第一篇:2.3高中数学教案
、直线和平面垂直的判定与性质
(二)一、素质教育目标
(一)知识教学点
1.直线和平面垂直的性质定理. 2.点到平面的距离. 3.直线和平面的距离.
(二)能力训练点
1.掌握直线和平面垂直的性质定理,并能应用它们灵活解题. 2.掌握用反证法证明命题.
(三)德育渗透点
通过例题2的学习向学生渗透转化的思想和化归的解题意识.
二、教学重点、难点、疑点及解决方法 1.教学重点:
(1)掌握直线和平面垂直的性质定理: 若a⊥α,b⊥α,则a∥b.
(2)掌握点到平面的距离及一条直线和一个平面平行时这条直线和平面的距离的定义.
2.教学难点:性质定理证明中反证法的学习和掌握,应让学生明确,对于一些条件简单而结论复杂的命题,可考虑使用反证法.
3.教学疑点:设计一个综合题,引导学生思考点到平面的距离和直线到平面的距离问题的互化.
三、课时安排
本课题共安排2课时,本节课为、五、教学步骤
(一)温故知新,引入课题
师:上节课,我们学习了直线和平面垂直的定义和判定定理,请两个同学来叙述一下定义和判定定理的内容.
生(甲):一条直线和平面内的任何一条直线都垂直,我们说这两条直线和这个平面互相垂直.
生(乙):直线和平面垂直的判定定理是:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
(板书如右)
师:利用判定定理我们还证明了线线平行的性质定理(即例题1),也请一个同学叙述一下.
生(丙):如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.
(板书)若a∥b,a⊥α则b⊥α.
师:这个用黑体字写成的例题可以当作直线和平面垂直的又一个判定定理,现在请同学们改变这个定理的题设和结论,写出它的逆命题.
生:若a⊥α,b⊥α,则a∥b. 师:下面就让我们看看这个命题是否正确?
、(二)猜想推测,激发兴趣
教师写出已知条件并画出图形,作探讨性证明 已知:a⊥α,b⊥α(如图1-73)求证:a∥b.
分析:a、b是空间中的两条直线,要证明它们互相平行,一般先证明它们共面,然后转化为平面几何中的平行判定问题,但这个命题的条件比较简单,想说明a、b共面就很困难了,更何况还要证明平行.
我们能否从另一个角度来证明,比如,a、b不平行会有什么矛盾?这就是我们提到过的反证法.
师:您知道用反证法证明命题的一般步骤吗? 生:否定结论→推出矛盾→肯定结论
师:、经过同一点O的两条直线b,b′都垂直于平面α是不可能的. 因此,a∥b. 由此,我们得到:
如果两条直线同垂直于一个平面,那么这两条直线平行. 师:这就是直线和平面垂直的性质定理;
师:学习了直线与平面垂直的判定定理和性质定理,我们再来看看点到平面的距离的定义:
从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.
(四)初步运用,提高能力 1.例题2
已知:一条直线l和一个平面α平行.求证:直线l上各点到平面α的距离相等.
分析:首先,我们应该明确,点到平面的距离定义,在直线l上任意取两点A、B,并过这两点作平面α的垂线段,现在只要证明这两条垂线段长相等即可.
证明:过直线l上任意两点A、B分别引平面α的垂线AA1、BB1,垂足分别为A1、B1
∵ AA1⊥α,BB1⊥α,∴ AA1∥BB1(直线与平面垂直的性质定理). 设经过直线AA1和BB1的平面为β,β∩α=A1B1.
、∵ l∥α,∴ l∥A1B1.
∴ AA1=BB1(直线与平面平行的性质定理)即直线上各点到平面的距离相等. 师:我们再来学习直线和平面的距离的定义:
一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.
师:本例题的证明,实际上是把立体几何中直线上的点到平面的距离问题转化成平面几何中两条平行直线的距离问题.这种把立体几何的问题转化成平面几何的问题的方法,是解决立体几何问题时常常用到的方法.
2.思考
安装日光灯时,怎样才能使灯管和天棚、地板平行? 生:只要两条吊线等长. 师:转化为数学模型是,如图1-76已知:直线l上A、B两点到平面α的距离相等,求证:l∥α.
师:本题仿照例题2方法很容易证明,但以下的论述却是假命题,你知道是为什么吗?
直线l上A、B两点到平面α的距离相等,那么l∥α.
3.如图1-77,已知E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在平面.
、(1)求证:EF⊥平面GMC.
(2)若AB=4,GC=2,求点B到平面EFG的距离.
分析:、六、布置作业
已知矩形ABCD的边长AB=6cm,BC=4cm,在CD上截取CE=4cm,以BE为棱将矩形折起,使△BC′E的高C′F⊥平面ABED,求:
(1)点C′到平面ABED的距离;(2)C′到边AB的距离;(3)C′到AD的距离. 参考答案:
(1)作FH⊥AB于H,作FG⊥AD于G,则C′H⊥AB,
第二篇:高中数学教案
高中数学教案
高中数学教案1
1.教学目标
(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.
(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2.教学重点.难点
(1)教学重点:圆的标准方程的求法及其应用.
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题.
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)
将x=2.7代入,得 .
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?
答:x2 y2=r2
2.如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为 ①
把①式两边平方,得(x―a)2 (y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在 ,半径为 ;
(3)经过点 ,圆心在点 .
2.根据圆的方程写出圆心和半径
(1) ; (2) .
ii.灵活应用(提升能力)
问题四:1.求以 为圆心,并且和直线 相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆.
2.已知圆的方程为 ,求过圆上一点 的切线方程.
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是 ,经过圆上一点 的切线的方程是: .
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.
3.求圆x2 y2=13过点(-2,3)的切线方程.
4.已知圆的方程为 ,求过点 的切线方程.
高中数学教案2
教学目标
(1)了解算法的含义,体会算法思想。
(2)会用自然语言和数学语言描述简单具体问题的算法;
(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。
教学重难点
重点:算法的含义、解二元一次方程组的算法设计。
难点:把自然语言转化为算法语言。
情境导入
电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:
第一步:观察、等待目标出现(用望远镜或瞄准镜);
第二步:瞄准目标;
第三步:计算(或估测)风速、距离、空气湿度、空气密度;
第四步:根据第三步的结果修正弹着点;
第五步:开枪;
第六步:迅速转移(或隐蔽)
以上这种完成狙击任务的方法、步骤在数学上我们叫算法。
课堂探究
预习提升
1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。
2、描述方式
自然语言、数学语言、形式语言(算法语言)、框图。
3、算法的要求
(1)写出的算法,必须能解决一类问题,且能重复使用;
(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。
4、算法的特征
(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。
(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。
(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。
(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。
(5)不唯一性:解决同一问题的算法可以是不唯一的
课堂典例讲练
命题方向1对算法意义的理解
例1、下列叙述中,
①植树需要运苗、挖坑、栽苗、浇水这些步骤;
②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;
③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;
④3x>x+1;
⑤求所有能被3整除的正数,即3,6,9,12。
能称为算法的个数为()
A、2
B、3
C、4
D、5
【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。
【答案】B
[规律总结]
1、正确理解算法的概念及其特点是解决问题的关键、
2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、
【变式训练】下列对算法的理解不正确的是________
①一个算法应包含有限的步骤,而不能是无限的
②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤
③算法中的每一步都应当有效地执行,并得到确定的结果
④一个问题只能设计出一个算法
【解析】由算法的有限性指包含的步骤是有限的故①正确;
由算法的明确性是指每一步都是确定的故②正确;
由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;
由对于同一个问题可以有不同的算法故④不正确。
【答案】④
命题方向2解方程(组)的算法
例2、给出求解方程组的一个算法。
[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、
[规范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程组可化为
第二步,解方程③,可得y=-1,④
第三步,将④代入①,可得2x-1=7,x=4
第四步,输出4,-1
方法二:算法如下:
第一步,由①式可以得到y=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,输出4,-1
[规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。
2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。
【变式训练】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命题方向3筛选问题的算法设计
例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、
[思路分析]比较a,b比较m与c―→最小数
[规范解答]算法步骤如下:
1、比较a与b的大小,若a
2、比较m与c的大小,若m
[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。
【变式训练】在下列数字序列中,写出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一个数m,m=21;
2、将m与89比较,是否相等,如果相等,则搜索到89;
3、如果m与89不相等,则往下执行;
4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。
命题方向4非数值性问题的算法
例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。
(1)设计安全渡河的算法;
(2)思考每一步算法所遵循的共同原则是什么?
