第一篇:六年级数学教学小方法
六年级数学教学小方法
我担任毕业班的数学教学工作已经三年了,每接一个新的班级时,了解和认识学生成为教学的首要任务,我需要了解学生的性格特征、知识水平、基础能力、学习状况等方面的差异,在平时教学中有的放矢,因材施教。例如:刚刚毕业的六一班,通过和孩子们接触,我发现大部分学生不愿动脑筋,思维不灵活,学习不积极,上课基本没人回答问题,注意力差,课堂上常被一些无关的刺激所吸引而转移注意力。针对这些情况,在教学中我的对策是:
一、低要求多训练。摸清学习相关准备知识,将指导要求放在他们努力下可以达到的水平上,使新旧知识产生联接,形成整体知识框架。在课堂上我注重让学生以训练为主,让学生勤动脑,多动笔。因为“数学,只有自己做出来了,才叫做真正会做了”。
二、设计问题有梯度,活动方式多样化。根据学生的生活实际,确定学生能达到的目标,把教学内容按由易到难,由简到繁的步骤分解成合理的层次,然后分层进行,使他们步步有进展,处于积极学习的状态,从而不断增强学习的自信心。针对他们基础知识水平的差异,我设计问题时由易到难,让大多数同学都有机会展示。针对他们有意注意时间短的特点,我首先开门见山的进行新课的教学,然后出示一些精心筛选的与本课新授内容紧密相关的练习,让学生进行练习,让学生达到讲练结合、学以致用的效果。针对他们不爱动脑筋,不爱回答问题的特点,在课堂活动中,师生活动交替进行,活动方式多样化,例如学习《自行车中的数学问题》时,我将自行车推上讲台,采用让学生动手操作,小组交流,发现规律等活动让学生积极参与到课堂上。这样不仅调节了他们的注意力,更重要的是学生大量参与学习活动,表现的机会多了,能力的发展也通过逐步积累而得到实现。
三、注意“三讲两不讲”:“三讲”即讲重点、难点;讲规律,拓展;讲易错,易漏,易混的知识点。“两不讲”即自学能会的不讲;讲了也不会的不讲。
四、培养学生养成良好的学习习惯
小学生在数学学习中,存在许多不良习惯。如一些学生写字潦草、添字、漏字、错字、漏掉数字或运算符号、点错小数点,常有发生。这些习惯都对学习造成不良的影响。我抓住每一个机会,不失时机地进行培养和训练。
作为一名青年教师我未来的工作之路任然任重而道远,我会让自己一如既往,让工作之花开在烂漫的春天。
第二篇:六年级数学小论文
我们生活中的数学
龙集九年制
房晓知
“数学来源于生活,也服务于生活。”下面是我的一些亲身经历,它都证明了这是条真理。
暑假期间,我和妈妈一起去苏果超市,妈妈说:“要有计划地把这些购物券用完,所以每买一件东西都要算一算用了多少钱”,当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。可是没走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑,我因此也就成为了妈妈的“小会计”,从而生生体会到数学知识在生活中的价值。
在我们的生活中还有许多平面图形和立体图形。我家的桌子的面是正方形,钟的面是圆形,我们用的三角板是三角形的…… 冰箱是长方体,门前的柱子是圆柱体……现在我已经学会了计算各种平面图形的面积,也学 了物体的表面积的体积的有关计算,还能灵活地运用,解决我们生活中的实际问题。
还是暑假期间,爸爸带我游泳馆,爸爸说:“小语,你现在已经上五年级了,看我们面前的这个游泳池,你知道这个池内贴瓷片的面积是多少吗?和它能容纳多少水吗?”我得意地说:“这个当然没有问题,需要知道它们的长、宽和高。首先,我来解决第一个问题,就是求它的5个面的总面积,就是用长×宽+(长×高+宽×高)×2,求出来的就是这个游泳池的贴瓷砖面积;第二个问题是求它的容积,但是现在还没学很快就会知道。”我讲得津津有味,似乎有点我们老师的味道,想着想着我就更加得意了。站在一旁的爸爸夸我讲得好,这时别提我有多高兴了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!老师常说数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
怎么样,数学是不是很重要? 所以,我要提醒你一定要学好数学哦!
