第一篇:高压LED芯片的优缺点比较分析
高压LED芯片的优缺点比较分析
最近很多网站都大肆报道一种“高压LED”,认为它是一种全新的LED品种,而且具有很多优点,甚至认为它将使“今天的低压LED将淡出未来的LED通用照明市场”而高压LED将“主导未来的LED通用照明”,真的是这样吗?
我们知道,LED的中文是“发光二极管”,它从根本上来讲只是一种“二极管”。而且是工作在正向的二极管。过去只有高反压二极管,那是指高的反向击穿电压。如果工作在正向的话,那么一定是电压越高,电流越大。可是这种高压LED的最大特点却是高电压、小电
流。那又是怎么一回事呢?
一、什么是高压LED
再仔细了解一下,原来它只是很多20mA的小功率LED串联起来,变成了所谓的高压LED。把很多小功率LED串联起来并不是什么新鲜事,其实在很多灯具里早就这样用了。唯一不同的是过去灯具厂商都是把已经封装好了的小功率LED串联起来。例如图1就是上海龙兴公司将80颗表面贴装的0.1W小功率LED全部串联起来以得到高电压小电流的特性,用于LED
球泡灯中。
图1.80颗0.1W小功率LED的串联
现在则是由LED生产厂家提供一种串联好了的小功率LED,并把它称之为“高压LED”而已。它只是集成LED中的一种。其实过去早就有各种集成的LED,以不同数量的LED串并联起来,得到各种不同功率和电压的LED。可以说最早是美国的普瑞(Bridgelux)公司就已经推出了这种集成LED了。也就是把很多小功率LED在基板上就串并联起来,以得到一颗大功率LED。他们称之为LED阵列,例如他们在2009年推出的一颗30W的LED阵列BXRA-C2000实际上是把25个1W的LED在芯片上5并5串而得来,其尺寸为25.3x22.3mm发光面的直径为17.5mm(图2),正向电压16.6V,正向电流1.75A,热阻0.5°C/W。
图2.美国普瑞公司的集成LED
高压LED和这种集成LED的主要差别在于高压LED是全部串联,而集成LED则是串并联。集成LED的特点是在一个大晶片上采用开槽的方法,将其切割成为很多小的LED,沟槽的深度约在4-8靘,沟槽不能太宽以免减小发光面积。在开出沟槽以后,为了敷设连接各个LED的导线,还要用绝缘层把这些沟槽填平,再按照串联或并联的要求而敷上相应的铝线。
二、高压LED的性能指标
目前只知道台湾的晶元光电正在生产这种高压LED,但是在晶元光电的网站上只查到几种电压并不太高的HV LED。其指标如下表所示:
其中并没有他们宣传的耐压50V的高压LED。看来真正的高压LED也还没有成熟。所以
也无从进行定量的比较。
三、高压LED的优缺点
那么我们来看一下到底这种高压LED有何优缺点。
1.功率耗散和散热器大小:有的报道宣称1W的高压LED的电压为50V,电流为20mA;而普通低压的1W LED电压为3V,电流为350mA,所以“同样输出功率的高压LED在工作时耗散的功率要远低于低压LED,这意味着散热铝外壳的成本可大大降低。”,这个说法显然是不成立的。耗散功率的大小主要由LED的发光效率决定,而不是由其标称功率决定。标称功率不等于输入功率。如果要决定散热器的大小,应当是在同样的发光效率来计算。通常认为对于目前100lm/W的发光效率来说,其真正的电光效率(就是由电能变成光能的效率)只有30%左右,就是只有30%的电能转换为光能,其余的70%的电能都转换为热能而需要经过散热器散去。所以对于具有同样发光效率的1W高压LED和普通低压LED来说,其变成热能的部
分都是0.7W,需要通过散热器散去。所以这种高压LED所需要的散热器大小在同样的输入功率和同样的驱动电源效率的情况下是不会有什么差别的。
