 “√”,错的打“×”)(1)1和所有其它自然数都能形成互质数.()(2)所有的质数都是奇数.()(3)所有偶数都是合数.()(4)公因数只有1的两个数,叫做互质数.()(5)相邻的两个自然数是互质数.()(6)25是倍数,5是因数.()(7)一个自然数,不是奇数就是偶数.()(8)因为3.6÷0.9=4 ,所以3.6是0.9的倍数.()
3、选择题(把正确答案的代号填入括号里)(1)下面各组数中,第一个数能被第二个数整除的是
()
A.3.2÷8
B.145÷5
C.25÷0.5
D.68÷6.8(2)45分解质因数是
()
A.45=5×3×3×1
B.45=5×9
C.45= 5×3×3
D.45=15×3(3)把自然数按()分成奇数和偶数.A.因数是个数
B.能否被2整除
C.能否被3整除
D.能否被5整除
(4)最小的质数是
()A.1
B.2
C.3
D.4
4、把下面个数分解因数: 68
5、求下面各组数的最大公因数和最小公倍数.(1)3和5
5和7
10和11 9和14
15和2
5和24(2)16和64 25和125
12和96 28和56 21和42
45和9(3)
12、18和2014、28和42 15、18和90
6、写出20 ∽ 40的质数.7、你能说出小强家的电话号码吗?
他家的电话号码是8位数,从左边起,第一个数字分解质因数后是3个最小的质数,第二个数字是5的倍数,第三个数字是10以内的最大奇数,第四个数字既不是质数,也不是合数的非0自然数,第五个数字既有因数3,也有因数6,第六个数字是10以内最大的质数,第七个数字是最小的合数,最后一个数字是最小的偶数。