物理化学课程教案

时间:2019-05-15 05:07:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《物理化学课程教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《物理化学课程教案》。

第一篇:物理化学课程教案

第十二章

化学动力学基础

(二)教学目的与要求: 使学生了解和掌握化学反应速率理论发展的动态,两种速率理论的具体的内容,基本思路及其成功和不足之处。

上一章介绍了化学动力学的基本概念,简单级数反应的动力学规律和等征,复杂反应的动力学规律,温度对反应速率的影响以及链反应等,同时还介绍了反应机理的一般确定的方法,在这一章中,主要介绍各种反应的速率理论。

重点与难点: 反应速率理论的基本假定和一些基本概念,基本结论:阈能,势能面,反应坐标,能垒高度,以及阈能,能垒高度等与活化能的关系等。

§12.1 碰撞理论

碰撞理论的基本假定

碰撞理论认为:(1)发生反应的首要条件是碰撞,可以把这种碰撞看成是两个硬球的碰撞;(2)只有碰撞时相互作用能超过某一临界值时才能发生反应,化学反应的速率就是有效碰撞的次数。

双分子的互碰频率

设:要发生碰撞的两个分子是球体,单位体积内A分子的数目为NA,B分子数为NB,分子的直径为dD和dB,则碰撞时两个分子可以接触的最小距离为dABdAdB/2。

当A、B两个分子在空间以速度vA,vB运动时,为了研究两个分了的碰撞,通过坐标变换,可以把两个分子的各自的运动变换为两个分子重心的运动(质量为MmAmB)和 质量为(m1m2)/m1m2的假想粒子以相对速度vr的相对运动。此时两个分子的运动的能量可以表示为:

11112222Em1v1m2v2(m1m2)vMvr2222

式中vM为分子的质心的运动速度。由于分子的质心的运动和分子碰撞无关,可以不予考虑。而两个分子的平均相对运动速度为

vr 碰撞频率为

8RT

由此可以得到A,B分子的,相同分子之间的碰撞频率为

2ZAAdA2ZABdAB8RTNANB8RT22NA2dA A、B两个分子相互碰撞过程的微观模型

几个基本概念:

碰撞参数:通过A,B两分子的质心,而与相对速率平行的两条直线的距离

RT2NAMA

b称为碰撞参数。

碰撞参数描述了两个分子可以接近的程度,两个分子要发生碰撞的条件

dAdBdAB2

0≤ b ≤

2碰撞截面: CdAB,凡是两个分子落在碰撞截面内才能发生碰撞。

1ur2碰撞时两个分子相互作用能:分子的相互移动能2在碰撞时两个分子的质心连线的分量是两个分子的相互作用能。

在反应过程中,只有超ε δ过某一规定值ε

c时,碰撞才是有效的,εc称为反应的阈能或临界能(对不同的反应,ε,故发生反应的条件为 c不同)

12vrcosc εr‘≥εc

22ur2dABb2cos()d2dABAB因为22br12dAB

b2或ε‘(1-r(dAB2)≥εc

从上式可以看出,要满足碰撞时的相互作用能不小于εc,对相对移动能和碰撞参数都有限限制的条件。对某一εr,要使上式满足的碰撞参数为br,则有

br(1r2)cdAB br2dAB2(1c)r 或

当ευ 一定时,凡是b ≤ br 的所有碰撞都是有效的。据此,定义反应截面

rbr2dAB2(1c)r

对一定的反应来说,ε变,所以σδ是ε

δ

υ一定,br随ε

δ

而的函数,(也是ur的函数)可

以用左图表示反应截面与相对动能的关系。

微观反应与宏观反应之间的关系(有效碰撞分数的求算)

如果研究一个分子和其它为数众多的分子的相对速度,会有无数个相对速度,并呈现一定的分布,这种分布也可以用麦克斯韦速率分布公式表示,即

dN(ur)322u4N()urexp(r)dur2kT2kT

将εδ=(1/2)μur2代入上式,可以得到相对动能的分布公式

1dN(r)213212()exp()NdkT kT上式的意义是,在单位体积中的N个分子中,一个分子和其它N1N个分子的相对速率在ururdur(或相对移动能在rrdr)之间的机率。

在该速率间隔中(或能量间隔中)和其它粒子的碰撞的次数

213212kT2NdABur()redrkT

在上述碰撞中,满足εr≥εr,又在反应截面内的碰撞次数为

rr213212kT2NdAB(1)ur()redrkTrc

上式是一个分子的有效碰撞频率,如果是N个分子的有效碰撞,则有

2rZAA1N2rNdAA2r213212kT(1)ur()redrckT

rc/kT2RT2N2dAeMA

c/kTeEc/kT所以,有效碰撞的分数为

qe1/2

c/kT可以证明,两种不同分子的有效碰撞在总的碰撞中占的分数亦为e 所以反应的速率

dNA2ZAA(ZAB)dt

(一次碰撞消耗2个分子)

22RTEc/RT4NAdAMeA

两边除以L,使NA成为CA

dCA22RTEc/RT4LCAdAedtMA

dCA2kTCAdt和二级反应的速率公式相比

2RTk4LdAMA反应阈能与实验活化能和的关系

EaRT2Ec/RTe

dlnk(T)dT根椐实验的活化能定义

将上边得到的反应速率常数代入,可以得到

E11EaRT2c2EcRT22TRT

1EcRT2对于一般的反应,则可以认为EaEc,但两者的含义是不同的,Ec才是与温度无关的常数。若用代替,则上式可改写成

28kTEa/RTkTLdABe

或以求出阿仑尼乌斯公式指前因子所代表的实际意义是

28kTALdAB

概率因子

§11.2 过渡状态理论

过渡状态理论又称活化络合物理论,是在量子力学及统计力学的基础上发展起来的,在理论有形成过程中又引入了一些模型假设。

在由反应物到产物的转化过程中,要经过(由两个反应物分子构成的体系的)势能较高的过渡状态,形成不稳定的活化络合物,它可以和反应物达成平衡,而活化络合物分解转化为产物的速率就是该反应的速率。

势能面

(1)原子之间的势能

原子之间的相互作用力(来自于不同的原子和电子之间的相互作用)可以用势能来表示,对双原子分子来说,它是原子之间的势能的函数。

EpEpR

原则上,可以由量子力学的计算得到,但计算过程颇难。另一种方法是采用经验公式的进行计算,莫尔斯(Morse)公式就是对双原子的经验公式

EprDeexp2arr02exparr0)]