2.AC/DC转换器的效率:在同文中认为“输入和输出压差越低,AC到DC的转换效率就越高”。该文还认为因为220V输入时,高压LED只要4个串联就是200V,和220V只差20V。而用低压LED,即使是10个串联正向压降也只有30V,和220V相差很大。所以“如采用高压LED,变压器的效率就可以得到大大提高,从而可大幅降低AC-DC转换时的功率损失,这一热耗减少又可进一步降低散热外壳的成本。”
实际上做过AC/DC恒流驱动的人都知道,AC/DC转换器的效率几乎是和最后的输出电压没有什么关系。可能变压器次级的电流大了会增加一些铜损,但是这是很小的,还不至于影响到散热器的设计。真正影响AC/DC转换器的效率的因素还有很多,例如非隔离的转换器效率就比隔离型转换器的效率要高很多(因为通常非隔离转换器根本就不用变压器,只要采用了变压器,不管变比是多少,都会大大降低效率);此外,隔离型反激式的输出整流二极管的损耗也会影响效率,为了提高整流二极管的效率最好采用肖特基二极管,而如果输出是200V高电压,那么是很难买到这种高压肖特基二极管,即使买到其价格也是很高的,如果采用同样低效的普通整流二极管,那么其效率也不可能提高。所以认为输出电压高,可以大大降低转换器的功率损失,甚至也能降低散热器的成本的说法也是不确切的。
3.“高压LED减小了LED的面积”,的确如此。例如:对于一个36W的LED,如果采用36个1W的LED那么就会占据很大的面积,而如果做一个集成的36W高压LED,那么就只要很小的面积(图3)。这个看上去是优点,但如果从散热的观点来看就未必是优点。因为假如二者的发光效率相同的话,那么它们将要散发的热量是相同的。而在一个很小的面积里要散发出大量的热量,这在散热器的设计中将是一个大难题。
图3.集成LED和普通LED在面积上的差别
实际上,集成LED的生产厂商已经注意到这个问题,而且做了很多改进。首先是减小其
热阻。一般的1WLED的热阻大约在6-9°C/W,而集成LED的热阻可以减小到2°C/W甚至更小。其次它的背板改用紫铜,以改进其导热。然而这些措施并不能从根本上改善小面积高热量这个基本状况。为了快速地将热量导出,唯一的办法是采用热管。而这反而会增加散热器的成本。同样,由于高压LED的底板采用了紫铜,那么和它直接接触的散热器部分也必须采用紫铜而不能采用铝,因为二者的膨胀系数不同,直接接触会产生缝隙而影响导热。如果采用紫铜散热器就会增加成本。所以这种高压LED不仅不会降低散热器的成本,反而会增加散
热器的成本。
4.“高压LED可以根本不需要变压器”。在不少的报道中都把高压LED和AC-LED相提并论。所以认为高压LED可以根本不需要恒流电源(图4)。
图4.通常把高压LED 和AC-LED相提并论
我们知道首先并不是只有高压LED和AC-LED可以不用恒流源,而所有LED也都可以不采用恒流源,只是不用恒流源以后都会使LED的使用寿命大大降低。这是因为由于LED伏安特性的负温度系数,使得LED的正向电流随着LED的温升而增高,从而使得LED的结温升高,而降低了LED的寿命,高压LED也不例外。
所以这个优点是不成立的。用牺牲寿命的方法来降低成本,好像并不是一种好方法。因为假定本来可以工作五万小时,现在变成只有2.5万小时,那对于用户来说,岂不是使用成本提高了2倍。远比省下一个恒流源要贵很多。
5.发光效率的高低:
据称,台湾晶元光电将于今年推出发光效率高达160lm/W的冷白光LED。而暖白光的LED发光效率将高达150lm/W,而且显色系数(CRI)高达90%。图5
图5.晶元光电的150lm/W的暖白LED采用蓝光和红光LED的组合