第三篇:六年级数学小故事
六年级趣味数学小故事
①一天有个年轻人小毛来到王老板的店里买了一件礼物
这件礼物成本是18元,标价是21元。
结果是这个年轻人掏出100元要买这件礼物。
王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。
但是街坊後来发现那100元是假钞,王老板无奈还了街坊100元。现在问题是:王老板在这次交易中到底损失了多少钱?
第四篇:数学小论文六年级
浅论小学数学中的思维教学
张洪学校孙建华
我国思维科学的开拓者钱学森先生认为,人类思维可以分为三种:抽象(逻辑)思维、形象直感思维和灵 感(顿悟)思维。并建议把形象思维作为思维科学研究的突破口。什么是形象思维呢?所谓形象思维就是运用 头脑中积累起来的表象进行的思维。表象是我们以前知觉过的,而在头脑中再现的那些对象现象的映象。形象思维具有间接性和概括性的特点。形象思维同抽象思维一样,是认识的高级形式——理性认识。为什么要培养学生的形象思维能力呢?按照现代科学研究的最新成果,人的大脑左右两半球各有不同功能,左半球是语言中枢,主管语言和抽象思维,右半球主管音乐,绘画等形象思维材料的综合活动。两者相互配 合,相辅相成,相互促进,才能使个体得到和谐发展。
从儿童思维特点来看:小学生的思维是从具体形象思维为主要形式逐步向抽象逻辑思维过渡,但这时的逻 辑思维是初步的,且在很大程度上仍具有具体形象性。因此,培养学生的形象思维能力,既是儿童本身的需要,又是他们学习抽象数学知识的需要。那么在小学数学教学中,如何培养学生的形象思维能力呢?
一、充分感知,丰富表象,为培养形象思维积累材料.儿童能够敏锐感知鲜明的、富有色彩、色调和声音的形象,善于用形象色彩和声音触发思维。表象是形象 思维的细胞,形象思维要依靠表象来进行思维,要发展学生的形象思维,必须打好基础,丰富表象材料的积累。
1.动手操作,丰富表象 动手操作,使学生各种感官都参与到学习中来,从多方面,多角度观察事物。例如:教学余数概念,先让学生动手分小棒:
(1)9根小棒每2根为一份,可以分几份,还剩几根?(2)13根小棒,平均分给5 个人,每 个同学可以分几根,还剩几根?操作完毕,引导学生用语言表达操作过程,说说是怎样分小棒的,从而形成表 象,然后再让学生闭上眼睛,想想下面题目应该怎样分?①有7块饼干,每人分3块,可以分给几个人,还剩几 块?②有12支铅笔,平均分给5个人,每人可以分几支,还剩几支等。这样让学生在操作中思维,在思维中操作,理解了被除数是总数,除数和商分别是要分的份数和每份数,余数是不够一份而多出的数,余数要比除数小 的道理。在头脑中形成了正确清晰的表象,正确的思维才有牢固的基础。
2.直观演示,丰富表象 小学生无意注意占重要地位,任何新鲜事物的出现都会引发学生积极参与学习过程的兴趣。在教学过程中,用图片、教具或电教手段组织教学,把抽象知识形象化,让学生充分感知所学材料,有了定量的感性材料,才能在脑中留下鲜明的映象。例如:教学“长方体认识”,教师可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒……),通过感 知实物,学生对什么样的物体是长方体获得了初步的感性认识。在此基础上,教师再引导学生边观察模型,边 看书本,从不同的位置和方向认识长方体的六个面及相对的面的面积相等,十二条棱及互相平行的棱长相等的 特点;通过观察长方体的一个顶点和相交于这个顶点的三条棱长,认识长方体的长、宽、高;通过模型的平放、侧放、直立三种形态,来说明长、宽、高相对说来是固定不变的,把知识讲“活”,这样学生在动口、动脑 的学习过程中建立了清晰深刻的表象,为思维的理性化提供了条件。电教手段引入课堂,可变静为动,化近为远,并以它丰富多彩、灵活多样的教学形式,为学生提供反映思 维过程的演示,能充分调动学生的心理因素,取得较好的效果。例如:在教“求另一个加数的减法应用题”时,通过幻灯片的演示,使学生形象地理解总数与部分的关系,即总数-部分=另一部分。教学中,要利用各种教学手段,让学生充分感知,在脑中建立清晰的数学表象,为提高学生的数学想象力 积累素材。
