2.4_幂函数教案

时间:2019-05-15 05:49:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2.4_幂函数教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.4_幂函数教案》。

第一篇:2.4_幂函数教案

从新方案调研一线传来的消息,证实了专家们的猜测,目前江苏省高考改革主要围绕3个方案进行讨论调研,每个方案都增加了计分科目,只是增加的科目数量不同。

方案一是“3+小综合”,即语数外三门,加理科小综合(物理、化学、生物)或语数外三门加文科小综合(历史、地理、生物),小综合3门合卷考试;

方案二是“3+2”,即语数外三门,加历史、政治(文科)或者物理、化学(理科);

方案三是“4+1”,即文科语数外历史必考,另在政治、地理中任选一门;理科语数外物理必考,另在化学、生物中任选一门。

有关人士透露,最终出台的新方案很可能就是在3个方案中选一个,究竟选那个,目前意见尚不统一。“有的认为语数外以外,再考物理化学或历史政治2门就够了,有的认为生

物、地理也很重要,还有的认为如果历史、物理单独考试,分量太重。”这位人士透露,目前来看支持“3+小综合”的比较多,实施可能性较大,因为该方案能兼顾各科。

“高考就是指挥棒,如果哪一门不考,这一门很可能就被学校淡化了。以化学为例,因为2008年高考方案中,考生选择化学得A几率较小,曾出现过一所学校没有一个考生选化学的情况。

幂函数2教案

教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。

幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数。组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握 这五个函数的图象和性质。

学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。

教学目标:

㈠知识和技能

1.了解幂函数的概念,会画幂函数,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。2.了解几个常见的幂函数的性质。㈡过程与方法

1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

2.使学生进一步体会数形结合的思想。㈢情感、态度与价值观

1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。

2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。

教学重点

常见幂函数的概念和性质

教学难点

幂函数的单调性与幂指数的关系

教学过程

突破思路

本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型.通过研究y=x、y=x2、y=x3、y=x1、y=x等函数的性质和图象,让学生认识到幂指数大于零和小于零-

12两种情形下,幂函数的共性:当幂指数a>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数a<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.

合作讨论

问题1:我们知道,分数指数幂可以与根式相互转化.把下列各函数先化成根式形式,再指出它的定义域和奇偶性.利用计算机画出它们的图象,观察它们的图象,看有什么共同点?

(1)y=x;(2)y=x;(3)y=x;(4)y=x.

思路:先将各式化为根式形式,函数的定义域就是使这些根式有意义的实数x的集合;奇偶性直接利用定义进行判断.(1)定义域为[0,+),(2)(3)(4)定义域都是R;其中(1)既不是奇函数也不是偶函数,(2)是奇函数,(3)(4)是偶函数.它们的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增.

问题2:仿照问题1研究下列函数的定义域和奇偶性,观察它们的图象看有什么共同点?

(1)y=x1;(2)y=x2;(3)y=x-

-121323431-2;(4)y=x-13.

思路:先将负指数幂化为正指数幂,再将分数指数幂化为根式,函数的定义域就是使这些分式和根式有意义的实数x的集合;(1)(2)(4)的定义域都是{x|x≠0},(3)的定义域是(0,+);(1)(4)是奇函数,(2)是偶函数,(3)既不是奇函数也不是偶函数.它们的图象都经过点(1,1),且在第一象限内函数单调递减,并且以两坐标轴为渐近线.

思维过程

研究幂函数时,通常先将负指数幂化为正指数幂,再将分数指数幂化为根式(幂指数是负整数时化为分式);根据得到的分式或根式研究幂函数的性质.函数的定义域就是使这些分式和根式有意义的实数x的集合;奇偶性和单调性直接利用定义进行判断.问题1和问题2中的这些幂函数我们要记住它们图象的变化趋势,有利于我们进行类比.

【例题】讨论函数y=x的定义域、值域、奇偶性、单调性,并画出图象的示意图.

思路:函数y=x是幂函数.

(1)要使y=x=x有意义,x可以取任意实数,故函数定义域为R.

(2)∵xR,∴x2≥0.∴y≥0.

2(3)f(-x)=5(-x)=x=f(x),25252552

52∴函数y=x是偶函数;

(4)∵n=252>0,525

∴幂函数y=x在[0,+]上单调递增.

由于幂函数y=x是偶函数,25

∴幂函数y=x在(-,0)上单调递减.

