第一篇:陈霞平方差公式教案反思
1.5平方差公式(1)
教学目的
1、经历平方差公式的探求过程,理解平方差公式的意义。
2、熟悉平方差公式的特征,掌握平方差公式运用。
3、通过平方差公式学习,培养学生善于观察和归纳的学习习惯。教学重点、难点:
重点:掌握平方差公式的特征,运用公式进行运算。
难点:对于非标准形式的多项式的乘积使用平方差公式进行运算。教学过程
一、概念的引入 计算:(1)(x+2)(x-2)(2)(3+y)(3―y)(3)(3a+1)(3a-1)(4)(m+5n)(m―5n)思考1:通过计算,我们求得了结果,请同学说说乘式与结果的特征
从中发现什么规律?
2222一般地,有ababaababbab 22即:ababab
两数和与这两数差的积,等于这两个数的平方差
这个公式叫作乘法的平方差公式,公式中的a,b可以是任意的数或 代数式。
问:能否用几何图形来验证这平方差公式呢? 思考2:
如图(1)边长为a的大正方形中有一个边长为b的小正方形(1)请表示图(1)中阴影部分的面积
(2)将阴影部分拼成了一个长方形如图(2),这个长方形的长和宽分别是多少?你能表示出它的面积吗?
aabaa-bbb
图(1)图(2)(3)比较(1)(2)得结果,你能验证平方差公式吗?
ababa2b2
平方差公式的特征:一项相同,另一项互为相反数;
二、运用平方差公式计算: 例
1、利用平方差公式计算:
(1)(3)2xy2xyb33a23a2b31111(2)xx323 2(4)0.2a0.7b20.7b20.2a练习1:口算
2(1)x1x1(2)x2yx2y11(3)mnmn(4)0.2x0.1y0.2x0.1y44(5)a24b2a24b2(6)1xy1xy(7)x33x(8)2xy2xy例
2、计算:
(1)x3yx3y11(2)x2yx2y55练习
2、计算:
(1)(2)(3)xyyxxyxy2
2mn2mn2总结:正确使用平方差公式关键:正确找出“这两个数” 例
3、计算:(学生)
(1)(2)(3)(4)3x2y3x2y2x3y2x3y
yxyxyxyx总结:计算前必须先观察这两个多项式的乘法适用的公式与法则。例
4、填空:
(1)(2)5x2y25x24y281a2
例
5、计算:
3x2y3x2y9x24y2
三、小结
(1)平方差公式(a+b)(a-b)=a2-b2(2)注意点:a、适用条件:前同后异,用平方差;b、准确找出“这两个数”;c、公式中的a、b可以是任意的数或代数式(单项式和多项式)
四、作业
必做题:教科书p35/练习1;练习册P21/1、2、3 选做题:计算:12x14x2116x412x
《1.5.1平方差公式》教学反思
《平方差公式》是节命题课,以前开这节课的老师有不少,可谓是百花齐放,各具特色。根据我校学生的具体情况,我由四个特殊的二项式乘以二项式引入,这样既复习了前面多项式乘以多项式,又引出平方差公式,不但发挥其承上启下的作用,同时也符合我校学生学习的实际情况。在例题的选择上,与教材提供的有所不同,在层次的设置上我分的较为详细,由整系数到分数系数再到小数系数,形式由可以直接应用平方差公式到非标准式,进行变式练习,并指出应用平方差公式的关键是正确找到“这两个数”,例3的设置目的有两个:(1)继续巩固新学的平方差公式;(2)最后一个小题让学生在认知冲突中能更加深刻地认识能够应用平方差公式的特点是:一项相同,另一项互为相反数;例4是平方差公式的逆用,同学们很感兴趣,特别是(2)小题,给他们的空间很大,更具挑战性,学生的兴趣是学习数学的动力,自己要时刻总结这方面的经验。
这节课,得到陈老师的细心指点,不足之处总结起来主要有以下 两点:
(1)思考2的设置将学生的思维固定死,学生的思维无法展开,创新的火花得不到呈现。建议:可将思考2放置第二节课,这样既复习了平方差公式,有能给学生足够的时间思考,不再走过场;
(2)前同后异,用平方差的提法还是不要较好,因为前异后同照样适用。(前同后异,用平方差,我的目的本来想让学生利用这个口诀牢记平方差公式,看来这里出现了归纳片面的错误。)其中陈老师在点评时提到的正确找“真a,真b”的说法很好,很形象,朗朗上口,学生也容易记。