二、引导想象,发展形象思维 现代认知心理学认为,表象不但可以储存,而且可以对储存的表象痕迹(信息)进行加工改组,形成新的 表象,即想象表象,它也是进行形象思维的重要方式。所以,教师要善于创设课堂教学中的问题情景,如图示 情景、语言情景,激发学生参与探索的欲望,充分发挥学生丰富的想象力。如:教完梯形知识后,可引导学生想象:“当梯形的一个底逐渐缩短,直到为0,梯形会变成什么形?当梯 形短底延长,直到与另一底边相等时,它又变成什么形?”借助表象,能有机地把看上去似乎无联系的三角形、平行四边形、梯形结合起来。还可以根据梯形面积公式记忆三角形和平行四边形的面积公式: S[梯形]=1/2(a+b)h当a=0时,变成三角形,面积公式为:S=1/2ah 当a=b时,变成平行四边形,面积公式为:S=ah.三、数形结合,培养形象思维能力数学是研究现实世界中数量关系和空间形式的学科,从总的来说,数学是数与形结合的学科。不同类型的 数学图形,提供了大脑形象思维的表象材料,调动了右脑思维的积极性和主动性,提高了形象思维能力,促进 了个体左右脑的协调发展,使人变得更聪明。例如:课本中配合应用题的具体情节而设计的插图,开阔了学生形象思维的天地,增强了刻苦学习的意志。又如课本中出示的例题和复习题,表示数量关系时,运用了绚丽色彩和各种小动物、植物、大河、山川,现 代的飞机、汽车、轮船、卫星、建筑,古代的文物、书籍……这些不仅对理解数量关系有利,而且对学生形象 思维能力的发展和审美能力的提高起着重要的作用。再说应用题教学,由于应用题是事理、文理、算理三者的结合,所以应用题的原型比较复杂抽象,学生摄 入大脑后难以形成清晰的表象。如果采用数形结合的方法画出线段图,便可帮助学生建立正确的表象,使隐蔽复杂的数量关系变得明朗。例如:“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6,小新储蓄的是小华 的2/3,小新储蓄了多少元?”这题学生往往难以确立单位“1”的量。教学时,可引导学生画出如下线段图 来分析数量关系: 根据线段图,同学可以很快列出算式:18×5/6×2/3-10(元)所以说线段图具有半抽象半具体的特点,它既能舍弃应用题的具体情节,又能形象地揭示条件与条件、条 件与问题之间的关系,把数转化为形,明确显示出已知与未知的内在联系,激活学生的解题思路。这里线段图 的运用、数与形的结合,较好地激发了学生的再造性想象,不仅发展了学生的形象思维,而且实现了形象思维 与抽象思维的互补。
浅论小学数学中的思维教学
孙
建
华
中卫市沙坡头区宣和镇张洪学校
第五篇:六年级数学小论文
认识圆周率“π”
学习了六年级数学上册《圆》这一单元,我认识了一个新概念——圆周率。圆周率就是圆的周长和直经的比,是个与圆的大小无关的常数,并称之为.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之“圆周”的第一个字母,而δ是“直径”的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.π是一个非常重要的常数.一位德国数学家评论道:“历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志.”古今中外很多数学家都孜孜不倦地寻求过π值的计算方法.公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.141
6.公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取“内接”不取“外切”.利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得“约率” 和“密率”(又称祖率)得到3.1415926<π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜.15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录.1579年法国韦达发现了关系式...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式.1650年瓦里斯把π表示成元穷乘积的形式 稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式.1671年,苏格兰数学家格列哥里发现了 1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法.1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取 ,则该式化简为 1794年勒让德证明了π是无理数,即不可能用两个整数的比表示.1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根.本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字.人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……