第一篇:九年级数学 直线和圆的位置关系 教案人教版
直线和圆的位置关系
一、教材分析、教材的地位和作用。
圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用.2、教学目标:
根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:
(1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
b、根据定义来判断直线和圆的位置关系,会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。2)能力目标:
让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。3)情感目标:
在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。
3.教材的重点难点
直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
4.在教学中如何突破这个重点和难点
解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。
在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。
(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公
共点,它与有一个公共点的含义不同)。
(4)突破直线和圆的位置关系的(如果圆O的半径为r,圆心到直线的距离为d,1,直线l与圆 O相交
<=> d 2,直线l与圆 O相切 <=> d=r 3,直线l与圆 O相离 <=> d>r(上述结论中的符号“<=> ”读作“等价于”) 式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。 二、学情分析 根据初三学生活泼好动好奇心和求知欲都非常强,并且在初一,初二基础上初三学生有一定的分析力,归纳力和根据他们的特点,联系生活实际中结合问题结合本节课适合学生的学习材料注重激发学生的求知欲让他们真正理解这节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。通过直线与圆的相对运动,揭示直线与圆的位置关系,培养学生运动变化的辨证唯物主义观点;通过对研究过程的反思,进一步强化对分类和化归思想的认识。 三、教法设计 复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。 1,学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形在学生回答的基础上,教师通过多媒体演示圆与直线的三种位置关系。 2,进一步让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。 3,强调公共点的唯一性。给出定义时,尽可能地有学生来概括和叙述,有利于提高学生的语言表达能力。 4,有利于新旧知识的联系,培养学生的迁移能力,掌握用定量研究来解决问题的方法。在学生回答问题的基础上,教师打出直线和圆的位置关系以及它们的数量特征。 5,通过直线到圆的距离d和半径r这两个数量之间的关系来研究直线和圆的位置关系。这样很好的体现数形结合的思想,使较为复杂的问题能简单化。 6,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。 四、学法指导 复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。 学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。 五、教学程序 创设情境------导入新课------新授-------巩固练习-----学生质疑------学生小结------布置作业 [提问] 通过观察、演示,你知道直线和圆有几种位置关系? [讨论] 一轮红日从海平面升起的照片 [新授] 给出相交、相切、相离的定义。 [类比] 复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。 [巩固练习] 例1,出示例题 例1 在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有什么样的位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm 由学生填写下例表格。直线和圆的位置关系 公共点个数 圆心到直线距离d与半径r关系 公共点名称 直线名称 图形 补充练习的答案由师生一起归纳填写 教学小结 直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。 本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。 