0

E(r)与r的关系可以用下图来定性的表示

在图中,De为阱深,r0为两原子的平衡核间距,r>r0,两核之间有吸引力,r<r0时,两核之间有斥力,这样两个原子如同一个振子在平衡位

置振动,这种振动是量子化的,振子的能量为

1Ev(v)h2

式中v是振动量子数(v =1,2,…v),ν是系统的振动特征频率,当v =0时,11h22Ev = E0 =hν,E0称为零点振动能,而De和E0的差值为D0 =De-(E0),v = 0的状态为基态,(完美晶体在OK时,各原子均处于振动基态,具有零点振1hE02动能)。

当光照或分子之间运动发生碰撞时,振动状态会从较低的状态跃迁到较高的状态。

D0的数值可以从光谱的数据中获得

当然,这样的势能和r的关系仅是分子中电子处于基态的情况,当电子的运动状态发生变化时,势能的关系也会发生变化。

1.分子间的势能与势能面

设:原子A和双原子B-C发生反应,当A靠近B-C时,由三个原子构成的体系的势能也会发生变化,要描述三个原子之间的距离,需要三个坐标(rAB, rBC, rAC),而描述三个坐标与势能的关系需要四维空间, 这是无法用平面图型来表示的, 为了说明过渡状态的基本思路, 可以设想三个原子在同一条直线上, 这样, 只需要两个原子间距的标, 同时可以在平面图上表示。

按照该理论的基本假设,在反应进行的过程中

AB+ CABCC

A + B

A靠近B-C时, B-C之间的化学键松驰, 同时三个原子构成的反应体系的势能会发生变化, 形成过渡的活化络合物, 最后活化络物分解, 生成产物分子, 在这个过程中, 体系的势能是核间距和的函数, 这种函数关系可以用下图定性的进行说明.1.立体图的说明 2.平面图的说明

1.反应坐标

反应体系(三个原子)从反应物转化到产物所经过的能量要求最低的途径.2.E0与Eb的关系及定义

Eb是活化络合物的最低势能与反应物的最低势能之间的差值。

E0是活化络合物的零点能与反应物的零点能之间的差值。

由过渡状态理论计算反应速率

按照基本假定: 反应物和活化络合物可以达成化学平衡, 并且活化络合物一旦生成, 它将一无反顾地转化为产物, 而转化为产物的速率就是该反应的速率。同时假定:导致生成产物那种不对称的振动很弱,一次振动就可以使活化络合物分解而生成产物。

d[A--B-]r(分解)[ABC]dt

C][AB由于反应物和活化络合物可以达成平衡。

A + B

[AC]BKc=

[A][BC]

=K[A][BC][ABC]c d[ABC](分)代入上式 [A][BC]K=νcr= dt和二级反应的速率公式相比较, k = νKc#,所以只要知道KC#, 便可以求出速率常数。有两种方法可以求出Kc# 1. 速率常数的统计力学处理

由统计力学的知识,可以求出反应的速率常数为

kBTf3tfrfvABvE0kexp()333NA633NB63h/2(ftfrfvkBT)(ftfrfv)3[3N3N7]式中活化络合物的振动自由度为3(NB+NB)-7, 是因为一个引起活化络合物分解的那个振动自由度已经分离出去了。

原则上只要知道分子的质量,转动惯量,振动频率等微观物理数据,就可以由此式求出反应的速率常数。所以这个理论也称为绝对反应速率理论。

2. 过渡状态理论的热力学方法处理

过渡状态理论的热力学处理就是用反应物转变为活化络合物过程中的热力rGmrHmTrSm学函数的变化值来计算Kc,并进一步计算速率常数值k。(对于n 分子的反应)

kBT1nrSmrHmk(c)exp()exp()hRRT

对于气相的反应,也可以用压力表示浓度,则有

kBTp1nrSm(p)rHm(p)k()exp[]exp[]hRTRRT

Ec,Eb,E0,Δ≠r Hm⊙,Δr≠Sm⊙,Ea和指前因子之间的关系

(1)几个与能量有关的物理量的含义及相互关系

Ec是发生有效碰撞时,分子的相互移动能在碰撞时的质心连线上分量的阈值

Ea = Ec + RT E0是活化络合物的零点能与反应物的零点能的差值,Eb是反应物形成活化络物时所必须翻越的能垒的高度。

11EaEb[h0h0(反应物)]L22

E0与实验活化能的关系为Ea = E0 + mRT(m包括了普适常数及配分函数中所有与T有关的因子,对一定的反应体系,有定值。

对于理想气体的反应,Ea≈Δ当温度不太高时,Ea≈Δ

r

r

Hm+ nRT(n为气态反应物的系数之和)

Hm⊙

两种速率理论的比较

分子碰撞理论把分子看作是没有结构的球体,分子之间的反应看作是硬球之间作用能大于某一特定的阈能的有效碰撞,对很简单的反应可以计算出反应的速率常数。但由于模型的粗糙,对稍微复杂的反应的计算也不能和实验相符,为了迎合实验数据,提出了几率因子,但它又不能由碰撞理论本身得到。另外,该理论本身也不能解决反应阈能的计算问题。但分子碰撞理论必定给人们描绘了反应过程中分子相互作用的清晰图象,成为反应速率理论进一步发展的基础。

活化络合物理论在现代量子力学和统计力学的基础上,对化学反应过程提出子新的物理模型,和碰撞理论相比,它解决了反就应的活化能的求算问题,通过对反应的势能面的计算,可以预言化学反应进行的途径,可以揭示阿累尼乌斯公式的指前因子的物理意义,可以解释并计算碰撞理论的几率因子,这个理论对反应速率常数的计算在原则上可以不借助认何反应的实验数据,仅凭对有关物质的微观化学结构的了解和量子力学和统计力学的计算,就可以解决反应的速率常数和求算问题,所以这个理论又称为绝对反应速率理论。

第二篇:物理化学课程教案 (500字)

第一章 热力学第一定律及其应用

§2.1热力学概论

热力学的基本内容

热力学是研究热功转换过程所遵循的规律的科学。它包含系统变化所引起的物理量的变化或当物理量变化时系统的变化。

热力学研究问题的基础是四个经验定律(热力学第一定律,第二定律和第三定律,还有热力学第零定律),其中热力学第三定律是实验事实的推论。这些定律是人们经过大量的实验归纳和总结出来的,具有不可争辩的事实根据,在一定程度上是绝对可靠的。