这个数据在当前来说的确是相当高的,但是提高发光效率的手段有很多,它并不是高压LED的特点。只是应用到这种高压LED而已。如果应用到普通LED也是可以提高发光效率的。当然,如果这个高压LED真的有这么高的发光效率,那的确是一个很好的LED,比起那些100lm/W的LED,当然可以减小散热器的大小。不过Cree公司也在今年1月宣布了其低压LED(XLamp XM-L,2.9V,350mA)的发光效率也可以高达160lm/W(图6),也可以减小散热器的大小,因为散热器的大小只是和发光效率有关,和低压LED还是高压LED并没有什么关系。
图6.Cree公司的XLamp XM-L,发光效率可达160lm/W
6.成本低,一个50V,20mA的高压LED的售价是不是能够低于1个3.3V,350mA的1W LED或者10个3.3V,30mA的小功率LED,并不清楚。假如能够低于,那么当然是一个优点。至少10个已经封装好了的30mA的小功率LED的价钱的确是比一个1W大功率LED为便宜。所以这也是为什么很多灯具厂商选用很多小功率LED串联来取代一个大功率LED的原因之
一。
四、高压LED和分立小功率LED的比较
目前可以和高压LED相比较的就是分立小功率LED了。如前所述,高压LED是集成LED的一种,而小功率分立LED也可以串联起来得到和高压LED完全一样的外特性。二者比较的结果如下:
1.分立LED的优点是灵活性比较强,用户可以根据需要串联任意个数的LED以得到所需的伏安特性。也可以进行串并联得到更为灵活的特性。
2.分立LED的发光面可以在一定范围里调节(增大),以使发光均匀,减小眩光。
3.分立LED的散热面积比较大,容易分散热量,简化散热器的设计。
4.集成高压LED减小了封装成本。
5.集成高压LED减少了元件数和焊点数,提高了可靠性。
总之,高压LED不失为一种具有特点的LED,它可以增加使用者的选择。但并不如某些媒体的宣传那样,会取代所有的低压LED,更何况,由太阳能供电的灯具系统里,本来就是低压直流的电源,当然也就会直接采用低压直流的LED了。所以各种LED都会存在,只是供
给不同的场合罢了。
第二篇:LED汽车灯优缺点,性能前景分析等
1、LED汽车灯的优点
一、节能:是由发光二极管直接由电能转化为光能,较普通汽车灯泡耗电仅相当于传统灯的1/10,能更好的节省油耗,保护汽车电路不被过高的负载电流烧坏。
二、环保:光谱中没有紫外线和红外线,既没有热量,也没有辐射,眩光小,而且废弃物可回收,没有污染不含汞元素,可以安全触摸,属于典型的绿色照明光led源。
三、寿命长:灯体内也没有松动的部分,不存在灯丝发光易烧、热沉积、光衰等缺点,在恰当的电流和电压下,使用寿命可达8-10万小时,比传统光源寿命长10倍以上。(具有一次更换,终身使用的特点)
四、高亮度,耐高温。(电能直接转换为光能,发热小,完全可用手触摸,安全放心)
五、体积小。计者可以随意变换灯具模式,令汽车造型多样化。汽车厂商青睐LED,完全是LED本身的优点所决定的。
六、稳定性能好,led抗震性能强:树脂封装,不易碎裂,容易储藏和运输。
七、发光纯度高,色彩清晰鲜艳,无需灯罩滤光,光波误差在10纳米以内。
八、反应速度快,无须热启动时间,微秒内即可发光,传统玻壳灯泡则有0.3秒延迟,可防止追尾,保证行车安全。
2、LED汽车灯的缺点
一:LED车灯比普通车灯成本高。(目前随着LED应用的不断普及,价格将进一步降低)
二:汽车大灯普及困难,散热性不好,散热处理不好容易光衰,影响车灯使用寿命。
三:现无出台行业标准,产品质量参差不齐,同款产品用不同LED生产价格相差1-2倍现象都有。
[1]LED车灯未来发展趋势及应用分析
LED车前照灯在历经近年来的技术验证、概念车展示等开发阶段之后,终于迎来了有望应用于量产车的入市前景,其标志**件有三个:丰田的凌志LS600h是世界上首个采用LED前照光源的上市车,不过它只在近光灯上应用了LED,远程光源仍为卤素灯。奥迪R8以全LED前照灯为其主要特色,而汽车照明采用的LED是由Lumileds和Osram公司提供。凯迪拉克EscaladePlatinum白金版多功能运动车,是首款采用LED前照灯的多功能运动车。阻碍LED光源迅速开拓车