(5)其图象如下图所示. 25

新题解答

【例1】比较下列各组中两个数的大小:

(1)1.5,1.7;(2)0.7,0.6;(3)(-1.2)3535351.5

1.5

-23,(-1.25)-23.

解析:(1)考查幂函数y=x的单调性,在第一象限内函数单调递增,∵1.5<1.7,∴1.5<1.7,(2)考查幂函数y=x的单调性,同理0.71.5>0.61.5.

(3)先将负指数幂化为正指数幂可知它是偶函数,∵(-1.2)

∴(-1.2)-2323353532=1.2-23,(-1.25).

-23=1.252-3,又1.2-23>1.252-3,->1.252-

3点评:比较幂形式的两个数的大小,一般的思路是:

(1)若能化为同指数,则用幂函数的单调性;

(2)若能化为同底数,则用指数函数的单调性;

(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.

【例2】设函数f(x)=x3,(1)求它的反函数;

(2)分别求出f1(x)=f(x),f1(x)>f(x),f1(x)<f(x)的实数x的范围. -

解析:(1)由y=x两边同时开三次方得x=3y,∴f(x)=x.

(2)∵函数f(x)=x和f(x)=x的图象都经过点(0,0)和(1,1).

∴f1(x)=f(x)时,x=±1及0; -3-

1133-1

在同一个坐标系中画出两个函数图象,由图可知

f1(x)>f(x)时,x<-1或0<x<1; -

f1(x)<f(x)时,x>1或-1<x<0. -

点评:本题在确定x的范围时,采用了数形结合的方法,若采用解不等式或方程则较为麻烦.

【例3】求函数y=x+2x+4(x≥-32)值域.

解析:设t=x,∵x≥-32,∴t≥-2,则y=t2+2t+4=(t+1)2+3.

当t=-1时,ymin=3.

∴函数y=x+2x+4(x≥-32)的值域为[3,+).

点评:这是复合函数求值域的问题,应用换元法.

变式练习

1.函数y=(x2-2x)

-121525152515的定义域是()

A.{x|x≠0或x≠2}

B.(-∞,0)(2,+∞)

C.(-∞,0)][2,+∞]

D.(0,2)

解析:函数可化为根式形式,即可得定义域.

答案:B

2.函数y=(1-x2)的值域是()

A.[0,+∞]

B.(0,1)

C.(0,1)

D.[0,1]

解析:这是复合函数求值域问题,利用换元法,令t=1-x2,则y=t.

∵-1≤x≤1,∴0≤t≤1,∴0≤y≤1.

答案:D

3.函数y=x的单调递减区间为()

A.(-∞,1)

B.(-∞,0)

C.[0,+∞]

D.(-∞,+∞)

解析:函数y=x是偶函数,且在[0,+∞)上单调递增,由对称性可知选B.

答案:B 252512

4.若a<a12-12,则a的取值范围是()

A.a≥1

B.a>0

C.1>a>0

D.1≥a≥0

解析:运用指数函数的性质,选C.

答案:C

5.函数y=(15+2x-x)的定义域是()

A.5≥x≥-3

B.5>x>-3

C.x≥5或x≤-3

D.R

解析:由(15+2x-x2)3≥0.

∴15+2x-x<20.∴-3≤x≤5.

答案:A

6.函数y=1x2-m-m2在第二象限内单调递增,则m的最大负整数是________.

解析:m的取值应该使函数为偶函数.故m=-1.

答案:m=-1

47.已知函数y=15-2x-x.

(1)求函数的定义域、值域;

(2)判断函数的奇偶性;

(3)求函数的单调区间.

解析:这是复合函数问题,利用换元法令t=15-2x-x2,则y=4t,(1)由15-2x-x2≥0得函数的定义域为[-5,3],∴t=16-(x-1)2[0,16].∴函数的值域为[0,2].

(2)∵函数的定义域为[-5,3]且关于原点不对称,∴函数既不是奇函数也不是偶函数.

(3)∵函数的定义域为[-5,3],对称轴为x=1,∴x[-5,1]时,t随x的增大而增大;x(1,3)时,t随x的增大而减小.

又∵函数y=4t在t[0,16]时,y随t的增大而增大,4∴函数y=15-2x-x的单调增区间为[-5,1],单调减区间为(1,3].

2答案:(1)定义域为[-5,3],值域为[0,2];

(2)函数即不是奇函数,也不是偶函数;

(3)(1,3].