热力学的研究在解决化学研究中所遇到的实际问题时是非常重要的,在生产和科研中发挥着重要的作用。如一个系统的变化的方向和变化所能达的限度等。热力学研究方法和局限性

研究方法:

热力学的研究方法是一种演绎推理的方法,它通过对研究的系统(所研究的对象)在转化过程中热和功的关系的分析,用热力学定律来判断该转变是否进行以及进行的程度。

特点:

首先,热力学研究的结论是绝对可靠的,它所进行推理的依据是实验总结的热力学定律,没有任何假想的成分。另外,热力学在研究问题的时,只是从系统变化过程的热功关系入手,以热力学定律作为标准,从而对系统变化过程的方向和限度做出判断。不考虑系统在转化过程中,物质微粒是什么和到底发生了什么变化。

局限性:

不能回答系统的转化和物质微粒的特性之间的关系,即不能对系统变化的具体过程和细节做出判断。只能预示过程进行的可能性,但不能解决过程的现实性,即不能预言过程的时间性问题。

§2.2热平衡和热力学第零定律-温度的概念 为了给热力学所研究的对象-系统的热冷程度确定一个严格概念,需要定义温度。

温度概念的建立以及温度的测定都是以热平衡现象为基础。一个不受外界影

响的系统,最终会达到热平衡,宏观上不再变化,可以用一个状态参量来描述它。当把两个系统已达平衡的系统接触,并使它们用可以导热的壁接触,则这两个系统之间在达到热平衡时,两个系统的这一状态参量也应该相等。这个状态参量就称为温度。

那么如何确定一个系统的温度呢?热力学第零定律指出:如果两个系统分别和处于平衡的第三个系统达成热平衡,则这两个系统也彼此也处于热平衡。热力学第零定律是是确定系统温度和测定系统温度的基础,虽然它发现迟于热力学第一、二定律,但由于逻辑的关系,应排在它们的前边,所以称为热力学第零定律。

温度的科学定义是由热力学第零定律导出的,当两个系统接触时,描写系统的性质的状态函数将自动调节变化,直到两个系统都达到平衡,这就意味着两个系统有一个共同的物理性质,这个性质就是“温度”。

热力学第零定律的实质是指出了温度这个状态函数的存在,它非但给出了温度的概念,而且还为系统的温度的测定提供了依据。

§2.3热力学的一些基本概念

系统与环境

系统:物理化学中把所研究的对象称为系统

环境:和系统有关的以外的部分称为环境。

根据系统与环境的关系,可以将系统分为三类:

(1)孤立系统:系统和环境之间无物质和能量交换者。

(2)封闭系统:系统和环境之间无物质交换,但有能量交换者。

(3)敞开系统:系统和环境之间既有物质交换,又有能量交换 系统的性质

系统的状态可以用它的可观测的宏观性质来描述。这些性质称为系统的性质,系统的性质可以分为两类:

(1)广度性质(或容量性质)其数值与系统的量成正比,具有加和

性,整个体系的广度性质是系统中各部分这种性质的总和。如体积,质量,热力学能等。

(2)强度性质 其数值决定于体系自身的特性,不具有加和性。如温

度,压力,密度等。

通常系统的一个广度性质除以系统中总的物质的量或质量之后得到一个强度性质。

热力学平衡态

当系统的各种性质不随时间变化时,则系统就处于热力学的平衡态,所谓热力学的平衡,应包括如下的平衡。

衡,在

成不随

(1)热平衡:系统的各部分的温度相等。(2)力学平衡:系统的各部分压力相等。(3)相平衡:当系统不上一个相时,物质在各相之间的分配达到平相的之间没有净的物质的转移。(4)化学平衡:当系统中存在化学反应时,达到平衡后,系统的组时间变化。状态函数

当系统处于一定的状态时,系统中的各种性质都有确定的数值,但系统的这些性质并不都是独立的,它们之间存在着某种数学关系(状态方程)。通常,只要确定系统的少数几个性质,其它的性质就随之而这定。这样,系统体系的性质就可以表示成系统的其它的性质的函数,即系统的性质由其状态而定,所以系统的性也称为状态函数。如

系统的性质?f?系统的状态?

当系统处于一定的状态时,系统的性质只决定于所处的状态,而于过去的历史无关,若外界的条件变化时,它的一系列性质也随之发生变化,系统的性质的改变时只决定于始态与终态,而与变化所经历的途径无关。这种状态函数的特性在数学上具有全微分的特性,可以按照全微分的关系来处理。

状态方程

描述系统性质关系的数学方程式称为状态方程式。

状态方程式的获得:系统的状态方程不以由热力学理论导出,必须通过实验来测定。在统计热力学中,可以通过对系统中粒子之间相互作用的情况进行某种假设,推导出状态方程。

描述一个系统的状态所需要的独立变数的数目随系统的特点而定,又随着考虑问题目的复杂程度的不同而不同。一般情况下,对于一个组成不变的均相封闭系统,需要两个独立变数可以确定系统的状态,如理想气体的状态方程可以写成 t?f?p,v?

(1)

对于由于化学变化、相变化等会引起系统或各相的组成发生变化的系统,还必须指明各相的组成或整个系统的组成,决定系统的状态所需的性质的数目就会相应增加。如对于敞开系统,系统的状态可以写成p,v,n1,n2,?的函数。

t?f?p,v,n1,n2,??

2)(过程与途径

过程:在一定的环境条件下,系统发生了一个状态变化,从一个状态变化到另一个状态,我们称系统发生了一个热力学过程,简称过程。

途径:系统变化所经历的具体路径称为途径。

常见的变化过程有:

(1)等温过程 系统从状态1变化到状态2,在变化过程中温度保持不变,始态温度等于终态温度,且等于环境温度。

(2)等压过程 系统从状态1变化到状态2,在变化过程中压力保持不变,始态压力等于终态压力,且等于环境压力。

(3)等容过程 系统从状态1变化到状态2,在变化过程中体积保持不变。

(4)绝热过程 系统在变化过程中,与环境不交换热量,这个过程称为绝

热过程。如系统和环境之间有用绝热壁隔开,或变化过程太快,来不及和环境交换热量的过程,可近似看作绝热过程。

(5)环状过程 系统从始态出发,经过一系列的变化过程,回到原来的状

态称为环状过程。系统经历此过程,所有性质的改变量都等于零。

热和功

热:热力学中,把由于系统和环境间温度的不同而在它们之间传递的能量称为热(q)。(符号的约定:系统吸热为正)