六,板书设计: 课题:直线和圆的位置关系 一,复习点与圆的位置关系 二,直线与圆的位置关系 1,相交、相切、相离的定义。2,直线与圆的位置关系的性质定理。3,直线与圆的位置关系的判定方法。 例1: 三,课堂练习四,小结 九年级数学《直线和圆的位置关系》教案 今天我说课的内容是人教版九年级上册第二十四章第二节《直线和圆的位置关系》(第一课时).下面我从教材分析、教学方法和手段、教学过程的设计、版面设计四个方面进行阐述: 一、教材分析: 1、教学内容:本节课主要学习(1)直线和圆相交、相切、相离的有关概念(2)直线和圆三种位置关系的判定与性质(3)相关应用。 2、教材的地位和作用:直线和圆的位置关系是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作了铺垫.起着承上启下的作用. 3、教学目标:根据课程标准的要求和本节教材的特点,结合九年级学生已有的认知的基础、空间观念和逻辑思维能力,我确定如下目标:(1)知识目标: a、理解直线和圆相交、相切、相离的有关概念 b、直线和圆三种位置关系的判定与性质 c、能运用以上知识解决相关问题 (2)能力目标:渗透类比、转化、数形结合的数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和看图能力。(3)德育目标:在用运动的观点揭示直线和圆位置关系的过程中向学生渗透世界上的一切事物都是变化着的辩证唯物主义观点。 4、重点和难点: 本节课的教学重点是:直线和圆的位置关系的判定和性质。本节课的难点是直线和圆的三种位置关系的性质与判定的应用。 二、教学方法和手段 本节课我采用了自主探究、合作交流相结合的教学方法,并适时利用多媒体电化教学手段. 三、教学过程的设计: 1、复习提问:(一分钟)点和圆的位置关系有几种?点到圆心的距离与半径的有怎样的大小关系? 2、创设情景,引出课题:(两分钟) 课件展示清晨一轮红日离开海平面喷薄而出的画面,引导学生通过观察抽象出数学图形并进行描述,揭示直线和圆存在着不同的位置关系导入新课。 3、实验观察,总结归纳:(五分钟)让学生在练习本上画一个圆,把直尺当作直线,移动直尺,观察直线和圆的位置,然后我用课件演示直线和圆的相对运动,并指导学生从直线和圆公共点的个数来区分,得出了直线和圆的三种位置关系。4、诱导思维、自主探究:(十分钟)类比点和圆的位置关系的性质和判定,引导学生探索由直线和圆的位置关系性质和判定.首让学生画出直线和圆的三种位置关系(画三个图形),分别画出半径,做出圆心到直线的垂线段,设这个距离为d,圆的半径为r,比较d与r的大小,然后进行小组交流,由学生代表总结性质和判定,最后我通过演示课件让学生体会到由位置关系可以确定数量关系,反过来,知道数量关系也可以确定位置关系,这样做既能拓展学生思维空间,又能调动学生思维的积极性。 5、及时反馈,巩固所学:(十五分钟)为了及时巩固直线和圆三种位置关系的判定和性质,首先我出示了两道填空、两道选择基础训练题,这也是以上基础知识的基础应用,通过练习,加深对所学知识的理解,从中体会由“形”归纳“数”,由“数”判断“形”,加强了数形转化能力的培养,渗透了数形结合的思想,同时也增强了学生对性质与判定的辨认。然后课件展示例1和例2,学生通过探究解答之后,师生共同规范解题过程,并进行解题反思:在解题过程中你为什么要添加辅助线?解决此题的关键是什么?从而加强本节课知识点应用的针对性,然后进行例题变式:给位置关系确定r的范围.这样不但巩固了学生对性质的应用,而且突出了重点,有效的突破了难点,同时也培养了学生的逆向思维能力。 6、反馈矫正、强化训练:(十分钟) 练习题的设计体现面向全体,分类推进的教学思想。在课堂上,我是这样安排的,让两名学生演板,其余的学生做在练习本上,教师巡视并适时的点拨和指导,等学生做完后,我针对学生出现的错误进行辩析纠错,最大限度的克服教与学的负积累。 7、课堂小结,布置作业(两分钟) 课堂小结主要由学生完成,教师适时进行重点强调:直线和圆的位置关系可由它们的公共点的个数来区分,也可用圆心到直线的距离与圆的半径的大小来区分,它们是一致的,在实际的应用中常采用第二种方法。 四、版面设计: 本节课的版面我主要是以课件的形式体现的,内容包括直线和圆的位置关系的图形、定义以及判定和性质的框架。这样使本节内容条理化、系统化,实现了重点突出、图文并茂。 《直线和圆的位置关系》教学反思 本节课的教学,我认为成功之处有以下几点: 1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。 2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。 3.本着学习----总结----再学习的思维教学模式,让学生逐步理解知识掌握知识能够很好的应用知识。 同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:1.学生观察得到直线和圆的三种位置关系后,我设计的是直接给出定义可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。 2.本节课中扩展应用环节图形给的不是很明确,如果能给出精确的图形那么学生会容易一些。 3.