规律总结

1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;

2.对于幂函数y=x,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即<0,0<<1和>1三种情况下曲线的基本形状,还要注意=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即>0(≠1)时图象是抛物线型;0<<1时图象是横卧抛物线型. <0时图象是双曲线型;>1时图象是竖直抛物线型;

第二篇:汇报课 幂函数教案

2.3幂函数

2012年11月6日 地点:1225班教室

执教者:

一、教学目标:

1、知识与技能:通过实例,了解幂函数的概念;会画简单幂函数的图象,并能根据图象得出这些函数的性质;

2、过程与方法:用类比法(指数函数、对数函数)来研究幂函数的图象和性质;

3、情感态度和价值观:培养学生观察和归纳能力,进一步渗透数形结合与分类讨论的思想方法。

二、教学重点: 从5个常见幂函数归纳认识幂函数的一些性质并做简单应用。

三、教学难点: 引导学生概括出幂函数的性质。

四、教学过程:

1、问题引入:(课本p77)

2、授新课:

(1)幂函数的定义:形如yx的函数叫幂函数,其中x是自变量,是常数.(2)指数函数与幂函数的区别.(3)5个常见幂函数的图像和性质.1(1)yx;(2)yx;(3)yx(4)yx2;(5)yx1

(4)由5个常见幂函数的图象与性质探究一般幂函数的性质.(5)例题讲解

例1:证明幂函数f(x)

4、课堂练习

x在[0,)上是增函数.已知下列函数:

121yx,2yx33yx14yx20125y=x4是奇函数的有:

;是偶函数的有:

在0,上是增函数的有:

;在0,上是减函数的有:

5、课堂小结:(见课件)

6、布置作业:完成教学案“2.3幂函数”.7、板书设计

2.3幂函数

 R1、定义:yx,x是自变量,是常数,2、5个常见幂函数的图象与性质

1(1)yx;(2)yx;(3)yx(4)yx2;(5)yx1

233、幂函数的性质

8、教学反思

第三篇:指数函数、对数函数、幂函数教案

一、指数函数

1.形如yax(a0,a0)的函数叫做指数函数,其中自变量是x,函数定义域是R,值域是(0,).

2.指数函数yax(a0,a0)恒经过点(0,1). 3.当a1时,函数yax单调性为在R上时增函数; 当0a1时,函数yax单调性是在R上是减函数.

二、对数函数 1. 对数定义:

一般地,如果a(a0且a1)的b次幂等于N, 即abN,那么就称b是以a为底N的对数,记作 logaNb,其中,a叫做对数的底数,N叫做真数。

b 着重理解对数式与指数式之间的相互转化关系,理解,aN与blogaN所表示的是a,b,N三个量之间的同一个关系。2.对数的性质:

(1)零和负数没有对数;(2)loga10;(3)logaa1

这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。3.两种特殊的对数是:①常用对数:以10作底 log10N简记为lgN ②自然对数:以e作底(为无理数),e= 2.718 28……,loge4.对数恒等式(1)logaabb;(2)alogaNN简记为lnN.

N

b 要明确a,b,N在对数式与指数式中各自的含义,在指数式aN中,a是底数,b是指数,N是幂;在对数式blogaN中,a是对数的底数,N是真数,b是以a为底N的对数,虽然a,b,N在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求b对数logaN就是求aN中的指数,也就是确定a的多少次幂等于N。

三、幂函数

1.幂函数的概念:一般地,我们把形如yx的函数称为幂函数,其中x是自变量,是常数;

注意:幂函数与指数函数的区别. 2.幂函数的性质:

(1)幂函数的图象都过点(1,1);

(2)当0时,幂函数在[0,)上单调递增;当0时,幂函数在(0,)上 单调递减;

(3)当2,2时,幂函数是 偶函数 ;当1,1,3,时,幂函数是 奇函数 .