高中数学教案3
教学目标:
1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进
学生全面认识数学的科学价值、应用价值和文化价值。
2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:
如何建立实际问题的目标函数是教学的重点与难点。
教学过程:
一、问题情境
问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?
问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?
问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?
二、新课引入
导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。几何方面的应用(面积和体积等的最值)。
2。物理方面的应用(功和功率等最值)。
3。经济学方面的应用(利润方面最值)。
三、知识建构
例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
说明1解应用题一般有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极
值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才
能使所用的材料最省?
变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?
说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:
S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。
例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为
多大时,才能使电功率最大?最大电功率是多少?
说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。
例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。
例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。
(1)设,生产多少单位产品时,边际成本最低?
(2)设,产品的单价,怎样的定价可使利润最大?
四、课堂练习
1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。
2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。
3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?
4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。
五、回顾反思
(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。
(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。
(3)相当多有关最值的实际问题用导数方法解决较简单。
六、课外作业
课本第38页第1,2,3,4题。
高中数学教案4
教学目标:
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.
2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.
教学重点:
复数的几何意义,复数加减法的几何意义.
教学难点:
复数加减法的几何意义.
教学过程:
一 、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.
四、数学应用
例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.
练习课本P123练习第3,4题(口答).
思考
1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?
2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?
3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.
4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.
例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.
思考 任意两个复数都可以比较大小吗?
例4 设z∈C,满足下列条件的点Z的集合是什么图形?
(1)│z│=2;(2)2<│z│<3.
变式:课本P124习题3.3第6题.
五、要点归纳与方法小结
本节课学习了以下内容:
1.复数的几何意义.
2.复数加减法的几何意义.
3.数形结合的思想方法.
高中数学教案5
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
五、作业:
略
高中数学教案6
一、自我介绍
我姓x,是你们的数学老师,因为是数学老师所以在自我介绍的时候喜欢给出自己的数字特征,也是希望通过这些方式能拓宽与大家交流的平台,希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者。
二、相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。
(一)为什么要学习数学
相信高一的第一节课是各位科任老师各显神通的时候,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字说明问题。大家知道北大最的院系是什么系吗?早在蔡元培先生任北大校长时,就列数学系为北大第一系,这种传统一直保持到现在。为什么数学系在高校中有如此重要的地位?课本主编寄语是这样描述的:数学是有用的,数学有助于提高能力。
数学家华罗庚在《人民日报》精彩描述了数学在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”等方面无处不有重要贡献。
问题1:大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的?
海王星的发现是在数学计算过程中发现的,天文望远镜的观测只是验证了人们的推论。
18,法国人布瓦德在计算天王星的运动轨道时,发现理论计算值同观测资料发生了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一个未知的引力的存在相关。也就是说有一个未知的天体作用于天王星。1846年9月23日。柏林天文台收到来自法国巴黎的一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座8星东约5度的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新的8等星。又过了-天,再次找到了这颗8等星,它的位置比前一天后退了70角秒。这与勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建议,按天文学惯例,用神话里的名字把这颗星命名为“海王星”。
1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测和计算,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,“冥王星是大行星”早已被写入教科书,以后也就将错就错了。经过多年的争论,国际天文学联合会通过投票表决做出最终决定,取消冥王星的行星资格。8月24日据国际天文学联合会宣布,冥王星将被排除在行星行列之外,从而太阳系行星的数量将由九颗减为八颗。事实上,位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。
马克思说:“一种科学只有在成功运用数学时,才算达到了真正完善的地步。”正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问题。
其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。
问题2:徒认为上帝是万能的。你们认为呢?如何来证明你的结论呢?(让同学发言)
我的观点:上帝不是万能的。为什么呢?仔细听我讲来。
证明:(反证法)假如上帝是万能的
那么他能够制作出一块无论什么力量都搬不动的石头
根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头
这与“无论什么力量都搬不动的石头”相矛盾
所以假设不成立
所以上帝不是万能的。问题3:抓阄对个人来说公平吗?5张票中有一张奖票,那么先抽还是后抽对个人还说公平吗?
当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:“读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明…”,也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。
故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,“我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。”国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。
人们通常凭借自己掌握的数学知识耍些小聪明,使问题妙不可言。
数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。
数学思想:退到最简单、最特殊的`地方。
故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展-圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就德育不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?
渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。
学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造……
(二)如何学好数学
高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。同时要注意以下几点:
第一:对数学学科特点有清楚的认识
主编寄语里是这样描述数学的特征的:数学是自然的。数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是“想当然”的话,那就学不下去了。
第二:要改变一个观念。
有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。过去的几年里我分别带过五十一中和一中的学生,两边学生的课堂感觉差不多,应该说接受能力不相上下,有的时候我会选择在五十一中开公开课,因为课堂气氛活跃、轻松,但是成绩差异却是很大,原因在于我们同学外课自主时间的投入太少,学习习惯不太好。
第三:学数学要摸索自己的学习方法
学习、掌握并能灵活应用数学的途径有千万条,每个人都可以有与众不同的数学学习方法。做习题、用数学解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。此外,还要发挥问题的作用,学会提问,热心帮助别人解决问题,用自己的问题和别人的问题带动自己的学习。同时,注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。
第四:养成良好的学习习惯(与一中学生相比较)
㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。
㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。
㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。我的办公室在二楼二号,欢迎大家前来交流
㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。
好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。
高中数学教案7
教学目标:
1、理解并掌握曲线在某一点处的切线的概念;
2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;
3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化
问题的能力及数形结合思想。
教学重点:
理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。
教学难点:
用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。
教学过程:
一、问题情境
1、问题情境。
如何精确地刻画曲线上某一点处的变化趋势呢?