热(量)与系统的热冷的概念不同。

在热力学中,除热以外,系统与环境间以其它的形式传递的能量称为功(w)(符号的规定:给系统做功为正)。

热和功不是状态函数,它的大小和过程有关,其微小量用符号“δ”表示。有各种形式的功:体积功,电功,表面功,辐射功等。功可以分为体积功和非体积功。

各种功的微小量可以表示为环境对系统施加影响的一个强度性质与其共轭的广度性质的微变量的乘积。如功的计算式可以表示为:

3)?w?p外dv??xdx?ydy?zdz?we??wf(上式中p外,x,y,z,?表示环境对系统施加的影响的强度性质,而dv,dx,dy,dz?则表示其共轭的广度性质的微变。

热和功的单位:焦(j)

§2.4 热力学第一定律

经过大量的实验证明:确立了能量守恒与转化定律。热力学第一定律就是包括热量在内的能量守恒与转化定律:

热力学第一定律可以表述为:自然界的一切物质都具有能量,能量有各种形式,并且可以从一种形式转化为另一种形式,在转化过程中,能量的总量不变。能常体系的总能量由下列三部分组成:

(1)系统整体运动的能量(t)。(2)系统在外力场中的位能(v)。(3)热力学能(u)。

在研究静止的系统时(t = 0),如不考虑外力场的作用(v = 0),此时系统的总能量为热力学能。系统的热力学能包括了系统中各种运动形式所具有的能量(粒子的平动能,转动能,振动能,电子能,核能??,以及分子之间的位能等)。当系统和环境交换能量时,系统的热力学能就要发生变化 ?u?u2?u1?q?w)

如果系统发生了一个微小的变化,则有

du??q??w)

上边两个式子称为热力学第一定律的数学表达式。也可以用另一种文字方式表达热力学第一定律:

热力学第一定律的文字表述:要想制造一种永动机,它既不依靠外界供给能量,本身的能量也不减少,却不断地对外做功,这是不可能的。热力学第一定律也可以表述为:第一类永动机是不可能造成的。

关于热力学能的说明: 系统的热力学能包括了系统中的各种粒子运动形式的能量,由于系统中的粒子无限可分,运动形式无穷无尽,所以系统的热力学能的数值也无法知道。

系统中热力学能的变化量可以通过变化过程中的q和w来确定。系统的热力学能是状态函数(证明):

设:系统经途径ⅰ从a?b,热力学能变化为?uⅰ,经途径ⅱ从a?b,热

力学能的变化为?uⅱ,假设热力学能不是状态函数,?uⅰ??uⅱ

(4

(5

a?。如果使途径ⅱ改变方向,从b?a,则该过程的 热力学能的变化为??uⅱ。ⅰⅱ??b???a,则经过这个循环如系统两个变化过程组合成一个循环,回到原来的状态,系统的热力学能将发生变化?uⅰ??uⅱ,环境同样获得能量

?(?uⅰ??uⅱ)

,即能量可以生成,第一类永动相可以制成。

这个结论不符合热力学第一定律,所以只有?uⅰ??uⅱ。

∴系统的热力学能的改变量只与始终态有关,而和路径无关,所以系统的热力学能为一状态函数。

系统的热力学能可以表示为 u?f(t,p,n)

??u??u?

du???dt???

?t?p???p

?

??dp?t

(6)

如果把热力学能看作是t,v的函数 u?f(t,v,n)

??u???u?

du???dt???dp

?t?v??v??t

??u???u???t?t?p??v 显然 ?

§2.5 准静态过程与可逆过程

功与过程

和热力学能不同,环境对系统所做功的量和系统变化所经历的途经有关。

以图2.2为例来说明做功的过程

?w??f

相同。

we,4???pedv??nrtln

v2v1

外dl??peadl??pedv(为外压)系统中的气体可以由不同的过程从v1?v2,过程不同,环境做功也不.自由膨胀 pe?0,we,1?0 .外压始终维持恒定 we,2??pe?v2?v1? .多次等外压膨胀 we,3??pe?v1?pe?v2?v2?v1? .无限多次的等外压膨胀 以上的例子说明,功和途径有关

由于?u?q?w,所以q也和途径有关。

准静态过程

过程4的特点:无限多次的等压膨胀,如果每次所需要的时间为无限长,系统在膨胀的每一时刻都无限地接近于平衡,这们的过程为准静态过程,在准静态过程中,pe?p。

如果系统再经过压缩回到原来的状态

1.一次压缩

2.多次压缩 3.无限多次压缩

显然

|we,1|?|w

e,2

|?|w

e,3

|

从上边可以看出,无限多次的膨胀和压缩过程,如果系统在过程中没有由于摩擦引起的能量耗散的话,当整个过程结束时,系统会恢复到原状,同时不会给环境留下任何痕迹。

可逆过程(与不可逆过程)

当系统经历一个变化过程,从状态(1)变化到状态(2),如果能采取任何一种方式,使系统恢复原状的同时,环境也能恢复原状,则原来的过程[(1)→(2)]就称为可逆过程,否则为不可逆过程。

上边的例子中发生的准静态过程在不考虑由于摩擦引起的能耗散的话,可称为可逆过程。

可逆过程做的功最大。

1下,处理。

2不能

实际发生的接近可逆过程的例子 .恒压下的相变过程 .可逆电池在可逆情况下的放电过程式 3.适当安排的化学反应过程 如 注: .实际发生的过程都为不可逆过程,上边的例子只是说在一定的条件体系发生特定的变化过程,只要进行得无限缓慢,可以当作可逆过程.不可逆过程并不是说体系根本无法恢复原状,而只是说体系和环境 同时恢复原状。可逆过程的特点: 1.

可逆过程是以无限小的变化级进行的,整个过程是由一连串非常接近于平衡态的状态所组成。

2. 在反向的过程中,用同样的手续,循着原来过程的逆过程,可以使系统

和环境都恢复到原来的状态而无任何耗散效应。

3. 在任何特定条件限定的情况下,只有可逆过程中环境做功最小,可逆过程的特殊的重要作用:

1.可逆过程为人们求体系最大的做功能力提供了条件。2.热力学函数的求算要通过可逆过程来完成。

2ag2o?s??4ag

?s?