LED车前照灯在历经近年来的技术验证、概念车展示等开发阶段之后,终于迎来了有望应用于量产车的入市前景,其标志**件有三个:丰田的凌志 LS600h是世界上首个采用LED前照光源的上市车,不过它只在近光灯上应用了LED,远程光源仍为卤素灯。奥迪R8以全LED前照灯为其主要特色,而汽车照明采用的LED是由Lumileds和Osram公司提供。凯迪拉克EscaladePlatinum白金版多功能运动车,是首款采用LED前照灯的多功能运动车。
阻碍LED光源迅速开拓车用市场的不利因素
上述里程碑式的事件是否意味着LED前照灯将立马成为主宰车用光源领域的创新技术?据行家们预测:也许不会。因为就算是LED的成本能够按照摩尔定律的预见速率持续下降,它要低到能与HID(高强度放电)氙灯匹敌的同等价位也尚需多年;而LED家族的成本若要降到能与卤素灯不相上下,则需经过一段更加漫长的时间历程。
据Hella(海拉)公司总裁Fischer称,车用LED的规模目前仅占其光源市场百分之几的小份额,故对向大批量的型号(诸如GM/雪佛兰部的 Malibu款之类车型)的配套供货极感兴趣。但LED欲达到向Malibu车型那样大批量的供货水平,尚需克服一系列的技术和成本难题,至少还有十年的历程要走。
伟世通指出,LED入市的步伐的确比原先预料的要慢一些,我们在2004年曾预测:LED车灯会很快井喷入市,而把HID淘汰出局。显然,目前的态势并非如此,虽然一直期望LED技术能演进得比现实要快一点。看来成本高并非是阻碍LED面市的唯一因素,仍然有技术性能方面的挑战性难题需要攻克。
比如,就单个光源而言,LED的光照强度仍显不足。而单点不够亮就难以达成下述如意盘算:削减构成组合灯具的LED光源数目将有助于缩小汽车灯具的占用空间且易于灵活布置,并可简化照明系统的布线和安装以及降低生产成本。
目前LED供应链的主流状况是:海拉供给通用凯迪拉克Escalade车型的LED光源组件是向欧司朗(Osram)采购的;而小纟车灯(Koito)的LED则使用Nichia公司的光源产品,再配套于丰田的LS600h车型;飞利浦Lumileds把LED光源供应给AL(汽车照明)公司,再由后者为奥迪R8配置车灯系统。
据Koito的欧美经营部经理称,他们不会划地为牢而自我限定光源的种类及其采购厂商,无论产自于谁(飞利浦、欧司朗、或丰田Gosei)都可以买。显然,照明系统部件的一级供货商们试图保持自身采购光源元器件的灵活性,想观察一下:哪家器件厂商的产品技术能进步得最快、性价比最高。
当今LED批供货品的光电转换(光能密度)指标达到每瓦80流明(80lm/W)以上,而HID灯为 90lm/W,卤素灯则是201m/W。另据海拉通报:最新的LED研发原型的该项指标已高达161lm/W。海拉亦预测:在今后的3-5年间,发自同样功耗芯片的LED光强度将会提升50%。此事不仅意味着LED灯具将更加明亮,而且体现了其能耗的削减,从而改善整车的燃油经济性。
据估计,用LED取代卤素灯具能提升整车的mpg(每加仑燃油的行驶英里数)指标约0.25。而到欧洲实施白天开灯行驶法规时,更可把该mpg提升值扩大至0.5。凌志的车型经理指出,应用LED灯具对整车燃油经济性的改善将会有很大的贡献。
然而,光强密度更高的LED也要散发出更多的热量,而灯具的紧凑布置又使得可供散热的面积趋小。诚然属半导体类别的低能耗LED器件的发热比卤素灯或 HID灯具要少得多,但后者的热量的大部分则是生成于灯具装置之外的,而LED虽功耗低生热少却是要把热量捂在微小的硅片里面来传导的。
LED的热管理是个大难题