如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。
如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。
因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。
2、探究活动。
如图所示,直线l1,l2为经过曲线上一点P的两条直线,
(1)试判断哪一条直线在点P附近更加逼近曲线;
(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?
(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?
二、建构数学
切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。
思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
三、数学运用
例1 试求在点(2,4)处的切线斜率。
解法一 分析:设P(2,4),Q(xQ,f(xQ)),
则割线PQ的斜率为:
当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;
当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。
从而曲线f(x)=x2在点(2,4)处的切线斜率为4。
解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。
练习试求在x=1处的切线斜率。
解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。
小结 求曲线上一点处的切线斜率的一般步骤:
(1)找到定点P的坐标,设出动点Q的坐标;
(2)求出割线PQ的斜率;
(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。
思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
解 设
所以,当无限趋近于0时,无限趋近于点处的切线的斜率。
变式训练
1。已知,求曲线在处的切线斜率和切线方程;
2。已知,求曲线在处的切线斜率和切线方程;
3。已知,求曲线在处的切线斜率和切线方程。
课堂练习
已知,求曲线在处的切线斜率和切线方程。
四、回顾小结
1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。
2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。
五、课外作业
高中数学教案8
一.教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二.目标分析:
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
三.教法分析
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
四.过程分析
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,
高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合A的元素,就说a属于集合A,记作a?A.
如果a不是集合A的元素,就说a不属于集合A,记作a?A.
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合A?{x?N|1?x?8}
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
五.板书分析
高中数学教案9
各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。
下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
(二)教学内容
本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
二、教学目标分析
根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:
知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。
能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。
情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。
三、重难点分析
一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。
要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学——建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。
五、课堂设计
本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
(一)创设情景,引出“三个一次”的关系
本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。
为此,我设计了以下几个问题:
1、请同学们解以下方程和不等式:
①2x-7=0;②2x-70;③2x-70
学生回答,我板书。
2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。
3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。
4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:
①2x-7=0的解恰是函数y=2x-7的图象与x轴
交点的横坐标。
②2x-70的解集正是函数y=2x-7的图象
在x轴的上方的点的横坐标的集合。
③2x-70的解集正是函数y=2x-7的图象
在x轴的下方的点的横坐标的集合。
三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。
(二)比旧悟新,引出“三个二次”的关系
为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。
看函数y=x2-x-6的图象并说出:
①方程x2-x-6=0的解是
x=-2或x=3 ;
②不等式x2-x-60的解集是
{x|x-2,或x3};
③不等式x2-x-60的解集是
{x|-23}。
此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。
学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?
(三)归纳提炼,得出“三个二次”的关系
1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。
2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)
(四)应用新知,熟练掌握一元二次不等式的解集
借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:
例1、解不等式2x2-3x-20
解:因为Δ0,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。
下面我们接着学习课本例2。
例2 解不等式-3x2+6x2
课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。
通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。
4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。
(五)总结
解一元二次不等式的“四部曲”:
(1)把二次项的系数化为正数
(2)计算判别式Δ
(3)解对应的一元二次方程
(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集
(六)作业布置
为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。
(1)必做题:习题1.5的1、3题
(2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。
(七)板书设计
一元二次不等式解法(1)
五、教学效果评价
本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。
高中数学教案10
教学目标
1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.
教学建议
教材分析
(1)知识结构
映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是映射和一一映射概念的形成与认识.
①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;
映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案
2.1映射
教学目标(1)了解映射的概念,象与原象及一一映射的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过映射概念的学习,逐步提高学生的探究能力.
教学重点难点::映射概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
一、引入
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.
二、新课
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)
高中数学教案11
(一)教学具准备
直尺,投影仪.
(二)教学目标
1.掌握,的定义域、值域、最值、单调区间.
2.会求含有、的三角式的定义域.
(三)教学过程
1.设置情境
研究函数就是要讨论一些性质,,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.
2.探索研究
师:同学们回想一下,研究一个函数常要研究它的哪些性质?
生:定义域、值域,单调性、奇偶性、等等.
师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.)
师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.
师:请同学思考以下几个问题:
(1)正弦、余弦函数的定义域是什么?
(2)正弦、余弦函数的值域是什么?
(3)他们最值情况如何?
(4)他们的正负值区间如何分?
(5)的解集如何?
师生一起归纳得出:
(1)正弦函数、余弦函数的定义域都是.
(2)正弦函数、余弦函数的值域都是即,,称为正弦函数、余弦函数的有界性.
(3)取最大值、最小值情况:
正弦函数,当时,函数值取最大值1,当时,()函数值取最小值-1.
余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.
(4)正负值区间:
()
(5)零点:()
()
3.例题分析
【例1】求下列函数的定义域、值域:
(1);(2);(3).
解:(1),
(2)由()
又∵,∴
∴定义域为(),值域为.
(3)由(),又由
∴
∴定义域为(),值域为.
指出:求值域应注意用到或有界性的条件.
【例2】求下列函数的最大值,并求出最大值时的集合:
(1),;(2),;
(3)(4).
解:(1)当,即()时,取得最大值
∴函数的最大值为2,取最大值时的集合为.
(2)当时,即()时,取得最大值.
∴函数的最大值为1,取最大值时的集合为.
(3)若,,此时函数为常数函数.
若时,∴时,即()时,函数取最大值,
∴时函数的最大值为,取最大值时的集合为.
(4)若,则当时,函数取得最大值.
若,则,此时函数为常数函数.
若,当时,函数取得最大值.
∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.
指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.
思考:此例若改为求最小值,结果如何?
【例3】要使下列各式有意义应满足什么条件?
(1);(2).
解:(1)由,
∴当时,式子有意义.
(2)由,即
∴当时,式子有意义.
4.演练反馈(投影)
(1)函数,的简图是()
(2)函数的最大值和最小值分别为()
A.2,-2 B.4,0 C.2,0 D.4,-4
(3)函数的最小值是()
A.B.-2 C.D.
(4)如果与同时有意义,则的取值范围应为()
A.B.C.D.或
(5)与都是增函数的区间是()
A.,B.,
C.,D.,
(6)函数的定义域________,值域________,时的集合为_________.
参考答案:1.B 2.B 3.A 4.C 5.D
6.;;
5.总结提炼
(1),的定义域均为.
(2)、的值域都是
(3)有界性:
(4)最大值或最小值都存在,且取得极值的集合为无限集.
(5)正负敬意及零点,从图上一目了然.
(6)单调区间也可以从图上看出.
(四)板书设计
1.定义域
2.值域
3.最值
4.正负区间
5.零点
例1
例2
例3
课堂练习
课后思考题:求函数的最大值和最小值及取最值时的集合
提示:
高中数学教案12
=
=425a0b0=425.
点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数。
(3)5-26+7-43-6-42
=(3-2)2+(2-3)2-(2-2)2
=3-2+2-3-2+2=0.
点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用。
例3已知,n∈正整数集,求(x+1+x2)n的值。
活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,与具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示。
= 。
这时应看到1+x2=,
这样先算出1+x2,再算出1+x2,代入即可。
解:将代入1+x2,得1+x2=,
所以(x+1+x2)n=
=
= =5.
点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法。
知能训练
课本习题2.1A组3.