四、精典范例 例

1、已知f(x)=x·(31311); x221(1)判断函数的奇偶性;(2)证明:f(x)>0.【解】:(1)因为2-1≠0,即2≠1,所以x≠0,即函数f(x)的定义域为{x∈R|x≠0}.x

x11x32x1)=·x又f(x)=x(x,2212123(x)32x1x32x1··f(-x)==f(x),22x122x1所以函数f(x)是偶函数。

x32x10.(2)当x>0时,则x>0,2>1,2-1>0,所以f(x)=·x2213

x

x又f(x)=f(-x),当x<0时,f(x)=f(-x)>0.综上述f(x)>0.a·2xa2(xR),若f(x)满足f(-x)=-f(x).例

2、已知f(x)=x21(1)求实数a的值;(2)判断函数的单调性。

【解】:(1)函数f(x)的定义域为R,又f(x)满足f(-x)= -f(x),所以f(-0)= -f(0),即f(0)=0.所以

2a20,解得a=1,22(2x12x2)2x112x21(2)设x1

3、已知f(x)=log2(x+1),当点(x,y)在函数y=f(x)的图象上运动时,点(,)在函数y=g(x)的图象上运动。(1)写出y=g(x)的解析式;

(2)求出使g(x)>f(x)的x的取值范围;

(3)在(2)的范围内,求y=g(x)-f(x)的最大值。【解】:(1)令

xy32xys,t,则x=2s,y=2t.32因为点(x,y)在函数y=f(x)的图象上运动,所以2t=log2(3s+1),11log2(3s+1),所以g(x)= log2(3s+1)221(2)因为g(x)>f(x)所以log2(3x+1)>log2(x+1)

2即t=3x1(x1)23即0x1(3)最大值是log23-

2x10x2.例

4、已知函数f(x)满足f(x-3)=lg2x62(1)求f(x)的表达式及其定义域;(2)判断函数f(x)的奇偶性;

(3)当函数g(x)满足关系f[g(x)]=lg(x+1)时,求g(3)的值.解:(1)设x-3=t,则x=t+3, 所以f(t)=lg2

t3t3lg

t36t3x3x30,得x<-3,或x>3.解不等式x3x3x3所以f(x)-lg,定义域为(-∞,-3)∪(3,+∞).x3所以f(x)=lg x3x3x3lglg=-f(x).x3x3x3x3(3)因为f[g(x)]=lg(x+1),f(x)=lg,x3(2)f(-x)=lg所以lgg(x)3g(x)3lg(x1),所以g(x)3g(x)3x1,(g(x)3g(x)30,x10).解得g(x)=3(x2)x, 所以g(3)=5

第四篇:幂函数教案1[最终版]

幂函数教案

教学内容:4.1.2幂函数

授课班级:2012现代林业技术1班 时间:2012-11-28 教师:马继红 【教学目标】

(一)知识与技能

1.了解幂函数的概念,会画幂函数yx,yx,yx,yx,yx的12312图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。2.了解几个常见的幂函数的性质。

(二)过程与方法

1.通过观察、总结幂函数的性质,提高概括抽象和识图能力。2.体会数形结合的思想。

(三)情感态度与价值观

1.通过生活实例引出幂函数的概念,体会生活中处处有数学,树立学以致用的意识。2.通过合作学习,增强合作意识。【教学重点】幂函数的定义

【教学难点】会求幂函数的定义域,会画简单幂函数的图象. 【教学方法】启发式、讲练结合 教学过程

一、复习旧课

二、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积Sa2,这里S是a的函数。问题3:如果正方体的边长为a,那么正方体的体积Va3,这里V是a的函数。问题4:如果正方形场地面积为S,那么正方形的边长aS

12,这里a是S的函数 问题5:如果某人ts内骑车行进了1km,那么他骑车的速度Vt1km/s,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

(一)幂函数的概念

如果设变量为x,函数值为y,你能根据以上的生活实例得到怎样的一些具体的函数式?

这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗? 幂函数的定义:一般地,我们把形如yx的函数称为幂函数(power function),其中x是自变量,是常数。【探究一】幂函数有什么特点?

结论:对幂函数来说,底数是自变量,指数是常数 试一试:判断下列函数那些是幂函数 练习1 判断下列函数是不是幂函数 3(1)y=2 x;(2)y=2 x5; 7(3)y=x8;(4)y=x2+3.

根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?

(二):求幂函数的定义域 1.什么是函数的定义域?