即使较小的热量要集中到芯片大小的器件上去传导和发散,因装置的热容量小也会引起LED温度的骤升。LED的工作温度必须保持在150℃以下的范围。对该散热问题的一种解决方案是:在一个灯具中使用数目较多的LED发光组件,让单件的发热量较小,再把它们布置在较大的空间内使其易于散热。这就是小纟车灯在为丰田的凌志LS600h配套前照灯时所采用的手法。
凯迪拉克EscaladePlatinum每个前照灯由7枚LED光管构成,其中5枚用于近程光束,另2枚则作为远程光源。它们都带有各自的主动式散热装置--冷却风扇(与台式电脑中的内置小风扇类似)。
据海拉称,热管理是让他们特别费心劳神的设计领域,在方案选择上侧重依靠虚拟仿真手段来评估优化,而在模拟工具(仿真软件包)的选用上则必须通过足够实验数据的考证。他指出,对热管理问题的挑战不仅来自于热传导,可借助于“热池”装置把LED组件所生成的热量取出来,而且还要解决通风问题,让热量从灯具装置里散发出去。若仅靠自然通风显然是不够的,所以海拉决定给灯具加上内置风扇。
法雷奥的热管理策略堪称一绝。它为LED灯具设定了一种确保安全的工作模式,即当灯具的温度升到预定的警戒值时,自动切换到削减灯具供电功率20%的该安保模式。据称,这种程度的供电功率降低对灯光的亮度影响甚微,但却能显着地压制住发热水平。
LED光源的车用优势
既然遭遇到上述的种种成本障碍和层层技术难关,为什么整车厂商及其照明系统供应厂商仍然要咬定青山不放松地全力推进LED上马入市呢?
其原因出于:这种新光源能够使得汽车灯具的风格设计和造型布置具有空前的灵活性而适于车型的个性化,况且LED的光输出功率密度已能够与HID灯具匹敌,因此它极有希望把现存的其它照明技术统统淘汰出局而独霸车灯市场。
据凯迪拉克EscaladePlatinum的车型产品经理称,LED的发光色谱接近于日光,这使得它发出的光被物体(诸如道路交通的指示标牌/线)反射的有效性要高于其它光源,从而能在较远的距离让司机尽早发现而提高行车安全。他指出,路标几乎都采用被动辉光的反射方式,因为LED的光色近于日光,所以可以让司机在夜间也像白天那样方便地发现并看清交通标志。
LED车灯的色温为5500-6000K,它比其它光源的颜色更白,因为 HID灯的淡蓝光色温是4000K,卤素灯光为**3000K。所以在进行HID灯具的光学设计时,需把光谱中最蓝的部份推移至其射点光斑的边缘,因这些区域是本车司机眼睛通常不去注意的地方,从而减少该色光对人眼的不适干扰。
但对于迎面驶来的会车司机而言,仍在车辆越过该边际区域时蓝光会引起对方眩目而影响会车安全。在防眩目干扰方面,LED大灯拥有潜在的优势:既能保护本车司机的舒适视觉,也不会引起邻车/会车司机的视障。因丰田凌志车的前照灯的近/远程光采用了不同的光源(LED/卤素灯),所以LS600h的车主可能会被不同光源的显着色差所困扰。
对于 AL(汽车照明)LED前照灯的另一大优势是,欧盟已通过并将于2012年生效的DRL(日行灯)法规,它与加拿大的推荐式规定(允许白天用近光灯作为 DRL)不同,欧盟法规是强制在白天使用前照灯的。只要车辆处在行驶之中,就必须开前照灯,使得LED光源的低能耗、长寿命的优势更明显。
据法雷奥的CEO称,另一种目前尚未兑现的潜能是:LED大灯能利用光点阵列来组合出前照灯光的主动式功能而毋需采用任何(目前此类装置所必备的)运动部件。这样的主动式照明系统(比如,随转向角度而变化光照射向的主动安保功能),有可能需要采用比以往所用过的数量更多的光管来构成点阵。法雷奥正按此思路着手研发更可靠的新型自适应前照灯系统。
海拉Fischer指出,照明系统的这种变化也符合并体现了当代汽车的机械装置功能逐渐被(电子+电控+电动的)全电装系统所取代的大趋势。同一组LED阵列既可以作为前照大灯的光源,也同时可用于转向灯,只是在发挥不同照明功能时采用各自的光学镜罩。