利用投影仪投射下列补充练习:
1、化简:的结果是()
A. B.
C. D.
解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形。
因为,所以原式的分子分母同乘以。
依次类推,所以。
答案:A
2、计算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.
解:原式=
=53+100+916-3+13+716=100.
3、计算a+2a-1+a-2a-1(a≥1)。
解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1)。
本题可以继续向下做,去掉绝对值,作为思考留作课下练习。
4、设a>0,,则(x+1+x2)n的值为__________.
解析:1+x2= 。
这样先算出1+x2,再算出1+x2,
将代入1+x2,得1+x2= 。
所以(x+1+x2)n=
= =a.
答案:a
拓展提升
参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂的意义。
活动:教师引导学生回顾无理数指数幂的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算的过剩近似值和不足近似值,利用逼近思想,“逼出”的意义,学生合作交流,在投影仪上展示自己的探究结果。
解:3=1.732 050 80…,取它的过剩近似值和不足近似值如下表。
3的过剩近似值
的过剩近似值
3的不足近似值
的不足近似值
1.8 3.482 202 253 1.7 3.249 009 585
1.74 3.340 351 678 1.73 3.317 278 183
1.733 3.324 183 446 1.731 3.319 578 342
1.732 1 3.322 110 36 1.731 9 3.321 649 849
1.732 06 3.322 018 252 1.732 04 3.321 972 2
1.732 051 3.321 997 529 1.732 049 3.321 992 923
1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838
1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045
… … … …
我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数
21.7,21.72,21.731,21.731 9,…,
同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数:
21.8,21.74,21.733,21.732 1,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为,
即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8.
也就是说是一个实数,=3.321 997 …也可以这样解释:
当3的过剩近似值从大于3的方向逼近3时,23的近似值从大于的方向逼近;
当3的不足近似值从小于3的方向逼近3时,23的近似值从小于的方向逼近。
所以就是一串有理指数幂21.7,21.73,21.731,21.731 9,…,和另一串有理指数幂21.8,21.74,21.733,21.732 1,…,按上述规律变化的结果,即≈3.321 997.
课堂小结
(1)无理指数幂的意义。
一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数。
(2)实数指数幂的运算性质:
对任意的实数r,s,均有下面的运算性质:
①ar?as=ar+s(a>0,r,s∈R)。
②(ar)s=ars(a>0,r,s∈R)。
③(a?b)r=arbr(a>0,b>0,r∈R)。
(3)逼近的思想,体会无限接近的含义。
作业
课本习题2.1 B组2.
设计感想
无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力。
备课资料
【备用习题】
1、以下各式中成立且结果为最简根式的是()
A.a?5a3a?10a7=10a4
B.3xy2(xy)2=y?3x2
C.a2bb3aab3=8a7b15
D.(35-125)3=5+125125-235?125
答案:B
2、对于a>0,r,s∈Q,以下运算中正确的是()
A.ar?as=ars B.(ar)s=ars
C.abr=ar?bs D.arbs=(ab)r+s
答案:B
3、式子x-2x-1=x-2x-1成立当且仅当()
A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2
解析:方法一:
要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.
若x≥2,则式子x-2x-1=x-2x-1成立。
故选D.
方法二:
对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-1<0时式子不成立。
对B,x-1<0时式子不成立。
对C,x<1时x-1无意义。
对D正确。
答案:D
4、化简b-(2b-1)(1
解:b-(2b-1)=(b-1)2=b-1(1
5、计算32+5+32-5.
解:令x=32+5+32-5,
两边立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.
∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.
∴32+5+32-5=1.
高中数学教案13
教学目的:掌握圆的标准方程,并能解决与之有关的问题
教学重点:圆的标准方程及有关运用
教学难点:标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:⒈说出下列圆的方程
⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3
⒉指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判断3x-4y-10=0和x2+y2=4的位置关系
⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高中数学教案14
1.1.1 任意角
教学目标
(一) 知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
(二) 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
(三) 情感与态度目标
1. 提高学生的推理能力;
2.培养学生应用意识. 教学重点
任意角概念的理解;区间角的集合的书写. 教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类: A
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度?
2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +
k·360° ,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z
⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.
例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
4.课堂小结
①角的定义;
②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5;
②教材P5练习第1-5题;
③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,
解:??角属于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<
各是第几象限角?
<k·180°+135°(k∈Z) .
<n·360°+135°(n∈Z) ,
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,
属于第二象限角
<n·360°+315°(n∈Z) ,
当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,
属于第四象限角
因此
属于第二或第四象限角.
1.1.2弧度制
(一)
教学目标
(二) 知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
(三) 过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
(四) 情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引 入:
由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定 义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳: 弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝对值|α|= .
4.角度与弧度之间的转换:
①将角度化为弧度:
②将弧度化为角度:
5.常规写法:
① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.
② 弧度与角度不能混用.
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.计算:
(1)sin4
(2)tan1.5.
8.课后作业:
①阅读教材P6 –P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
高中数学教案15
三维目标:
1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
2、过程与方法:
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
教学方法:
讲练结合法
教学用具:
多媒体
课时安排:
1课时
教学过程:
一、问题情境
假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?
二、探究新知
1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、
2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
下列抽样的方式是否属于简单随机抽样?为什么?
(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
(3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)
3、常用的简单随机抽样方法有:
(1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。
分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的号码所对应的n个个体作为样本。
(2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;
继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
三、课堂练习
四、课堂小结
1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
2、简单随机抽样的方法:抽签法随机数表法
五、课后作业
P57练习1、2
六、板书设计
1、统计的有关概念
2、简单随机抽样的概念
3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法
4、课堂练习
第三篇:高中数学教案
我是来自理科组的数学老师周桂宇,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》。首先我们先初步了解下高一数学整体的情况,从量上看,高一数学任务很重,高一上学期我们将要学,必修一全部内容,必修四第一章,高一下学期学必修四剩下内容,必修五全部内容,必修二其中几章;从质上看,好多同学才一接触到高一数学就觉得很难,难度并不在于知识点的深度和综合能力,而在于从初中相对具体形象的数学学习一下进入高中抽象的,与生活似乎关系不大的学习,很多同学表现出非常大不适应。因此,如果觉得高一数学“难”,复习的重点,应当放在分析为什么自己觉得学习过的知识点“难”上。
难点一:抽象函数
F(x)规则的含义虽然看起来简单,但如果理解不深刻,对于后面的解题有很大的影响。
难点二:三角函数
这一部分的重点是一定要从初中锐角三角函数的定义中跳出来。题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的“统一论”,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。关键是,一定要多做题。
难点三:向量部分 ,这部分其实是这学期最简单的部分。简单的原因是,以前从来没有学过,初次接触,考试不会太难。这部分的复习也最为轻松——围绕向量的几何表示,代数表示和坐标表示理解向量的各种运算法则。
难点四:综合题型 压轴题基本上,都是以函数一章作为最核心的知识载体,中间掺杂向量和三角的运算。解决这样的题目,方法几乎是固定的,那就是首先利用抽象函数性质,将带有f的条件化为不带有f的条件,然后利用三角与向量的运算化简或证明。非压轴题出题方法可能更自由,但是综合性往往没有太强,仍然属于各个板块内的综合。
对于本次课我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正
一、教材分析
函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标: 知识与技能 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法; 过程与方法 引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
情感态度与价值观 在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度. 根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.