函数自变量的取值范围叫做函数的定义域 2.求函数的定义域时依据哪些原则?(1)解析式为整式时,x取值是全体实数。

2(2)解析式是分式时,x取值使分母不等于零。

(3)解析式为偶次方根时,x取值使被开方数取非负实数。(4)以上几种情况同时出现时,x取各部分的交集。

(5)当解析式涉及到具体应用题时,x取值除了使解析式有意义还要使实际问题有意义。例1 写出下列函数的定义域: 1(1)y=x3;(2)y=x2;

-32.(3)y=x-;(4)y=x2解:(1)函数y=x3的定义域为R;

1(2)函数y=x2,即y=x,定义域为[0,+∞);

12(3)函数y=x-,即y=2,定义域为(-∞,0)∪(0,+∞);

x3-1(4)函数 y=x2,即 y=,其定义域为(0,+∞). x练习2 求下列函数的定义域:

11-(1)y=x2;(2)y=x 3;(3)y=x-1;(4)y=x2.

(三)、几个常见幂函数的图象和性质

我们已经学习了幂函数(1)y=x;(2)y=x2.(3)y=x-.(4)y=x3(5)y=1x2;请同学们在同一坐标系中画出它们的图象.性质:幂函数随幂指数α的取值不同,它们的性质和图象也不尽相同,但也有一些共性,例如,所有的幂函数都通过点(1,1),都经过第一象限;当0是,图象过点(1,1),(0,0),且在第一象限随x的增大而上升,函数在区间0,上是单调增函数。0 时幂函数yx图象的基本特征:过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,)上是单调减函数,且向右无限接近X轴,向上无限接3近Y轴。

(四)课堂小结

(五)课后作业

1.教材 P 100,练习A 第1题.

12在同一坐标系中画出函数y=x与y=x2的图象,并指数这两个函数各有什么性质以

3及它们的图象关系

第五篇:4_狼牙山五壮士_教学设计_教案

教学准备

1.教学目标

1.会读“寇”、“葛”、“吼”等10个生字,会写“崎”、“岖”、“雹”等14个生字,理解“斩钉截铁”、“居高临下”、“气壮山河”等生词。

2.通过概括小标题,把握课文内容,理解课文的叙述顺序。

3.通过朗读品评、填关键词、表演体验等学习形式,学习课文逐一描写和点面结合这两种群体人物描写方法,体会五壮士的英勇和爱国精神,并尝试运用逐一描写方法。

2.教学重点/难点

【教学重点】学习课文逐一描写和点面结合这两种群体人物描写方法,并尝试运用逐一描写方法。

【教学难点】尝试运用逐一描写方法对第四自然进行扩写。

3.教学用具 4.标签

教学过程

一、直接导入课题:

1.师板书:狼牙山五壮士

2.生齐读

3.你从课题中了解了什么内容?

4.他们做了什么事呢?为什么称他们为壮士呢?

二、初读课文,了解大意。

1.生自由读课文,师巡视。

2.五壮士做了什么事?(五壮士为了掩护群众和连队的转移,和敌人英勇斗争,最后壮烈跳崖)

3.那我们现在来理一理课文的线索:课文先说?再说?最后说?

4.你能用简单的话来说说每个部分所讲的内容呢?

(接受任务→痛歼敌人→引上绝路→顶峰歼敌→跳下悬崖)

三、再读课题,导出“壮”字,研读课文。

1.师:是啊!《狼牙山五“战”士》就是由这么几个部分组成的:(接受任务→痛歼敌人→引上绝路→顶峰歼敌→跳下悬崖)

2.生:老师是五“壮”士,不是战士!

3.师:对,是“壮”士,不是“战士”.那什么样的人才能称为壮士呢?(勇敢,豪壮)(“壮”就是勇敢的意思,勇敢得可以献出自己的生命,这样的战士才能称得上壮士。课文的字里行间书写着五壮士的英勇豪迈、气壮山河,用“壮士”更贴切。)

四、认真研读,品味研讨

1.出示自学要求:

①课文的哪些地方写出了五壮士的勇敢豪壮?(用△表示)

②课文写了五壮士的哪些语言?(用浪线标示)

③课文写了五壮士的哪些动作?(用横线标示)

④你从这些语言和动作中能体会出些什么?(可以写在旁边)

2.生自学课文,老师巡视。

3.生汇报:

A:①第二段:引敌上山 勾出的五壮士的动作句子:

马宝玉沉着地指挥战斗,让敌人走近了才下命令狠狠地打;葛振林打一枪就大吼一声,好象细小的枪口喷不完他的满腔怒火。战士宋学义扔手榴弹总要把胳膊抡一个圈,好使出浑身力气;胡德林和胡福这两个小战士把脸绷得紧紧的,全神贯注地瞄准敌人射击。

从动作中,能体会出五壮士对敌人非常痛恨,所以有喷不完的“满腔怒火

他们打敌人,打得很卖力!