由于前边时间有些过长,所以小结部分有些仓促。 第31课 直线和圆的位置关系 知识点: 直线和圆的位置关系、切线的判定和性质、三角形的内切圆 大纲要求: 1.掌握直线和圆的位置关系的性质和判定; 2.掌握判定直线和圆相切的三种方法并能应用它们解决有关问题:(1)直线和圆有唯一公共点;(2)d=R;(3)切线的判定定理(应用判定定理是满足一是过半径外端,二是与这半径垂直的二个条件才可判定是圆的切线) 3.掌握圆的切线性质并能综合运用切线判定定理和性质定理解决有关问题:(1)切线与圆只有一个公共点;(2)圆心到切线距离等于半径;(3)圆的切线垂直于过切点的半径;(4)经过圆心且垂直于切线的直线必过切点;(5)经过切点且垂直于切线的直线必过圆心;(6)切线长定理。 4.注意:(1)当已知圆的切线时,切点的位置一般是确定的,在写条件时应说明直线和圆相切于哪一点,辅助线是作出过确定的半径;当证明直线是圆的切线时,如果已知直线过圆上某一点则可作出这一点的半径证明直线垂直于该半径;即为“连半径证垂直得切线”;若已知条件中未明确给出直线和圆有公共点时,则应过圆心作直线的垂线,证明圆心到直线的距离等于半径,即为:“作垂直证半径得切线”。(2)见到切线要想到它垂直于过切点的半径;若过切点有垂线则必过圆心;过切点有弦,则想到弦切角定理,想到圆心角、圆周角性质,可再联想同圆或等圆弧弦弦心距等的性质应用。(3)任意三角形有且只有一个内切圆,圆心为这个三角形内角平分线的交点。考查重点与常用题型: 1.判断基求概念,基本定理等的证误。在中考题中常以选择填空的形式考查形式对基本概念基求定理的正确理解,如:已知命题:(1)三点确定一个圆;(2)垂直于半径的直线是圆的切线;(3)对角线垂直且相等的四边形是正万形;(4)正多边形都是中心对称图形;(5)对角线相等的梯形是等腰梯形,其中错误的命题有()(A)2个(B)3个(C)4个(D)5个 2.证明直线是圆的切线。证明直线是圆的切线在各省市中考题中多见,重点考查切线的判断定理及其它圆的一些知识。证明直线是圆的切线可通过两种途径证明。 3.论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重点考查了金等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识。 考点训练: 1.如图⊙O切AC于B,AB=OB=3,BC=3,则∠AOC的度数为()(A)90 °(B)105°(C)75°(D)60° 2.O是⊿ABC的内心,∠BOC为130°,则∠A的度数为() (A)130°(B)60°(C)70°(D)80° 3.下列图形中一定有内切圆的四边形是() (A)梯形(B)菱形(C)矩形(D)平行四边形 4.PA、PB分别切⊙O于A、B,∠APB=60°,PA=10,则⊙O半径长为() 10(A)3(B)5(C)10 3(D)53 35.圆外切等腰梯形的腰长为a,则梯形的中位线长为 解题指导: 1. 如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。 2. 如图,AB是⊙O直径,DE切⊙O于C,AD⊥DE,BE⊥DE,求证:以C为圆心,CD为半径的圆C和AB相切。 独立训练: 1. 已知点M到直线L的距离是3cm,若⊙M与L相切。则⊙M的直径是 ;若⊙M的半径是3.5cm,则⊙M与L的位置关系是 ;若⊙M的直径是5cm,则⊙M与L的位置是 。2. RtΔABC中,∠C=90°,AC=6,BC=8,则斜边上的高线等于 ;若以C为圆心作与AB相切的圆,则该圆的半径为r= ;若以C为圆心,以5为半径作圆,则该圆与AB的位置关系是。 3. 设⊙O的半径为r,点⊙O到直线L的距离是d,若⊙O与L至少有一个公共点,则r与d之间关系是。 4. 已知⊙O的直径是15 cm,若直线L与圆心的距离分别是①15 cm;②③7.5 cm;③5 cm那么直线与圆的位置关系分别是 ; 。 5. 已知:等腰梯形ABCD外切于为⊙O,AD∥BC,若AD=4,BC=6,AB=5,则⊙O的半径的长为。 6. 已知:PA、PB切⊙O于A、B,C是弧AB上一点,过点C的切线DE交PA于D,交PB于E,ΔPDE 周长为。 7. 已知:PB是⊙O的切线,B为切点,OP交⊙O于点A,BC⊥OP,垂足为C,OA=6 cm,OP=8 cm,则AC的长为 cm。 8. 已知:ΔABC内接于⊙O,P、B、C在一直线上,且PA2=PB•PC,求证:PA是⊙O的切线。 《直线与圆的位置关系》教案 教学目标: 根据学过的直线与圆的位置关系的知识,组织学生对编出的有关题目进行讨论.讨论中引导学生体会 (1)如何从解决过的问题中生发出新问题.(2)新问题的解决方案与原有旧方法之间的联系与区别.通过编解题的过程,使学生基本了解、把握有关直线与圆的位置关系的知识可解决的基本问题,并初步体验数学问题变化、发展的过程,探索其解法.重点及难点: 从学生所编出的具体问题出发,适时适度地引导学生关注问题发展及解决的一般策略.教学过程 一、引入: 1、判断直线与圆的位置关系的基本方法: (1)圆心到直线的距离 (2)判别式法 2、回顾予留问题: 要求学生由学过知识编出有关直线与圆位置关系的新题目,并考虑下面问题: (1)为何这样编题.