作为一般的转向灯,只须在车身两侧布置LED阵列,再加上简单的开关功能即可。若要发挥智能前照的主动安保作用,让前照光束能随车辆的转向轨迹而同步地总是照亮车前的道路,则需要布置较多的光源点阵并采取更复杂的光点电控,按照转向输入来控变光点阵列的明暗组合及其反光镜,从而同步地改变前照光束的射向。
总之,借用市场研究及咨询机构StrategyAnalytics公司的AsifAnwar先生的话,LED前照灯虽然刚开始起步,但将是车用LED市场发展极快的领域。预计到2012年,LED前照灯市场将达到8000万美元。LED必将以其卓越的安全性、可靠性、节能性及便于美学设计的特性,成为汽车照明系统的新宠,给汽车车灯的升级和革命带来新的契机。
LED汽车照明技术及现状分析
作为第四代车用光源,LED 有很多优于其他传统光源的特点。为此分析了车用LED 照明的可行性和先进性,介绍了其典型的驱动电路,并着重研究了LED 以及AFS 在汽车前照灯上应用现状。介绍了车用LED 照明面临的问题及应对措施,并对其未来发展进行了展望。车用LED 照明的可行性和先进性
在汽车上使用照明光源大约开始于20 世纪初。最先使用的是煤油灯和乙炔灯,1910 年开始使用电光源,先后经历了白炽灯、卤钨灯及高强度放电式气体灯HID(Intensity Discharge Lamp),自1985 年开始进入了LED车用灯时代。同时LED 灯应用于自适应前照系统AFS(Adaptive Front Lighting System)的技术随之出现。
目前,LED 已被众多汽车厂商加以利用制造出各种车灯款式。宝马、福特、本田、丰田、奔驰、奥迪等着名品牌车为了提高各自的总体竞争力,纷纷推出配有各式各样LED 车灯的新款轿车以吸引顾客。LED 具有很多其他光源所不具备的优点:(1)寿命长、抗震性好。LED 的使用寿命理论上可达5 万小时,实际寿命也可达2 万小时(普通的卤素灯泡仅为150 ~500 小时左右),一般都要超过汽车本身的寿命。另外,LED 的基本结构中没有易损可动部件,故抗震性能非常好。(2)节能环保。LED在低电压小电流的条件下就能够获得足够亮度,其耗电量仅为相同亮度白炽灯的10%~20%;LED 光源中不含危害人体健康的汞,生产过程和废弃物不会造成环境污染。(3)响应速度快。与白炽灯相比,LED 灯的响应时间已经达到了几十纳秒,这样,当采用LED 作为汽车尾灯时,可以使后续汽车司机更早反应,以减少交通事故的发生。(4)体积小。小巧的LED 可使汽车风格的设计更加自由、多样化,从而使车型更加时尚;与传统光源相比,LED 信号灯系统的安装深度可以减少80 mm,这一点对于汽车造型和内部零件布置具有重要意义。
目前汽车产业在全球经济中仍然是支柱产业,并处在飞速发展的关键时期,其必定会带动车用灯具的发展,为LED 在汽车上的应用提供广阔的市场空间。车用LED 照明的驱动电路
LED 属于电流控制型半导体器件,图1 是LED 的伏安特性曲线。由图1 可知,此曲线比较陡,在正向导通之前LED 几乎无电流流过;当正向电压超过开启电压时,电流就急剧上升,发光亮度L 与正向电流IF近似成正比:L=KIF,其中K 为比例系数,故可以通过控制LED 的IF来控制其发光亮度。因此,为了保证其亮度的一致性,通常采用恒流源驱动电路。
汽车电池工作电压范围为9 V~16 V,通常情况下为12 V,但是当汽车冷启动时蓄电池的电压可跌落到4 V,而当蓄电池缺损由发电机直接供电时,此电压可达到36 V 的高压。因此,对于车用LED 灯具而言,要可靠地恒流驱动LED 串,驱动控制器必须具备精确的电压和电流调节、保护电路和调光功能。因此,设计一种稳压性能良好而又恒流输出的驱动电路十分必要。