另外在“同课异构”听课时,听了蔡校长对胡老师一节课的评课,其中有一点印象非常深刻。蔡校长说:平方差公式的引入部分能否不要,直接让学生计算(a+b)(a-b),得到平方差公式。这个想法很大胆,不失为一种好方法。
在指导团学习已经有一年半的时间,导师的学识魅力和人格魅力,无时无刻不在感染着我们,我们学员能时时刻刻得到导师的不遗余力的指导,对提高自己日常教学能力帮助特别大;在学习班里,我觉得学得很充实,学得很开心。我要感谢各位指导老师。
第二篇:平方差公式教案
灰太狼开了租地公司,一天他把一边长为a米的正方形土地租给懒羊羊种植.有一年,他对懒羊羊说:“我把这块地的一边增加5米,另一边减少5米,继续租给你, 你也没吃亏,你看如何?”懒羊羊一听觉得没有吃亏,就答应了.同学们,你们觉得懒羊羊有没有吃亏?
一、知识回顾:
多项式与多项式怎样相乘的? 和学生拉近距离,引起学生的兴趣。
二、自主探究:
1、计算下列多项式的积:
1、(x+1)(x-1)
2、(m+2)(m-2)=
= =
=
3、(2x+1)(2x-1)
4、(x+5y)(x-5y)=
= =
=
2、归纳: 观察算式结构,你发现了什么规律? ①算式中每个因式都有 项。
②算式都是两个数的 与 的 _____ 的积。即两个因式中,有一项 ,另一项。计算结果后,你又发现了什么规律? 计算结果都是前项的 减去后项的。
三、合作交流:
1、猜想:
2、验证:
3、得出:
(a+b)(a-b)= 两个数的和与这两个数的差的积等于这两个数的平方差。
四、例题精析
1、判断下列式子是否可用平方差公式 :(1)(-a+b)(a+b)(2)(-2a+b)(-2a-b)(3)(-a+b)(a-b)(4)(a+b)(a-c)
2、参照(a+b)(a-b)= a2-b2填空
3、运用平方差公式计算:(1)(2)
4、计算:(1)
(2)
巩固提升(根据时间的变化而定)
1、下列多项式乘法中,能用平方差公式计算的是()A.(x+1)(1+x);B.(2x-5)(2x+5)C.(-a+b)(a-b);D.(x2-y)(x+y2)
2、运用平方差公式进行计算:(1)(3x+4)(3x-4)(2)(3a+2b)(2b-3a)(3)(-4x-3y)(-4x+3y)
3、你能用简便方法计算下列各题吗?(1)51×49(2)998×1002 4.判断对错,如果有错,如何改正? ⑴;⑵;⑶;
五、小结:平方差公式的特征:(1)左边是两个二项式相乘,这两项中有一项
相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)先平方,后相减。
公式中的可以表示单项式(数字,字母), 也可以表示多项式(如x+y)。
六、作业
教科书156页-----1 小组交流、讨论
让学生通过计算,观察每个算式的特点和结果的特点,挖掘题目之间的共性,发现规律,猜想公式,从而经历从-般到特殊、从具体到抽象的过程,体会归纳这-数学思想方法准确地运用数学语言表述公式以剖析a、b为目的,对于帮助学生认清公式的结构特征起到事半功倍的作用,在接下来的公式运用中,相信学生会更加得心应手.尝试、交流、教师点拨进一步强化学生的知识对学生经常出现的错误进行预设,防微杜渐.
第三篇:平方差公式教案
《平方差公式》教学设计
牟平实验中学 隋玲
一、教材分析
《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个乘法公式.本节课的教学重点是:经历探索平方差公式的全过程,并能运用公式进行简单的运算.二、教学目标 知识与技能目标:
掌握平方差公式的结构特征,能运用公式进行简单的运算; 过程与方法目标:
经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力; 情感态度与价值观:
会用几何图形说明公式的意义,体会数形结合的思想方法.三、教学重点、难点:
本节课的重点:平方差公式的特点以及会运用公式进行简单计算。
本节课的教学难点:利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算.