二、教法学法
为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.
三、教学过程
函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.
(一)创设情境,提出问题
(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:
[教师活动]引导学生观察图象,提出问题:
问题1:说出气温在哪些时段内是逐步升高的或下降的?
问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?
[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.
(二)探究发现 建构概念
[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.
[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)= 4”这一情形进行描述.引导学生回答:对于自变量8<10,对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.
在学生对于单调增函数的特征有一定直观认识时,进一步提出:
问题3:对于任意的t1、t2∈[4,16]时,当t1< t2时,是否都有f(t1) [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述. [教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当 时,都有 ”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出: 问题4: 类比单调增函数概念,你能给出单调减函数的概念吗? 最后完成单调性和单调区间概念的整体表述. 2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢? [教师活动]问题6:证明 [学生活动]步骤:取值 在区间(0,+ ∞)上是单调减函数. 作差变形 定号 判断. [设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究. (四)回顾反思深化概念 [教师活动]给出一组题: 1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R上的单调增函数还是单调减函数? 2、若定义在R上的单调减函数f(x)满足f(1+a) [学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置: (1)阅读课本P34-35例2 四、教学评价 学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础 高中数学 必修1 第一章 集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章 基本初等函数(Ⅰ) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章 函数的应用 3.1 函数与方程 3.2 函数模型及其应用 必修2 第一章 空间几何体 1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积 第二章 点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质 第三章 直线与方程 3.1 直线的倾斜角与斜率 3.2 直线的方程 3.3 直线的交点坐标与距离公式 第四章 圆与方程 4.1 圆的方程 4.2 直线、圆的位置关系 4.3 空间直角坐标系 必修3 第一章 算法初步 1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 阅读与思考 割圆术 第二章 统计 2.1 随机抽样 阅读与思考 一个著名的案例 阅读与思考 广告中数据的可靠性 阅读与思考 如何得到敏感性问题的诚实反应 2.2 用样本估计总体 阅读与思考 生产过程中的质量控制图 2.3 变量间的相关关系 阅读与思考 相关关系的强与弱 第三章 概率 3.1 随机事件的概率 阅读与思考 天气变化的认识过程 3.2 古典概型 3.3 几何概型 必修4 第一章 三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin(ωx+ψ) 1.6 三角函数模型的简单应用 第二章平面向量 2.1平面向量的实际背景及基本概念 2.2平面向量的线性运算 2.3平面向量的基本定理及坐标表示 2.4平面向量的数量积 2.5平面向量应用举例 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变换 必修5 第一章 解三角形 1.1 正弦定理和余弦定理 探究与发现 解三角形的进一步讨论 1.2 应用举例 阅读与思考 海伦和秦九韶 1.3 实习作业 第二章 数列 2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列 阅读与思考 估计根号下2的值 2.2 等差数列 2.3 等差数列的前n项和 2.4 等比数列 2.5 等比数列前n项和 阅读与思考 九连环 探究与发现 购房中的数学 第三章 不等式 3.1 不等关系与不等式 3.2 一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿 信息技术应用 用Excel解线性规划问题举例 3.4 基本不等式 选修1-1 第一章 常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 第二章 圆锥曲线与方程 2.1 椭圆 探究与发现 为什么截口曲线是椭圆 信息技术应用 用《几何画板》探究点的轨迹:椭圆 2.2 双曲线 2.3 抛物线 阅读与思考 圆锥曲线的光学性质及其应用 第三章 导数及其应用 3.1 变化率与导数 3.2 导数的计算 探究与发现 牛顿法──用导数方法求方程的近似解 3.3 导数在研究函数中的应用 信息技术应用 图形技术与函数性质 3.4 生活中的优化问题举例 实习作业 走进微积分 选修1-2 第一章 统计案例 1.1 回归分析的基本思想及其初步应用 1.2 独立性检验的基本思想及其初步应用 第二章 推理与证明 2.1 合情推理与演绎证明 阅读与思考 科学发现中的推理 2.2 直接证明与间接证明 第三章 数系的扩充与复数的引入 3.1 数系的扩充和复数的概念 3.2 复数代数形式的四则运算 第四章 框图 4.1 流程图 4.2 结构图 信息技术应用 用Word2002绘制流程图 数学 选修2-1 第一章 常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 第二章 圆锥曲线与方程 2.1 曲线与方程 2.2 椭圆 探究与发现 为什么截口曲线是椭圆 信息技术应用 用《几何画板》探究点的轨迹:椭圆 2.3 双曲线 探究与发现 2.4 抛物线 探究与发现 阅读与思考 第三章 空间向量与立体几何 3.1 空间向量及其运算 阅读与思考 向量概念的推广与应用 3.2 立体几何中的向量方法 选修 2-2 第一章 导数及其应用 1.1 变化率与导数 1.2 导数的计算 第三章 统计案例 3.1 回归分析的基本思想及其初步应用 