目前车用LED 驱动器一般采用两种方法控制正向电流。(1)采用LED 的V-I 曲线确定产生预期正向电流所需要向LED 施加的电压。其缺点为:LED 正向电压的任何变化都会导致LED 电流的变化,其中的镇流电阻的压降和功耗会浪费功率和降低电池使用寿命。(2)利用恒流源来驱动LED。因为此方法需要将LED 并联在电路中,而驱动并联LED 需要在每个LED 串中放置一个镇流电阻,这会导致效率降低和电流失配。因此,这两种方法都不能充分体现LED 应有的优越性。为了克服现有车用LED 驱动器的缺点,出现了车用LED 阵列的高效智能驱动方法。该方法采用了半桥式DC-DC 变换技术、全波整流技术、光电耦合技术等,确保了整个驱动电路的工作效率;提出了基于嵌入式系统的智能控制方案,此方案采用智能PWM 稳流控制和调光控制,具有负载开路/短路保护和过流过压保护功能。图2 为LED阵列智能驱动实验电路。
如图2 所示,CPU 输出两路完全倒相对称的PWM信号A、B,分别作用在开关器件上,使其轮流导通;通过高频变压器T 将能量耦合到次级,再经快恢复二极管D1、D2 进行全波整流,以实现对LED 阵列的驱动。LED阵列驱动回路的光电耦合器,完成对LED 阵列驱动电流的监测,并反馈到CPU,形成一种智能电流负反馈的闭环控制系统,以确保驱动电流的稳定的可靠性。
车用LED 驱动电路的集成化和智能化程度越来越高。类似PMU(电源管理单元)的芯片及封装的小型化将逐渐取代多个单一功能电路进行组合的方法,以适应板级空间非常有限的车载应用。同时,由于单片机、DSP 等控制芯片以及嵌入式技术的不断发展,可通过软件技术实现车用照明系统的自动化,这样LED 的恒流驱动精度以及亮度的自动调节会更加准确。智能化控制已经成为新一代车用LED 驱动器的设计理念。汽车LED 前照灯
由于汽车前照灯在行车安全中具有重要的作用,因此LED 前照灯是最难也是最后投入使用的。以前,LED前照灯只应用在概念车上,随着LED 照明技术以及汽车产业的不断发展,LED 前照灯的应用范围已从概念车、豪华车向中档车甚至一般车型过渡,并且照明发光强度已达到白炽灯的水平。
汽车前照灯包括远光灯和近光灯。在夜间行驶时,远光灯应保证照亮车前100 m、高2 m 处范围内的物体,且亮度均匀;近光灯不但要保证车前40 m 司机能看清障碍物,而且不能让迎面而来的驾驶员或行人产生眩光,以确保汽车在夜间交会车行驶时的安全。
传统汽车前照灯输出近光和远光两种功能的光束,且每种光束分布模式均呈静态分布,具体的光照分布也都符合国家标准。但在实际应用中,此系统射出的光束分布于有限的角度范围,在一些较为复杂的路况下(如转弯)极易产生视觉盲区。另外,传统汽车前照明系统不具备自动调整光束分布的功能,近光光束和远光光束之间的变换需驾驶员手动操作实现,这样在来往车辆频繁的行车环境下,车辆之间容易产生眩目光。为了克服传统汽车前照灯的上述缺点,自适应前照系统AFS 应运而生。
AFS 是一种能使驾驶员更好地适应各种速度、道路类型和天气条件的变化,提高驾驶安全性的前照灯系统。其工作原理如下: 当汽车进入特殊的道路状况(如弯道)时,由于方向盘和速度发生变化,角度传感器和速度传感器传输到电控单元(ECU)的信号就相应发生了变化。ECU 捕捉到这些信号变化,同时判断车辆进入了哪种弯道,并发出相应的指令给前照灯的控制单元,控制单元根据收到的指令操控装在AFS 灯体内部的微电机带动发光三要素绕相应的旋转轴旋转,从而在非常规路面及天气下行驶时,改变照明方式,提供更好的安全保障。
随着白光LED 技术的发展及空气动力学和汽车造型的需求,汽车前部位置越来越低且呈流线型,为前照灯预留的空间越来越小。为了满足汽车照明智能化和人性化的需求,AFS 与LED 灯的结合已经成为现代汽车前照灯的发展趋势。车用LED 照明面临的问题及应对措施