(2)能否解决自编题目.(3)分析解题方法及步骤与已学过的基本方法、步骤的联系与区别.二、探讨过程: 教师引导学生要注重的几个基本问题: 1、位置关系判定方法与求曲线方程问题的结合.2、位置关系判定方法与函数或不等式的结合.3、将圆变为相关曲线.备选题 1、求过点P(-3,-2)且与圆x2+y2+2x-4y+1=0相切的直线方程.备选题 2、已知P(x, y)为圆(x+2)2+y2=1上任意一点,求(1)(2)2x+3y=b的取值范围.备选题 3、实数k取何值时,直线L:y=kx+2k-1与曲线: y=两个公共点;没有公共点.三、小结: 1、问题变化、发展的一些常见方法,如: (1)变常数为常数,改系数.(2)变曲线整体为部分.有一个公共点;=m的最大、最小值.(3)变定曲线为动曲线.2、理解与体会解决问题的一般策略,重视“新”与“旧”的联系与区别,并注意哪些可化归为“旧”的方法去解决.自编题目: 下面是四中学生在课堂上自己编的题目,这些题目由学生自己亲自编的或是自学中从课外书上找来的题目,这些题目都与本节课内容有关.①已知圆方程为(x-a)2+(y-b)2=r2,P(x0, y0)是圆外一点,求过P点的圆的两切线的夹角如何计算? ②P(x0, y0)是圆x2+(y-1)2=1上一点,求x0+y0+c≥0中c的范围.③圆过A点(4,1),且与y=x相切,求切线方程.④直线x+2y-3=0与x2+y2+x-2ay+a=0相交于A、B两点,且OA⊥OB,求圆方程? ⑤P是x2+y2=25上一点,A(5,5),B(2,4),求|AP|2+|BP|2最小值.⑥圆方程x2+y2=4,直线过点(-3,-1),且与圆相交分得弦长为3∶1,求直线方程.⑦圆方程x2+y2=9,x-y+m=0,弦长为 2,求m.⑧圆O(x-a)2+(y-b)2=r2,P(x0, y0)圆一点,求过P点弦长最短的直线方程? ⑨求y=的最值.圆锥曲线的定义及其应用 [教学内容] 圆锥曲线的定义及其应用。 [教学目标] 通过本课的教学,让学生较深刻地了解三种圆锥的定义是对圆锥曲线本质的刻画,它决定了曲线的形状和几何性质,因此在圆锥曲线的应用中,定义本身就是最重要的性质。 1.利用圆锥曲线的定义,确定点与圆锥曲线位置关系的表达式,体现用二元不等式表示平面区域的研究方法。 2.根据圆锥曲线定义建立焦半径的表达式求解有关问题,培养寻求联系定义的能力。 3.探讨使用圆锥曲线定义,用几何法作出过圆锥曲线上一点的切线,激发学生探索的兴趣。 4.掌握用定义判断圆锥曲线类型及求解与圆锥曲线相关的动点轨迹,提高学生分析、识别曲线,解决问题的综合能力。 [教学重点] 寻找所解问题与圆锥曲线定义的联系。 [教学过程] 一、回顾圆锥曲线定义,确定点、直线(切线)与曲线的位置关系。 1.由定义确定的圆锥曲线标准方程。 2.点与圆锥曲线的位置关系。 3.过圆锥曲线上一点作切线的几何画法。 二、圆锥曲线定义在焦半径、焦点弦等问题中的应用。 例1.设椭圆+=1(a>b>0),F1、F2是其左、右焦点,P(x0, y0)是椭圆上任意一点。 (1)写出|PF1|、|PF2|的表达式,求|PF1|、|PF1|·|PF2|的最大最小值及对应的P点位置。 (2)过F1作不与x轴重合的直线L,判断椭圆上是否存在两个不同的点关于L对称。 (3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是椭圆上三点,且x1, x2, x3成等差,求证|PF1|、|PF2|、|PF3|成等差。 (4)若∠F1PF2=2,求证:ΔPF1F2的面积S=btg (5)当a=2, b=最小值。 时,定点A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的2例2.已知双曲线-=1,F1、F2是其左、右焦点。 (1)设P(x0, y0)是双曲线上一点,求|PF1|、|PF2|的表达式。 (2)设P(x0, y0)在双曲线右支上,求证以|PF1|为直径的圆必与实轴为直径的圆内切。 (3)当b=1时,椭圆求ΔQF1F2的面积。 +y=1 恰与双曲线有共同的焦点,Q是两曲线的一个公共点,2例3.已知AB是过抛物线y=2px(p>0)焦点的弦,A(x1, y1), B(x2, y2)、F为焦点,求证: (1)以|AB|为直径的圆必与抛物线的准线相切。 (2)|AB|=x1+x2+p (3)若弦CD长4p, 则CD弦中点到y轴的最小距离为 2(4)+为定值。 (5)当p=2时,|AF|+|BF|=|AF|·|BF| 三、利用定义判断曲线类型,确定动点轨迹。 例4.判断方程=1表示的曲线类型。 例5.以点F(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为B,点P是BF的中点,求动点P的轨迹方程。 备用题:双曲线实轴平行x轴,离心率e=,它的左分支经过圆x+y+4x-10y+20=0的2 2圆心M,双曲线左焦点在此圆上,求双曲线右顶点的轨迹方程。第二篇:九年级数学《直线和圆的位置关系》说课稿
第三篇:初中九年级数学直线和圆的位置关系教学反思
第四篇:初中数学复习教案直线和圆的位置关系
第五篇:直线与圆的位置关系教案