3.2 独立性检验的基本思想及其初步应用 选修3-1 第一讲 早期的算术与几何 一 古埃及的数学 二 两河流域的数学 1.3 导数在研究函数中的应用 三 1.4 生活中的优化问题举例 第二讲 1.5 定积分的概念 一 1.6 微积分基本定理 二 1.7 定积分的简单应用 三 第二章 推理与证明 四 2.1 合情推理与演绎推理 第三讲 2.2 直接证明与间接证明 一 2.3 数学归纳法 二 第三章 数系的扩充与复数的引入 三 3.1 数系的扩充和复数的概念 四 3.2 复数代数形式的四则运算 第四讲 一 选修2-3 二 第一章 计数原理 三 1.1 分类加法计数原理与分步乘法计数 四 原理 第五讲 探究与发现 子集的个数有多少 一 1.2 排列与组合 二 探究与发现 组合数的两个性质 三 1.3 二项式定理 第六讲 探究与发现 “杨辉三角”中的一些 一 秘密 二 第二章 随机变量及其分布 第七讲 2.1 离散型随机变量及其分布列 一 2.2 二项分布及其应用 二 探究与发现 服从二项分布的随机变 三 量取何值时概率最大 四 2.3 离散型随机变量的均值与方差 第八讲 2.4 正态分布 一 信息技术应用 μ,σ对正态分布的影 二 响 三 丰富多彩的记数制度 古希腊数学 希腊数学的先行者 毕达哥拉斯学派 欧几里得与《原本》 数学之神──阿基米德 中国古代数学瑰宝 《周髀算经》与赵爽弦图 《九章算术》 大衍求一术 中国古代数学家 平面解析几何的产生 坐标思想的早期萌芽 笛卡儿坐标系 费马的解析几何思想 解析几何的进一步发展 微积分的诞生 微积分产生的历史背景 科学巨人牛顿的工作 莱布尼茨的“微积分” 近代数学两巨星 分析的化身──欧拉 数学王子──高斯 千古谜题 三次、四次方程求根公式的发现 高次方程可解性问题的解决 伽罗瓦与群论 古希腊三大几何问题的解决 对无穷的深入思考 古代的无穷观念 无穷集合论的创立 集合论的进一步发展与完善 第九讲 中国现代数学的开拓与发展 一 中国现代数学发展概观 二 人民的数学家──华罗庚 三 当代几何大师──陈省身 选修3-3 引言 第一讲 从欧氏几何看球面 一平面与球面的位置关系 二 直线与球面的位置关系和球幂定理 三 球面的对称性 第二讲 球面上的距离和角 一 球面上的距离 二 球面上的角 思考题 第三讲 球面上的基本图形 一 极与赤道 二 球面二角形 三 球面三角形 1.球面三角形 2.三面角 3.对顶三角形 4.球极三角形 思考题 第四讲 球面三角形 一 球面三角形三边之间的关系 二、球面“等腰”三角形 三 球面三角形的周长 四 球面三角形的内角和 思考题 第五讲 球面三角形的全等 1.“边边边”(s.s.s)判定定理 2.“边角边”(s.a.s.)判定定理 3.“角边角”(a.s.a.)判定定理 4.“角角角”(a.a.a.)判定定理 思考题 第六讲 球面多边形与欧拉公式 一 球面多边形及其内角和公式 二 简单多面体的欧拉公式 三 用球面多边形的内角和公式证明欧 拉公式 思考题 第七讲 球面三角形的边角关系 一 球面上的正弦定理和余弦定理 二 用向量方法证明球面上的余弦定理 1.向量的向量积 2.球面上余弦定理的向量证明 三 从球面上的正弦定理看球面与平面 四 球面上余弦定理的应用──求地球上两城市间的距离 思考题 第八讲 欧氏几何与非欧几何 一平面几何与球面几何的比较 二 欧氏平行公理与非欧几何模型──庞加莱模型 三 欧氏几何与非欧几何的意义 阅读与思考 非欧几何简史 选修3-4 引言 第一讲平面图形的对称群 一平面刚体运动 1.平面刚体运动的定义 2.平面刚体运动的性质 思考题 二 对称变换 1.对称变换的定义 2.正多边形的对称变换 3.对称变换的合成4.对称变换的性质 5.对称变换的逆变换 思考题 三平面图形的对称群 思考题 第二讲 代数学中的对称与抽象群的概念 一 n元对称群Sn 思考题 二 多项式的对称变换 思考题 三 抽象群的概念 1.群的一般概念 2.直积 思考题 第三讲 对称与群的故事 一 带饰和面饰 思考题 二 化学分子的对称群 三 晶体的分类 四 伽罗瓦理论 选修4-1 第一讲 相似三角形的判定及有关性质 一平行线等分线段定理 二平行线分线段成比例定理 三 相似三角形的判定及性质 1.相似三角形的判定 2.相似三角形的性质 四 直角三角形的射影定理 第二讲 直线与圆的位置关系 一 圆周角定理 二 圆内接四边形的性质与判定定理 三 圆的切线的性质及判定定理 四 弦切角的性质 五 与圆有关的比例线段 第三讲 圆锥曲线性质的探讨 一平行射影 二平面与圆柱面的截线 三平面与圆锥面的截线 选修 4-2 引言 第一讲 线性变换与二阶矩阵 一 线性变换与二阶矩阵 (一)几类特殊线性变换及其二阶矩阵 1.旋转变换 2.反射变换 3.伸缩变换 4.投影变换 5.切变变换 (二)变换、矩阵的相等 二 二阶矩阵与平面向量的乘法 (二)一些重要线性变换对单位正方形区域的作用 第二讲 变换的复合与二阶矩阵的乘法 一 复合变换与二阶矩阵的乘法 二 矩阵乘法的性质 第三讲 逆变换与逆矩阵 一 逆变换与逆矩阵 1.逆变换与逆矩阵 2.逆矩阵的性质 二 二阶行列式与逆矩阵 三 逆矩阵与二元一次方程组 1.二元一次方程组的矩阵形式 2.逆矩阵与二元一次方程组 第四讲 变换的不变量与矩阵的特征向量 一 变换的不变量——矩阵的特征向量 1.特征值与特征向量 2.特征值与特征向量的计算 二 特征向量的应用 1.Aa的简单表示 2.特征向量在实际问题中的应用 学习总结报告 选修4-4 引言 第一讲 坐标系 一平面直角坐标系 二 极坐标系 三 简单曲线的极坐标方程 四 柱坐标系与球坐标系简介 第二讲 参数方程 一 曲线的参数方程 二 圆锥曲线的参数方程 三 直线的参数方程 四 渐开线与摆线 学习总结报告 选修4-5 引言 第一讲 不等式和绝对值不等式 一 不等式 1.不等式的基本性质 2.基本不等式 3.三个正数的算术-几何平均不等式 第四讲 数伦在密码中的应用 二 绝对值不等式 1.绝对值三角不等式 2.绝对值不等式的解法 第二讲 讲明不等式的基本方法 一 比较法 二 综合法与分析法 三 反证法与放缩法 第三讲 柯西不等式与排序不等式 一 二维形式柯西不等式 二 一般形式的柯西不等式 三 排序不等式 第四讲 数学归纳法证明不等式 一 数学归纳法 二 用数学归纳法证明不等式 学习总结报告 选修4-6 引言 第一讲 整数的整除 一 整除 1.整除的概念和性质 2.带余除法 3.素数及其判别法 二 最大公因数与最小公倍数 1.最大公因数 2.最小公倍数 三 算术基本定理 第二讲 同余与同余方程 一 同余 1.同余的概念 2.同余的性质 二 剩余类及其运算 三 费马小定理和欧拉定理 四 一次同余方程 五 拉格朗日插值法和孙子定理 六 弃九验算法 第三讲 一次不定方程 一 二元一次不定方程 二 二元一次不定方程的特解 三 多元一次不定方程 一 信息的加密与去密 二 大数分解和公开密钥 学习总结报告 附录一 剩余系和欧拉函数 附录二 多项式的整除性 选修4-7 引言 第一讲 优选法 一 什么叫优选法 二 单峰函数 三 黄金分割法——0.618法 1.黄金分割常数 2.黄金分割法——0.618法 阅读与思考 黄金分割研究简史 四 分数法 1.分数法 阅读与思考 斐波那契数列和黄金分割 2.分数法的最优性 五 其他几种常用的优越法 1.对分法 2.盲人爬山法 3.分批试验法 4.多峰的情形 六 多因素方法 1.纵横对折法和从好点出发法 2.平行线法 3.双因素盲人爬山法 第二讲 试验设计初步 一 正交试验设计法 1.正交表 2.正交试验设计 3.试验结果的分析 4.