四、教学过程设计
(一)创设情境,引出课题
小明的妈妈领着小明到新房子去,进了客厅,妈妈说:“客厅长6.1米,宽5.9米,能帮我算一下客厅的面积吗?”小明没有带笔和计算器,你能快速帮助小明算出客厅的面积吗?
设计意图:通过出示与实际生活相联系的问题,说明数学来源与生活并服务与生活,同时引出本节课的问题,当然这一问题的解决需要本节课的知识来解决。
问题1:计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)= ;(2)(m+2)(m-2)= ;(3)(2x+1)(2x-1)= .
设计意图:通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习习近平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式.
(二)探索新知,尝试发现
问题2:依照以上三道题的计算回答下列问题:
①式子的左边具有什么共同特征?
②它们的结果有什么特征?
③能不能用字母表示你的发现?
师生活动:教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:
.
设计意图:在学生已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法──平方差公式,这样更加自然、合理.
(三)数形结合,几何说理
问题3:活动探究:将长为(a+b),宽为(a-b)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系
.
设计意图:通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想,让学生体会到代数与几何的内在联系.引导学生学会从多角度、多方面来思考问题.对于任意的a、b,由学生运用多项式乘法计算:
(四)总结归纳,发现新知,验证了其公式的正确性. 问题4:你能用文字语言表示所发现的规律吗?
两个数的和与这两个数的差的积,等于这两个数的平方差.
设计意图:鼓励学生用自己的语言表述,从而提高学生的语言组织与表达能力.
(五)剖析公式,发现本质 在平方差公式
中,其结构特征为:
①左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即
;
②让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:a和b可能代表数或式.
设计意图:通过观察平方差公式,体验公式的简洁性并通过分析公式的本质特征掌握公式.在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果.
(六)巩固运用,内化新知
问题5:判断下列算式能否运用平方差公式计算:(1)(2x+3a)(2x–3b);(2)(3)(-m+n)(m-n);(4)(5)
.
;
;
设计意图:学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.巩固平方差公式,进一步体会字母a、b可以是数,也可以是式,加深对字母含义广泛性的理解.
问题6:判断下列计算是否正确:
(1)(2a–3b)(2a–3b)=4a2-9b2()
(2)(x+2)(x – 2)=x2-2()
(3)(-3a-2)(3a-2)=9a2-4()(4)
()设计意图:对学生常出现的错误,作具体的分析,以加深学生对公式的理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件.
问题7:计算:
(1)(2x +3)(2x-3);(2)(b+2a)(2a-b). 解:(1)(2x + 3)(2x –3)=(2x)-3 = 4x -9
2(2)(b+2a)(2a-b)=(2a)-b =4a-b
设计意图:解决操作层面问题.可提议用不同方法计算,以体现学生的创造性.
(七)拓展引申,发展思维 问题8:计算:
(1)首先看本节课的开始题目,你能帮助小明吗?(2)98×(-102);(3)
.
设计意图:首位呼应,运用本节课的内容解决开始的问题;把相乘两数转化成两数和与两数差的乘积形式,此题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,注意不能用公式的仍按多项式乘法法则进行.
(八)小试牛刀,挑战自我
1.在下列括号中填上合适的多项式:
2.看谁算得快:
设计意图:设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时锻炼了学生逆向思维能力,也为后续的学习做了铺垫.第2个填空题有两种填法,属开放设计.目的是加强学生对公式结构特征的理解,同时也锻炼学生的发散思维.
(九)总结概括,自我评价
问题10:这节课你有哪些收获?还有什么困惑? 设计意图:从知识和情感态度两个方面加以小结,使学生对本节课的知识有一个系统全面的认识.
(十)课后作业 必做题:习题1.选做题:1.2.计算:(1)(2)(3)
;
;
.,则A的末位数是_______.
设计意图:作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展.