②教师引读,指名读,读出对敌人的痛恨。

B第三段中:班长斩钉截铁说的”走“让我感受到他们把敌人引上绝路的那种决心!感受到他们的勇敢和不怕牺牲的精神。

4.同样,第四段中也有:让我们一起来读这段,边读边想,这是怎样的一种画面?尤其是班长用石头砸的部分。

5.用横线勾画出,五壮士用石头砸的句子,多读几遍,你能从中体会出什么?(他们对敌人的痛恨)(这里写出了五壮士的壮烈和豪迈)

6.再读横线勾的句子,读出对敌人的痛恨,读出五壮士的壮烈和豪迈)

7.请同学们高声朗读课文第五段(6-9自然段)我想读完后会有一个词跳入你的脑海里,是哪个词?(英勇壮烈、视死如归、宁死不屈、„„)

①:体会”屹立“

屹立:像山峰一样高耸而稳固地立着,课文指五壮士意志坚强、不可动摇。

②他们当时的表情如何?引导理解”脸上还露出胜利的喜悦“你能用书上的一句话来回答为什么他们有这个表情吗?

齐读:”同志们,我们的任务胜利完成了!“

③五壮士是怎么跳下悬崖的呢?再读他们跳下悬崖的句子,边读边想当时的情景。

④请同学们拿好课本,再读五壮士跳崖的句子。

⑤引读”打倒日本帝国主义!“”中国共产党万岁!“,这一声声口号响彻云霄。这是„„(齐读课文最后一个自然段。)

⑥从五壮士的口号中,你读出了什么?(忠于祖国,忠于党、忠于人民的崇高品质。)

⑦”惊天动地“”气壮山河“指的是什么?(惊天动地”是指声音很大,惊动了天地。“气壮山河”的意思是气魄像高山大河一样雄伟、豪迈)这只是赞颂五壮士视死如归、壮烈豪迈的英雄气概吗?(更是在赞颂中国人民的爱国主义精神,不屈服于任何外来侵略的民族气节。)

五、总结全文,情感深化

这就是我们英勇的狼牙山五壮士,他们为了群众和连队的安全,和敌人顽强拼搏,最后壮烈跳崖。他们爱国,爱民,勇敢顽强的精神值得我们学习。同学们,你想对五壮士说点什么?(学生畅所欲言)

课后习题 完成课后习题。

下载2.4_幂函数教案word格式文档
下载2.4_幂函数教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    4_述职报告

    任现职以来工作总结(述职报告) 尹健萍 学科:数学 (包括思想政治表现、工作表现、教育教学和教研科研水平、能力、实绩等) 我是一名数学教师,1997年7月毕业于江西抚州师范学校,同年8......

    幂函数的性质

    幂函数的性质 对于yx幂函数来说具有以下性质: 1.如果a是奇数,函数就是奇函数,如果a是偶数,函数就是偶函数 2,如果a>0,函数定义域能取0,如果a1,函数是增函数,增得快 0......

    幂函数知识点总结

    幂函数知识点总结一幂函数的概念1.函数yxnnR叫做幂函数,其中x是自变量2.图象与行政(1) n>0时,过定点(0,0)和(1,1),在x0,上单调递增。(2)n<0时,过定点(1,1),在x0,上单调递减。基本初等函数测试题一选择......

    幂函数教学反思

    简单幂函数教学反思 -沈浩 学期初,学校安排我上一节导学案模式下的公开课,结合教学进度,我定下教学内容为必修一第二章第五节简单的幂函数第一课时,在自己的精心准备和同事的......

    幂函数教学反思

    §2.3幂函数 教学反思 本节课本着学科素养,生命课堂,高效课堂教学理念,对这节课进行了设计。 学科素养:通过类比指数函数的学习引入了幂函数,对于图象的探讨研究,进而直观的得到幂......

    幂函数教案(第1课时)[精选合集]

    幂函数教案(第1课时) 教学目标: ㈠知识和技能 1.了解幂函数的概念,会画幂函数,,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。 2.了解几个常见的幂函数的性质......

    2.3幂函数 教学设计

    23幂函数 教学设计 一. 教材分析幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,......

    初三数学幂函数专题

    幂函数 知识点回顾: 1、幂函数定义:一般地,形如yx的函数称为幂函数,其中x是自变量,α为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0 时,幂函数的......