正交表的特性 二 正交试验的应用 学习总结报告 附录一 附录二 附录三 选修4-9 引言 第一讲 风险与决策的基本概念 一 风险与决策的关系 二 风险与决策的基本概念 1.风险(平均损失) 2.平均收益 3.损益矩阵 4.风险型决策 探究与发现 风险相差不大时该如何决策 第二讲 决策树方法 第三讲 风险型决策的敏感性分析 第四讲 马尔可夫型决策简介 一 马尔可夫链简介 1.马尔可夫性与马尔可夫链 2.转移概率与转移概率矩阵 二 马尔可夫型决策简介 三 长期准则下的马尔可夫型决策理论 1.马尔可夫链的平稳分布 2.平稳分布与马尔可夫型决策的长期准则 3.平稳准则的应用案例 学习总结报告 附录 高中数学教案全集 第三章教案090801 戴亨钊 张青春 一、考纲要求: 1.事件与概率 (1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。 (2)了解两个互斥事件的概率加法公式。2.古典概型 (1)理解古典概型及其概率计算公式。 (2)会计算一些随机事件所包含的基本事件数及事件发生的概率。3.随机数与几何概型 (1)了解随机数的意义,能运用模拟方法估计概率。(2)了解几何概型的意义。 二、命题趋势 由于概率统计知识与实际生活密切相关,预计在以后的高考题中将越来越受重视,除以传统的选择题,填空题出现外,解答题也会出现。在实际应用于求概率等问题,主要考查学生的动手能力,分析能力及对基础知识的运用能力。 高考中本章试题难度不大,但考试遇到新题时大多数同学觉得很困难,所以,平时应该把常见的各种题型都练习到,各种类型的解法都掌握住,考试时以不变应万变。 (1)以中低难度为主,在复习中主要以基础知识的内容为主,不应做偏题,难题。(2)把古典概型和几何概型作为复习的重点。 (3)应注意培养自身利用概率知识对实际问题进行分析的能力。 三、基础知识,点式突破 知识点1 随机现象(1)随机现象 ① 必然现象:在一定条件下必然发生的现象。如“地球每天绕太阳转动”为必然现象。② 随机现象:在一定条件下多次观察同一现象,每次观察到的结果不一定相同。如“某射击运动员每一次射击命中的环数”为随机现象。 (2)实验及实验结果 为了探索随机现象的规律性,需要对随机现象进行观察,我们把观察随机现象或为了某种目的而进行的实验统称为实验。把观察结果或实验结果称为实验结果。 (3)随机试验 条件每实现一次,叫做进行一次实验,如果实验结果事先无法确定,并且可以重复进行,这种实验就叫做随机实验。如“从盛有3个排球,2个足球的框子里任取一球,取得排球的事件中,取出一球(不管是排球还是足球)就是一次实验。若把5个球全部取出,则做了5次试验。 知识点2 事件与基本事件空间 (1)必然事件:我们把在条件S下,一定会发的事件,叫做相对于条件S的必然事件。简称必然事件。 比如,“导体通电时发热”,“抛一石块,下落”等都是必然事件。 (2)不可能事件:在条件S下,一定不会发生的事件,叫做相对于条S的不可能事件,简称不可能事件。必然“在标准大气压下温度低于0冰融化”,在常温常压下,铁融化“等都是不可能事件。 (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件,简称确定事件。(4)随机事件:在条件S下可能发生也可能不发生的事件的随机事件,简称随机事件。比如:“李强射击一次,不中靶”,“掷一枚银币出现反面”都是随机事件。 注意:要搞清楚随机现象和随机事件之间的关系。随机现象是随机事件产生的原因,随机事件是随机现象的可能结果,是随机现象的反映。 (5)事件及其表示方法:确定事件和随机事件称为事件,一般用大写字母A,B,C表示。(6)基本事件:在试验中不能再分的最简单的随机事件,其他事件可以用他们来表示,这样的事件称为基本事件。 (7)基本事件空间:所有基本事件构成的集合称为基本事件空间,基本事件空间常用表示 知识点3 频率与概率 1.频率与概率 (1)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=率 (2)概率及其记法:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。 (3)频率与概率的区别与联系 ① 频率本身是随机的,在试验前不能确定。做同样次数的重复试验得到事件的频率会不同。 ② 概率是一个确定的数,与每次试验无关。是用来度量事件发生可能性大小的量。③ 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。2随机事件的概率P(A)的范围 对于任何事件的概率的范围是:0≤P(A)≤1 其中不可能事件的概率是P(A)=0,必然事件的概率是P(A)=1 不可能事件与必然事件是一般事件的特殊情况 知识点4 概率的加法公式(1)互斥事件 ① 定义:不可能同时发生的两个事件即事件A发生,事件B不发生;事件B发生,事件A不发生叫做互斥事件(或称不相容事件) ② 从集合角度看,记事件A为集合A,事件B为集合B,若事件A与事件B是互斥事件,则集合A与集合B 交集为空集。 ③ 推广:如果事件A1,A2,An中任何两个都互斥,就称事件A1,A2,An彼此互斥。从集合角度看n个事件彼此互斥是指各个事件所含结果的集合彼此互斥,(2)对立事件 ① 定义:不能同时发生且必有一个发生的两个事件叫做互为对立事件,事件A的对立事件记作 nA为事件A出现的概nA ② 从集合的角度看,A和A所含结果组成的集合是全集中互为补集的两个集合,这时A和 A的交集是不可能事件,A和A的并集是必然事件,即AA= , AA (3)互斥事件与对立事件的区别与联系 ① 两个对立事件一定是互斥事件,反之两个互斥事件不一定是对立事件。② 两个事件对立是两个事件互斥的充分非必要条件 ③ 两个事件互斥是两个事件对立的必要非充分条件。(4)事件的并(或和)① 定义:由事件A和B至少有一个发生(即A发生或B发生或A,B都发生,称为事件A与B的并(或和)记作CAB ② 事件A与事件B的并集等于事件B与事件A的并集,即AB=BA ③ 并事件有三层含义:事件A发生,事件B不发生;事件B发生,事件A不发生;事件A与事件B都发生。 ④ 事件A与B的并集AB可推广如下:“A1A2An”表示这样一个事件:在同一实验中:A1,A2,,An中至少有一个发生,即表示A1A2An发生。 (5)互斥事件的概率加法公式 如果事件A,B互斥,那么AB发生(即A,B中至少有一个发生)的概率等于事件A,B分别发生的概率的和,即P(AB)=P(A)+P(B) ① 一般地,如果事件A1,A2,,An两两互斥(彼此互斥)那么时事件“A1A2An”发生(是指A1,A2,,An至少有一个发生)的概率,等于这n个事件发生的概率和,即P(A1A2An)=P(A1)P(A2)P(An) ② 对立事件的概率公式 若事件A与B互为对立事件,则AB为必然事件,所以P(AB)=1,又 P(AB)=P(A)+P(B),所以P(A)=1-P(B)[说明] a.公式使用的前提必须是对立事件,否则不能使用此公式。 b.当一事件的概率不易直接求,但其对立事件的概率易求时,可运用此公式,即使用间接法求概率。 (6)概率的一般加法公式 ①交(积)事件 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B交事件(或称积事件),记作AB(或AB)a.用集合形式表示; b.事件A与事件B的交事件等于事件B与事件A的交事件,即AB=BA ②概率的一般加法公式 设A,B是的两个事件,则P(AB)P(A)P(A)P(AB)知识点5 古典概型 1.基本事件及其特点(1)基本事件的定义 实验结果是有限个,且每个事件都是随机事件的事件,称为基本事件。 