?o2?s?

p?137.8kpa

1但变化量可以确定。

?h?qp

§1.4 焓 定义: h?u?pv 焓的特点: .焓是系统的性质,具有能量的量纲(j)。2.焓的绝对值无法确定,.在不做非体积功及等压的条件下,系统发生状态变化时,(7)

qp??u?w(w?we?wf)

证明:当系统在p不变的情况下,从状态(1)→状态(2)由热力学第一定律

qp??u?w(w?we)

qp??u?we?(u2?u1)?p(v2?v1)

?(u2?p2v2)?(u1?p1v1)??h

在不做非体积功时 在不做非体积功及等压的条件下 ?u?qv?wr(8)

在不做非体积功及等压容的条件下 ??u?qv

§2.7 热容

对封闭系统(均相且组成不变)加热时,设从环境吸进热量q,系统的温度从t1升高到t2,则定义平均热容为

当温度的变化很小时,则有

c?

drf

qt2?t1

(9)

?1?qndt

c?t??

?q

dt

drf

定义系统的摩尔热容

热容的单位:

j· k-1

比热容 j·k-1·kg-1 摩尔热容 j· k-1·mol-1

cm?t??

c?t?n

对于纯物质,加“*”。如1mol纯物质的摩尔热容可表示为cm(b),热容随过程的不同而不同。

对于组成不变的均相系统,常有两种重要的热容

cp?

*

?qpdt

(10)

?qv

??h?

???

?t??v

??h?

???

?t??p

?h

p

?

?c

p

dt

cv??hv??cvdt

dt

则相应的定压摩尔热容与定容摩尔热容

ndtndt

热容是温度的函数,这种函数关系因物质,物态,温度的不同而异,根据实

cm,p?t??

1?qp

,cm,v?t??

1?qv

cp,m?t??a?bt?ctcp,m?t??a?bt

?1 验常将气体的定压摩尔热容写成如下的经验式:

??

?2

式中a,b,c,?是经验常数,由各物质的自身的性质决定。

§2.8 热力学第一定律对于理想气体的应用

?ct??

理想气体的热力学能和焓—gay-lussac-joule实验

gay-lussac-joule实验及其结果:实验结果表明,理想气体在自由膨胀的过程中,温度不变,热力学能不变。设: u?f(t,v)

??u???u?du???dt???dv

??t?v??v?t

??u?

???0

由gay-lussac-joule实验实验的结论 ??v?t

(11)

∴ 理想气体的内能和体积无关,只是温度的函数,即 u?f?t?(对理想气体而言)

??u?cv???

?t??v

又由

??u?

?c

v

dt

??h???h?dh???dt???dp

?t?p??p??t

设: h?f?t,p? ??h???u???(pv

p?p?p?tt)???u???v???(rt

?v?p?t??t??t??p)?

?t?0?

?

(12)

∴ 理想气体的焓只是温度的函数

又由(13)

cv,cp

h?f(t)?h?

cpdt

??h?

cp???

??t?p??u?cv???

??t?v

由此可知,理想气体的 cv,cp

只是温度的函数

理想气体的之差

cv?c

p

p

对于理想气体来说 任意系统的

(原因)

cv,cp

之差

??h???u?

cp?cv??

?t?t??p??v

??u???v???u?p?

?t?t?t??p??p??v

设: u?f(t,v)

v?f(t,p)

?u?f[t,v(t,p)]

??u???u???u???vt?t?v?t?p??v??t??p ?

???uv?

cp?cv?p???

?v?t?t?p(适用于任何系统)代入上式

cp?cv

将此种关系用于理想气体

??u?

???0

对于理想气体 ??v?t

???uv?

?p???

?v?t?t?p

cp?cv?p(?nrt?t

p)p?nr

(14)

cp,m?cv,m?r

(15)

绝热过程的功和绝热过程方程

在绝热过程中,系统和环境之间没有热量交换,根据热力学第一定律,体系做的功必然以内能的降低为代价

?du???w ??q?0

如果功仅为体积功 ?w?pdv

即 du?pdv?0 对理想气体而言 du?cvdt 如果cv为常数 w?cv(t1?t2)

cvdt?pdv?0

,理想气体的绝热可逆过程方程

?du?pedv

在可逆过程中 pe?p?nrt/v 由

cvdt?cp?cv

nrtv?nr

dv?0

p

?

?

cvdt?

dtt

?

?c

?cv?tv

v

dv?0

cp?cvdvcv

令:

??cp/cv

?

, 且其比值假想为常数

1??

dvv

?

dtt

?nt?1??nv?常数

??1

?tv?

常数

(16)

t?

pvnrnrtp

代入上式

pv

?

?

常数

(17)

v?

将代入上式(18)

以上三个方程是理想气体在绝热可逆过程中所遵循的方程式

p

1??

t

?

理想气体的绝热过程方程和状态方程的比较

理想气体在绝热过程中做的功

1.根据能量关系求功 w?cv?t1?t2?

w?

v2

v2

2.由功的定义式

?

?

v1

pdv?

?

kv

?

v1

?[?

1k

???1?v

??1v1

]

v2

理想气体的绝热可逆过程和等温可逆过程和膨胀曲线的比较

在等温过程中,pv?c

p?

cv

?kk?p1v1?p2v2

1??1?

???1??v2???1?v1 1

c??p??p?

v?v? ??v?t

?pv?k 在绝热过程中

k??p??p?

???1?

v?v? ??v?s

可见绝热过程中曲线下降得更快

多方过程: 在等温过程中

pv

?

pv?常数

绝热过程中

?常数

pv

n

在多方过程中

?常数

<n<?? ?1

多方过程中做的功

绝热不可逆过程及其功的计算

w?

p1v1?p2v2

n?1

?cv?t1?t2?

理想气体的卡诺循环

卡诺循环的过程的说明:

卡诺热机的效率的求算: 1. a→b

q2?w2?

?

v2

v1

pdv?nrt2?n

v2v1

2. b→c q?03

q1?w1?

w?cv?t2?t1?