第四篇:平方差公式教案
公开课教案
课题:平方差公式 授课:张福仁 教学目标:
1、知识与技能目标:会用平方差公式进行多项式乘法运算
2、过程与方法目标:通过问题情境,引导学生自行得出平方差公式,再通过练习巩固。
3、情感态度与价值观目标:通过问题探究,培养学生独立思考、解决问题能力。教学重点:平方差公式理解、运用 教学难点:平方差公式理解、运用 教学过程
Ⅰ.提出问题,创设情境
[师]你能用简便方法计算下列各题吗?(1)2001×1999(2)998×1002 [生甲]直接乘比较复杂,我考虑把它化成整百,整千的运算,从而使运算简单,2001可以写成2000+1,1999可以写成2000-1,那么2001×1999可以看成是多项式的积,根据多项式乘法法则可以很快算出.[生乙]那么998×1002=(1000-2)(1000+2)了.[师]很好,请同学们自己动手运算一下.[生](1)2001×1999=(2000+1)(2000-1)=20002-1×2000+1×2000+1×(-1)=20002-1 =4000000-1 =3999999.(2)998×1002=(1000-2)(1000+2)=10002+1000×2+(-2)×1000+(-2)×2
=10002-22 =1000000-4 =1999996.[师]2001×1999=20002-12 998×1002=10002-22 它们积的结果都是两个数的平方差,那么其他满足这个特点的运算是否也有这个规律呢?我们继续进行探索.Ⅱ.导入新课
计算下列多项式的积.(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?再举两例验证你的发现.(学生讨论,教师引导)[生甲]上面四个算式中每个因式都是两项.[生乙]我认为更重要的是它们都是两个数的和与差的积.例如算式(1)是x与1这两个数的和与差的积;算式(2)是m与2这两个数的和与差的积;算式(3)是2x与1•这两个数的和与差的积;算式(4)是x与5y这两个数的和与差的积.[师]这个发现很重要,请同学们动笔算一下,相信你还会有更大的发现.[生]解:(1)(x+1)(x-1)
=x2+x-x-1=x2-12(2)(m+2)(m-2)=m2+2m-2m-2×2=m2-22(3)(2x+1)(2x-1)=(2x)2+2x-2x-1=(2x)2-12(4)(x+5y)(x-5y)=x2+5y·x-x·5y-(5y)2 =x2-(5y)2 [生]从刚才的运算我发现: 也就是说,两个数的和与差的积等于这两个数的平方差,这和我们前面的简便运算得出的是同一结果.[师]能不能再举例验证你的发现? [生]能.例如: 51×49=(50+1)(50-1)=502+50-50-1=502-12.即(50+1)(50-1)=502-12.(-a+b)(-a-b)=(-a)·(-a)+(-a)·(-b)+b·(-a)+b·(-b)=(-a)2-b2=a2-b2 这同样可以验证:两个数的和与这两个数的差的积,等于这两个数的平方差.[师]为什么会是这样的呢? [生]因为利用多项式与多项式的乘法法则展开后,中间两项是同类项,且系数互为相反数,所以和为零,只剩下这两个数的平方差了.[师]很好.请用一般形式表示上述规律,并对此规律进行证明.[生]这个规律用符号表示为:(a+b)(a-b)=a2-b2.其中a、b表示任意数,也可以表示任意的单项式、多项式.利用多项式与多项式的乘法法则可以做如下证明:(a+b)(a-b)=a2-ab+ab-b2=a2-b2.[师]同学们真不简单.老师为你们感到骄傲.能不能给我们发现的规律(a+b)(a-b)=a2-b2起一个名字呢? [生]最终结果是两个数的平方差,叫它“平方差公式”怎样样? [师]有道理.这就是我们探究得到的“平方差公式”,•请同学们分别用文字语言和符号语言叙述这个公式.(出示投影)两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2 平方差公式是多项式乘法运算中一个重要的公式,用它直接运算会很简便,但必须注意符合公式的结构特征才能应用.在应用中体会公式特征,感受平方差公式给运算带来的方便,从而灵活运用平方差公式进行计算
(出示投影片)例1:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)例2:计算:
(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)[师生共析]运用平方差公式时要注意公式的结构特征,学会对号入座.在例1的(1)中可以把3x看作a,2看作b.即:(3x+2)(3x-2)=(3x)2-22(a+b)(a-b)=a2-b2 同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:(b+2a)(2a-b)=(2a+b)(2a-b).如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.(作如上分析后,学生可以自己完成两个例题.•也可以通过学生的板演进行评析达到巩固和深化的目的)[例1]解:(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2.(3)(-x+2y)(-x-2y)=(-x)2-(2y)2=x2-4y2.[例2]解:(1)102×98=(100+2)(100-2)=1002-22=10000-4=9996.(2)(y+2)(y-2)-(y-1)(y+5)=y2-22-(y2+5y-y-5)=y2-4-y2-4y+5 =-4y+1.[师]我们能不能总结一下利用平方差公式应注意什么?