注意: ①基本事件是实验中不能再分的最简单的随机事件,其他事件可以用他们来表示; ②所以的基本事件都有有限个; ③每个基本事件的发生都是等可能的 (2)基本事件的特点 ① 任何两个基本事件是互斥的 ② 任何事件都可以表示成基本事件的和 2.古典概型(1)古典概型的定义 我们把具有:①实验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。以上两个特点的概率模型称为古典概率模型,简称古典概型。 (2)古典概型是一种特殊的概率模型,其特征是: ① 有限性,在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本条件。② 等可能性,每个基本事件发生的可能性是均等的 [说明] 一个实验是否为古典概型,在于这个实验是否具有古典概型的两个特征:有限性和等可能性。并不是所有的实验都是古典概型。 (3)古典概率模型的概率求法 如果一次实验中的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是如果某个事件A包含了其中的m个等可能的基本事件,那么事件A发生的概率为P(A)= 1,nm n知识点6 几何概型(1)几何概型的概念 事件A理解为区域的某一子区域A,A的概率只与子区域A的几何度量(长度,面积或体积)成正比,而与A的位置和形状无关。满足以上条件的实验称为几何概型。 注意:①古典概型适用于所有实验结果是有限个且结果是等可能出现的情况,而几何概型则适用于实验结果是无穷多的情形。 ③ 几何概型的特征:每个实验结果有无限多个,且全体结果可以用一个有度量的几何区域来表示;每次试验结果的各种结果是等可能的 (2)几何概型的概率计算公式 在几何概型中,事件A的概率定义为:P(A)= A,其中表示区域的几何度量,A表示子区域A的几何度量。 (3)古典概型与几何概型的区别 古典概型与几何概型要求基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,几何概型要求事件有无限多个。 四 例题分析 【例题1 】 (1)单选题是标准化考试中常用的题型,一般是从A、B、C、D四个选项中选择一个正确答案,如果考生掌握了考查内容,他可以选择唯一正确的答案,假设考生不会做,他随机选择一个答案,问他答对的概率是多少? (2)国家安全机关监听录音机记录了两个间谍的谈话,发现30min长的磁带上,从开始30s处起,有10s长的一段内容含两间谍犯罪的信息,后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了,那么由于按错键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大? 【分析】(1)中考生随机地选择一个答案是指选择A、B、C、D的可能性是相等的,且实验的可能结果只有4;选择A、选择B、选择C、选择D,基本事件共有4,是有限个,故该实验是古典概型,基本事件个数为4个,答对只有一种结果,即m=1,n=4,可利用古典概率公式 m,求出事件的n概率。 (2)中工作人员在0min到30min之间的时间段内任一时刻按错键的可能性是相等的,且按错键使含有犯罪内容的谈话被部分或全部擦掉的概率只与从开始到谈话内容结束的时间长度有关,故该实验是几何概型。工作人员在0s-30s内任一时刻按错键,则含有犯罪内容的谈话会被全部擦掉,若在30s-40s内任一时刻按错键,则含有犯罪内容的谈话被部分擦掉,所以所求事件占的长度为40s,即2min,而整个长度为30min,可利用几何概型的概率公式P(A)= A,求得事件的概率。3答对所包含的基本事件的个数1==0.25; 44【解析】(1)有古典概型的概率计算公式得: P(答对)=(2)设事件A“按错键使含有犯罪内容的谈话被部分或全部擦掉”,事件A发生就是在0min到 2min32时间段内按错键,所以A=min,=30min,P(A)= A= 323= 1 45301 45【答】(1)考生答对的概率为0.25;(2)按错键使含有犯罪内容的谈话被部分或全部擦掉的概率为【例题2】(1)向假设的三个相邻的军火库投掷一颗炸弹,炸中第一个军火库的概率为0.025,炸中其余两个军火库的概率为0.1,只要炸中其中一个,另外两个也要发生爆炸,求军火库发生爆炸的概率。 (2)甲乙两人各射击一次,命中率各为0.8和0.5,两人同时命中的概率为0.4,求甲乙两人至少有一人命中的概率。 【分析】(1)中投掷的一颗炸弹,只要炸中了其中的一个军火库,其余也要发生爆炸,所以“军火库发生爆炸”这一事件,就是炸中第一、第二、第三个军火库这三个事件之和,且它们彼此互斥,由于是三个彼此互斥事件的并的概率,可利用公P(ABC)P(A)P(B)P(C)求得(2)中至少有一人命中,可看成是甲命中和乙命中这两事件的并事件,但“甲命中”和“乙命中”可能会同时发生不是互斥事件,由于是求两个不互斥事件的概率,可利用一般的概率加法公式P(AB)P(A)P(A)P(AB)求得 【解析】(1)设以A、B、C分别表示炸中第一、第二、第三个军火库这三个事件,于是 P(A)=0.025,P(B)=P(C)=0.1.设D表示军火库爆炸,则有D=ABC,由于A、B、C彼此互斥,P(D)= P(ABC)P(A)P(B)P(C)=0.025+0.1+0.1=0.225(2)设事件A为“甲命中”,事件B为“乙命中”,则“甲、乙两人至少有一人命中”为事件AB,所以P(AB)P(A)P(A)P(AB)=0.8+0.5-0.4=0.9 【答】(1)甲乙两人至少有一人命中的概率0.225(2)甲乙两人至少有一人命中的概率0.9 【例题3 】 同时抛掷两个骰子(各个面上分别标有数1,2,3,4,5,6)求向上的数之积为偶数的概率。 【分析】 每掷一个骰子都有6种情况,同时掷两个骰子总的结果数为n=6×6,由于每个结果出现的可能性都相等,所以是古典概型。关键是求“向上的数之积为偶数”这一事件所包含的结果数m,然后利用P(A)= m,即可求得概率,向上的数之积为偶数的情况比较多,可以先考虑其对立事件,n即向上的数之积为奇数,向上的数之积为奇数的基本事件有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个,即m=9 【解析】基本事件空间(x,y)1x6,1y6,xN,yN共包含36个基本事件,设“向上的数之积为偶数”为事件A,则A为“向上的数之积为奇数”,A={(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)}共包含9个事件,根据古典概型的概 1391,由对立事件的性质知,1-P(A)=1-= 443643【答】向上的数之积为偶数的概率为 4率公式可得P(A)【小结】 在求等可能事件的概率时,一定要先根据事件的个数是否有限,判断该试验是古典概型还是几何概型。①对于古典概型试验概率的计算,关键是分清楚基本事件的个数n与事件A中包含的结果数m,有时需用列举法把基本事件一一列举出来,在利用公式P(A)= m求出事件的概率,这是一n个比较直观的好方法,但列举时必须按某一顺序做到不重复,不遗漏;②对于几何概型试验概率的计算,关键是求得事件A所占的区域和整个区域的几何度量,然后代入公式即可求解。几何概型常用来解决与长度、面积、体积有关的问题。③互斥事件的概率加法公式仅适用于彼此互斥的事件的和(并)事件的概率求解,因此在应用公式之前,应先判断各个事件彼此是否互斥,若不互斥,则需要用一般概率加法公式。④利用对立事件概率公式解题第四篇:高中数学教案
第五篇:高中数学教案全集