. c→d

v4v3

?

v4

v3

pdv?nrt1?n

4. d→a q?0

w?cv?t1?t2?

v2v1

v4v3

卡诺热机在循环过程中所做的功 w?w1?w2?w3?w3

?nrt2?n

??1

?nrt1?n

t2v1

v

?t1v3

由理想气体的绝热过程方程

t2v2

??1

??1

?t1v4

??1

两式相除

?

w?nrt2?n

v2v1

?nrt1?n

v2v1

v1

第三篇:物理化学课程论文

摘要:近年来,新能源在世界范围内得到迅速发展。作为当代大学生,关心环境和未来是我们的责任。因此,笔者查证文献,分析了国内新能源技术发展现状、前景,希望能对关心新能源开发利用的朋友有所帮助。

英文摘要:In recent years, new energy have been developed rapidly around the world.As a contemporary college student, being concerned about the environment and the future is our responsibility.Therefore, I verify documents, analyze the domestic development and prospects of the new energy technologies, with the hope that friends who concern for new energy development and utilization can gain some help from this text.中文关键字:新能源 发展 现状 开发利用 可持续发展

英文关键字:new energy;development;the present situation ;development and utilization;sustainable development;

引言:能源问题已经刻不容缓,减少碳排放让世界目光聚焦新能源。虽然传统能源在国际能源消费中的比例仍然居多,但许多国家都把发展新能源作为缓解高油价压力、应对气候变暧以及实现可持续发展的重要途径和长远战略。而在我国,支持新能源发展的方针被明确写进了今年的政府工作报告,这意味着发展新能源的春天已经到来。

一 研究背景

在经济高速发展的今天,能源越来越凸显出其重要性。能源是国民经济的基础产业,对经济持续快速健康发展和人民生活的改善发挥着十分重要的促进与保障作用。而对于中国来说,我们加入WTO之后,意味着我们处在一个更加开放的环境中,我们的着眼点不应该局限于中国。应该放到更大的背景下去看。而更加重要的是,我们正处于工业化阶段,而且大部分的研究表明我们正处于重工业化的阶段,我们面临能源紧张的危机,所以我们对新能源的开发和利用显得尤为重要。

为了保证人类所需的能源得到稳定而持久的供应,减轻和防止环境污染对人类的危害,世界各国特别是经济发达国家都高度重视新能源的开发利用和新能源技术的发展,把新能源技术摆在新技术革命支柱技术的重要位置,制定规划,采取措施,加大投人,积极发展。

地球上的各种能源,有的已被大规模开发和广泛利用,如煤炭、石油、天然气、水力等,称常规能源;还有一些能源,如氢能、太阳能、风能、地热能、海洋能、核能、生物质能源等,是正在以新技术为基础,系统开发和利用的能源,被通俗地称为新能源。它们的共同特点是资源丰富、可再生、没有污染或很少污染。研究和开发清洁而又用之不竭的新能源,是21 世纪发展的首要任务,将为人类可持续发展做出贡献。

氢能具有清洁、无污染、效率高、重量轻、储存和输送性能好等诸多优点,其开发利用首先必须解决氢源问题,大量廉价氢的生产是实现氢能利用的根本。目前,世界上氢的年产量是3600 万吨,但绝大多数是从石油、煤炭和天然气中制取。由水电解制氢技术上是成熟的,但因消耗电能太多,经济上不合算。因此,必须寻找一种低能耗、高效率的制氢方法。如利用太阳能光解水制氢将是一种非常有前途的制氢方法。同时,安全、高效、高密度、低成本的储氢技术,是将氢能利用推向实用化、规模化的关键。目前,研究新的经济上合理的制氢储氢方法是一项具有战略性的研究课题。

太阳能资源是指到达地面的太阳辐射总量,包括太阳的直接辐射和天空散射辐射的总和。它受地理位置和地面反射等因素的影响,各地差异较大。太阳每年辐射到地球表面的能量为50 ×1018 千焦,相当于目前全世界能量消费的113 万倍,因此利用太阳能的前景非常诱人。阳光普照大地,单位面积上的辐射并不大,如何把分散的热量聚集在一起成为有用的能源是有效利用太阳能的关键。

风能利用的主要方式有风力发电、风力提水和风帆助航等。按人均风电装机容量算,丹麦遥遥领先,已经从风能中获得其电力的将近15 % ,其次是美国和荷兰。庞大的1615 亿千瓦涡轮机的问世及其它进展,使风能的成本从1980 年以来已经下降了90 %。在一些地方,风力发电比石油或天然气火力发电所产生的电力要便宜。据设在华盛顿的思想库世界观察研究所说,10 年来,全世界的风力发电量一直以每年25 %的平均速度递增,超过了任何其它的能源。

地热主要由地幔的岩浆作用或火山的运动而形成。地热的利用主要分为地热发电和直接利用两类。全球地质资料表明,世界上存在两大地热带。一是地中海——喜玛拉雅地热带,包括意大利、我国青藏高原、菲律宾、印度尼西亚,直到南太平洋的新西兰;另一个是环太平洋地热带,包括美国西海岸、冰岛、日本等地。目前,人类利用地热发电已达43756 GW·h/a,地热的直接利用36910 GW·h/a。但据估计人类利用地热发电的潜力可达12000 T W·h/a。

海洋能是指海洋本身所蕴藏的能量,它包括潮汐能、波浪能、海流能、温差能、盐差能和化学能。另外,科学家已经探明,海底埋藏着大量的甲烷,总储量估计是诸如石油和煤炭等其他矿物燃料总储量的2倍以上。作为有价值的气体能源,它既能直接燃烧提供热能,又能作为燃料电池的动力。如何安全经济的加以开发和利用海底甲烷将是又一新的研究课题。

20世纪30年代,随着对原子核研究的深入,人类发现了原子核内蕴藏着巨大的可开发能量,并致力于和平利用原子能的研究。经过半个多世纪的努力,迄今世界上已有30多个国家建成440多座核电站,其发电量占全球发电量的18%。与火电相比,核电是廉价、洁净、安全的能源。随着将来受控热核聚变的成功,核能必然成为未来的能源支柱。

生物质能指的是利用自然界的植物以及城乡有机废物转化成的能源。它们主要由碳氢化合物组成,也是一种可供人们利用的能源。

二 我国新能源开发利用的现状

我国自然资源总量排世界第七位,能源资源总量约4万亿吨标准煤,居世界第三位。

我国在能源领域面临的主要挑战是:

(1)人均能源资源占有量不足,且分布不均。(2)人均能源消费量低,单位产值的能耗高。(3)能源构成以煤为主。

(4)工业部门消耗能源占有很大的比重。

(5)农村能源短缺,以生物质能为主。

(6)从能源安全角度考虑,我国能源面临挑战。

(7)能源品种结构不合理,优质能源供应不足。

(8)能源工业技术水平有待进一步提高。

(9)节能提效工作亟待加强。中国《国家中长期科学和技术发展规划纲要(2006-2020年)》中,关于优先展新能源部分指出:“要重点研究开发大型风力发电设备,沿海与陆地风电场和西部风能资源密集区建设技术与装备,高性价比太阳光伏电池及利用技术,太阳能热发电技术,太阳能建筑一体化技术,生物质能和地热能等开发利用技术。