[生]我觉得应注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,•但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.[生]运算的最后结果应该是最简才行.[师]同学们总结得很好.下面请同学们完成一组闯关练习.优胜组选派一名代表做总结发言
第五篇:平方差公式教学反思
平方差公式教学反思 第四中学
孙磊
作为年轻教师的我,今年很荣幸在开学初参加学校数学教研组的讲课活动,我讲课的内容是北师大版七年级下册第一章第七节平方差公式,《平方差公式》是一节公式课,是各位老师非常熟悉的一个课题,对大家更熟悉,我深深感到一种压力。为此,我作了如下努力:
本节课我的设计理念是:遵循“三-四-五“教学模式,重组教材,恰当地创设情境、激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并解决问题,使学生在领悟数学对象本质的同时,真正经历知识的“生长过程”。例如:(1)联旧启新,导入新课里教学设计:计算下列各题,看谁做得又快又准?(1)(3a+1)(3a-1)(2)(x+2)(x-2)(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)通过做这一组有梯度的与推导平方差有关的问题,让学生计算并比速度目的在于激发学生好奇争胜性,为建立公式搭建平台,为学生舒展灵性创设探究空间。(2)抓住学生的好胜性,放手让学生探究、讨论、猜想,凸显学生学习的主体地位。教学设计:由于前面的启发引导,学生的思维正处在活跃阶段,对获得公式的愿望十分强烈,于是引导小组进行讨论、分析公式特征结构。①等式左边的两个多项式有什么特点?学生活动探讨答案。②等式右边的多项式有什么规律?③你能用一句话归纳出上述等式的规律吗?全班展示交流结果,引导学生得出平方差公式至此平方差公式浮出水面学生找到规律所在。教(3)趁胜追击,维系学生的学习兴趣,高涨学生学习的情绪。教学设计:经过前面的解释,学生对平方差公式有了进一步的理解,个个磨拳擦掌跃跃欲试,于是我出示问题三:此目的让学生熟悉公式,找准a、b,学会公式的应用。接着进一步出示问题,使学生独立思考,巩固公式,学会计算。
计算:
1、(2x+y)(2x-y)=
2、(9x+5y)(9x-5y)= 经过前面两个问题的引导,学生表现出了强烈的自信心,调动了学生的兴趣,接着出示思考问题,进一步激发学生的好奇心和求知欲.新课程倡导课堂应以学生为主体,教师只是引导者、促进者,然而很多时候我们教师却不肯放手,生怕自己不讲,学生就不会。本节课平方差公式的特点描述,以及能不能运用公式计算是难点和关键,所以在处理上但还有一些不足的地方:
(1)学生上台的时间把握的不够好,后面显得有点紧,以至于拔高题没能展示上。
(2)小组讨论后请代表出来发言不够完整时应让其他小组来补充,再由老师引导归纳总结。
(3)作为年轻教师,在贴近学生的基础上,还应该注意课堂教学语言的严谨和规范。多使用标准的数学语言和精确的数学语言。再有欠缺临场经验,以后在教学中我要不断提高处理临时性问题的能力。
(4)提问要明确,本节课中出现个别问题,提问比较模糊,使得学生很难掌握回答的方向。
这次的课堂教学实践给了我很大的启发。我将在以后的教学中不断该进,更好的提高课堂教学效率,更好的应用“三-四-五”教学模式。