中国的风能资源十分丰富,储量约为32亿千瓦,可开发利用的风能约10亿千瓦,可开发的装机容量约2.53亿千瓦,风能资源居世界首位。.风力发电是中国增长最快的发电技术,仅2006年就使现有能力翻了一番。2007年,中国拥有4家主要的风力涡轮制造商,另有6家国外的子公司制造商,以及超过40公司开发和商业化生产风力涡轮。按照规划,到2020年中国将建MW级的风电机组2--3万台。

中国同样有着良好的太阳能利用条件,每年陆地接受的太阳辐射能相当于2.4万亿吨标准煤。中国对太阳能的开发利用已颇具规模:中国太阳能光伏生产能力已从2005年350兆瓦增加到2006年超过1000兆瓦,2007年约为1500兆瓦,几家中国公司拥有高效益的上市股票,有些价值数十亿美元,使全球对中国太阳能光伏产业刮目相看;太阳能热水系统的设置能力已从2000年3500万平方米提高到2006年底1亿平方米,仅2006年就增加了2000万平方米,太阳能热水器使用量稳居世界第一,中国一些公司现生产太阳能热水器成本为美国和欧洲的1/5~1/8。

生物质能资源,包括农作物秸秆、薪柴和各种有机废物,利用量约为2.6亿吨标准煤,占农村生活能源消费的70%,整个用能的50%。中国从农业途径产生的废弃物可望一年产生800亿立方米生物气体,高于政府到2020年年产生440亿立方米的目标。2006年,中国生物质发电能力约为2GW,大多数来自采用甘蔗废弃物为主要原料的热电组合(CHP)装置

我国新能源发电取得良好成绩。根据中电联公布的数据,我国2006年运行核电机组的装机容量685万千瓦,风力发电机组装机容量187万千瓦,同比增加76.7%。另据国家发改委统计,2006年全国在建秸秆发电项目总装机约120万千瓦,有三座总装机8万千瓦的秸秆发电站已投产。据此测算,包括核电、风电和生物质能发电在内的新能源占全部装机容量的1%。新能源发电装机容量上升,主要是受资源和环保的压力增加驱使。

但有统计显示,我国可再生能源资源量是每年73亿吨标准煤,开发量尚不足。目前除了小水电外,中国可再生能源发电成本远高于常规能源发电成本,如小水电发电成本约为煤的1.2倍,生物质发电成本为煤电的1.7倍,风力发电为煤电的1.7倍,光伏发电为煤电的11倍至18倍。成本偏高抑制了可再生能源市场,市场狭小又会给可再生能源的成本降低造成障碍。这种恶性循环,桎梏了可再生能源的产业化

近年来,我国可再生能源开发利用技术取得明显进展,已进入产业化发展阶段,再加上国内法规体系日臻完善,特别是2005年《可再生能源法》的颁布和施行,极大地调动了各方面发展可再生能源的积极性,大规模开发利用可再生能源的时机基本成熟。

在政策倾斜下,新能源产业化规模将不断扩大,具有规模优势及资源优势的新能源企业将有更大的发展空间。国家经贸委组织制定的《2000-2015年新能源与可再生能源产业发展规划要点》指出:中国今后将大力发展新能源和可再生能源,到2015年新能源和可再生能源年开发量将达到4,300万吨标煤。2015年新能源和可再生能源产业将成为国民经济的一个新兴行业,潜在市场价值约1,000亿元。

三 新能源开发利用的前景 石油等传统能源的枯竭预期以及环保的压力使得新能源业务的比较优势日益突出。从而也加大了市场参与主体对新能源业务的研究激情,这有利于发电成本的大幅下降,如此就有利于提振产业资本新能源投资的底气。

开发利用新能源是应对能源、环境挑战,促进经济可持续发展的重要战略举措。根据新能源发展战略研究专家预测,随着石油的世界性大量消耗,不久后全球将面临资源短缺的现实问题。从世界范围来看,新能源的综合利用今后会有更大的发展空间

当前经济危机不会影响新能源产业发展的总体趋势,面对全球能源危机和环境危机的双重压力,新能源在全球范围内的迅猛发展不可逆转。尽管经济危机对风力发电的发展速度产生比较严重的影响,但总体来讲利用包括风能和太阳能在内的新能源产业解决环境问题的总体战略不会改变。

结论:近年来,受石油价格上涨和全球气候变化的影响,新能源发展日益受国际社会的重视,许多国家提出了明确的发展目标,制定了支持新能源发展的法规和政策,使新能源技术水平不断提高,产业规模逐渐扩大,成为促进能源多样化和实现可持续发展的重要能源。从化石能源的资源有限性看,新能源主导社会发展只是迟早的事,或许石油紧缺加速了它的步伐,但决不是主要原因,因为新能源幻化成真是能源发展的大势。开发利用新能源和可再生能源是一项远有前景,近有实效的事业。但由于尚处在发展初期,同其它能源建设相比,需要政府给予更多的支持和相应的扶持政策。

参考文献:

[1] 王玉萍,赵媛.世界风电政策分析及对我国风电政策的建议[J]安徽农业科学, 2008,(01).[2] 刘助仁.新能源:缓解能源短缺和环境污染的新希望[J].科技与经济, 2008,(01).[3].周大地,韩文科主编.中国能源问题研究 [M].中国环境科学出版社, 2002.[4] 肖英.全球新能源技术发展:以技术垄断与技术扩散为视角[J]可再生能源, 2007,(04).[5] 张希良主编.风能开发利用 [M].化学工业出版社, 2005.[6] 张无敌,宋洪川,钱卫芳,秦素梅.我国生物质能源转换技术开发利用现状[J]能源研究与利用, 2000,(02).[7] 张政伟,吕子安,张英,徐旭常.能源与中国经济增长[J]工业技术经济, 2006,(01).

第四篇:物理化学实验课程总结

物理化学实验课程总结

化工11-2班 许锋

这学期的物理化学实验用到了很多实验仪器。其中不乏价格昂贵的电子仪器。当然,这是我们的学习机会,我们都在认真熟悉大型仪器的使用方法。每次做完实验后就会进行实验数据的处理。所以,我们一直在进行物理化学实验的操作和数据处理工作。

我们在操作中学习各种仪器的使用方法。我们在数据处理的过程中不断的提升自己学习的能力。物化实验对于我来说,就是学习专业知识最好的课程。当然,一学期的实验课我也不断努力,我每次实验都认真完成。我喜欢坚持自己的作品,就

算别人都已经做完,我也会不慌不忙,按步骤进行自己的操作。我不知道这是对是错,但我愿意坚持自己的东西,愿意得到自己最终的实验数据。

本学期的物理化学实验使我掌握了物理化学实验的的基本方法和技能。根据所学的内容设计实验,正确的选择和使用仪器。重要的是如何应用计算机软件进行数据深度分析(如excel绘图等)。这培养了我们正确的观察现象,记录数据以及分析式样的结果能力。也培养我们严肃认真.实事求是的科学态度。通过物理化学的实验加深和巩固了对所学的知识的理解,还提高了我们团队协作的能力。

在数据处理上,我经常上网找一些资料,比如下图的这些。我利用网上文库的资料进行数据的深度剖析,最终的到比较正确的结果。这也锻炼了我解决问题的能力。

除此之外,在实验课堂我也有不少趣事。我记得在做表面张力的时候实验打坏了一个大型的玻璃仪器。当时向老师报告了情况。实验室到现在都没有问我赔偿。所以,在内疚的同时,我只想在此表达我对实验室的遗憾。大一至今,我给实验室添了好几次麻烦。都是仪器的问题。这些仪器使我不断成长,让我不断理解实验的乐趣。碎了,裂了,但是我们也成长了。我会记得所有实验室的那些瓶瓶罐罐。

以上是我对物理化学实验的总结报告,我们将以饱满的热情进行以后的实验,我相信实验室才是化工班的基础。

第五篇:物理化学课程的学习方法

物理化学课程的学习方法

物理化学是一门研究物质性质及物质变化规律的基础理论课程,因此,凡是要促使物质发生变化,以转变为具有优良性质的产品的众多专业,如化工(包括制药)、材料、轻工、冶金等都把物理化生课程的学习放在十分重要的地位。

为了学好物理化学课程,每位初学者都应该根据自己的经验摸索出一套适合自身特点的学习方法。下面的建议可供同学学习时参考。

首先要联系实际进行思考,并努力运用所学理论解释及解决实际问题。物理化学的许多概念,中学已经学过,如热、功、热容、反应速率等概念,只不过中学学习中讲得粗浅一些,在物理化学中讲得更深刻一些,故理解时要与中学的概念相互衔接。

另外,初学者往往会感到物理化学的概念多,理论抽象,公式繁多,难以捉摸,难以记忆。其实这些概念、理论都是从客观实际中概括、归纳出来的,学习时如能联系生活的客观现象进行思考、推理,则不但不会觉得难懂,而且会感到生动有趣。物理化学是一门逻辑性很强的学科,必须勤于思考,认真推理才有可能学好。在学习过程中,要仔细阅读材料,动笔练习公式的推导,理清理论体系的主次关系,在理解的基础上加以记忆。另外,要多做习题,通过做习题找出自己概念模糊之处,同一概念往往需要需要经过多次反复学习,才能逐渐加深理解,切不可忙于对答案。另外,还应记住,数学史工具,书本应用大量的数学推导而得出在不同条件下使用的一些结论,数学的推导过程是让我们明白公式的由来,它只是获得结果的必要手段,而不是目的,故不要将精力放在繁杂的推导过程,而要注意结论的使用条件以及物理意义。除重要的公式及其推导过程,只要求理解而一般不要求强记。

为了帮助你准备考试,建议你要弄清楚书中黑体字所有术语的意义;记住一些基本公式;重做你过去感到困难的课后习题;为了增加训练,做一些未指定的习题或习题解答中的一些补充习题。

物理化学是理论与实验并重的学科,理论的发展离不开实验的启示和检验。物理化学实验方法往往是物理的方法,所用到的仪器较多,只能采用循环方式安排实验,课程进程与实验不一致时必然的,这就要求同学们在实验前充分预习,了解实验的目的是什么,它验证哪个公式或说明什么问题。做到实验前心中有数,试验后联系理论公式做好报告的处理。实验中要开动脑筋,积极是靠问题,动手解决问题,掌握好物理化学的基本实验技能。要知道,你的学习能力和理解能力是有限的,最好承认这个事实,即有些内容,可能是你永远不能充分理解的,没有人能对每样事都充分理解。即使是这方面的专家,也有一些问题是要进行研究和探讨的,甚至等待相当长的时间还是得不到解决。

下载物理化学课程教案word格式文档
下载物理化学课程教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    物理化学课程自我评价

    物理化学课程自我评价 1、本课程的主要特色及创新点 (1)强化促学手段,构建物理化学教学质量的全程控制体系 积极应对高等教育进入大众化时代后在人才培养目标上带来的变化,在课......

    物理化学课程总结(定稿)

    物理化学期末总结 在这一学期的学习中,我们主要学习到了物理化学中的电化学,量子力学,统计热力学,界面现象与化学动力学的一些基础知识,这其中我个人还有许多地方存在问题,包括一......

    物理化学课程教学基本要求

    一、 课程教学基本要求 1.课程重点: (1) 判断化学变化的方向和限度问题。主要让学生掌握热力学的三个基本定律。 (2) 掌握热力学基本定律在多组分体系、相平衡、化学平衡及电化学......

    《物理化学C》教案

    《物理化学C》教案 Physical chemistry 教案说明: 1.本教案内容参照邵光杰等主编《物理化学》(第三版,哈工大出版社,2009)确定。 2.本教案适用于无机材料、金属材料、材料物理、环......

    《物理化学实验》A课程教学大纲(修订)

    《物理化学实验》A课程教学大纲 (2008-1-14修订) 课程名称:Physical Chemistry Experiments & Techniques A 课程类型:学科基础课 学时:50 学分:2.5 适用对象:适用于普通高等院校......

    物理化学课程发展与建设规划

    物理化学课程发展与建设规划 (2008年1月~2010年12月) 盐城工学院物理化学课程隶属化学与生物工程学院基础化学课程组,承担学校化学与生物工程学院、材料工程学院、纺织服装学院......

    物理化学

    一、选择题1. 在蒸馏实验中,常在液体中投入一些沸石或一端封口的毛细管等多孔性物质,这样做是为了破坏哪一个亚稳状态?( C ) (A)过饱和溶液 (B)过冷液体(C)过热液体 (D)过饱和蒸气2.......

    物理化学

    数学物理,学好很容易 掌握规律,并熟练运用这些规律 很多学生反映数学和物理难学,不知道怎样提高数学和物理的成绩。 北京101网校专家认为,其实,数学和物理不是很难学,学习数学和物......