车用LED 照明技术作为一项具有突破性意义的新技术,已经被大多数的汽车制造商以及消费者所接受,越来越多的高档汽车都配备了LED 灯。但由于汽车应用环境的特殊要求,要真正实现车用LED 代替传统光源,还有很多技术难题需要解决。
(1)成本问题
全球范围内,车用LED 生产成本的下降速度将是影响今后车用LED 大规模应用的主要因素之一。就元件本身而言,LED 灯的价格普遍高于其他传统光源。如:
W 大功率白光LED 的市场价格约是白炽灯的十几倍到几十倍不等,故LED 芯片还有很大的降价空间,其主要途径为: ①发展大芯片大电流。现在的芯片一般在0.5 mm~1.5 mm 之间,芯片小,电流难以加大,这是LED向单颗大功率发展的障碍。如果在不降低光效的前提下把芯片做大以便通过更大的电流,大幅提高单颗LED的功率,这样灯具所用的LED 数量将明显减少,有助于灯具成本的下降。②研发新型衬底材料。现在国内已经启动了价格比较便宜的Si 衬底材料的研究,希望能代替价格昂贵的蓝宝石或SiC。除价格便宜外,Si 还可以制作出比蓝宝石或SiC 衬底尺寸更大的衬底,以提高MOCVD 的利用率,从而提高管芯产率[ 18]。此外,由于Si的硬度比蓝宝石和SiC 低,在加工方面也可以节省成本。据国外某知名公司的估计,使用硅衬底制作蓝光GaN LED 的制造成本将比蓝宝石和SiC 衬底低90%。③继续延长LED 的寿命。理论上,LED 的寿命已经超过汽车使用寿命,但在实际汽车环境应用中,LED 使用寿命还有待进一步提高。如果LED 实际使用寿命能达到整车的寿命,则在汽车寿命期内无需更换光源,免去了这方面的维修费用,就会更加经济。
就整个车用LED 照明系统而言,必须降低LED 驱动方案的系统级成本,以提高该项技术的市场竞争力。
降低方案成本的途径之一是尽可能减少驱动器的元器件数量,同时这也有利于提高系统可靠性,因为PCB 上的每个元件都可能是系统的一个失效点。
(2)散热问题
通常高功率LED 输入功率约20%转换成光能,剩下的80%均转换为热能,这比传统灯源高很多。如果这部分热能无法导出,将会使LED 界面温度过高,进而影响产品生命周期、发光效率及稳定性,由此整个汽车照明系统就会受到严重影响[19]。目前改善车用LED 灯具散热的主要途径:①LED 自身的改进。首先,改进封装结构。传统直插式LED 封装结构热阻高达250℃/W~300℃/W,而新的封装结构采用低电阻率、高导热性能的材料粘结芯片,在芯片下部加铜或铝质热沉,并采用半包封结构,大大提高了LED 的散热能力[ 20-21]。其次,改进LED 的制作材料,采用超薄、高导热、高绝缘陶瓷薄片作基底,提高散热效果;开发量子转换效率高、能承受高温的荧光粉,提高允许的最大结点温度,增大允许的散热设计温差,以降低散热设计的难度。②散热装置的改进。主要有: 考虑采用合适的散热形式,如热管、风扇、水冷等,要保证将热量迅速地散发出去,同时散热装置能够稳定地工作[ 22-23];考虑散热片的结构形状尺寸,要保证足够的散热面积,同时散热效果要好;考虑电路板的设计格式,可将印制电路板设计为上下两层,下层专用于信号发生电路及驱动电路,上层为LED 点阵电路,这样能够有效地避免因为LED 的热量传递到驱动芯片而使其损坏。
(3)光效问题
提升LED 光效是车用LED 技术发展的关键,是车用LED 产业化的出发点和原动力。从封装技术上来说,LED 的封装应该尽量减少光线在其内部的全反射,增加衬底基板反射率,从而使光线能够尽量多地透射出来,增加LED 的发光效能。今年2 月,Cree 公司已经宣布其实验室成果LED 光效已经达到2 081 m/W,相信这不是极限,还会有更高的提升空间,但需要有新的技术突破。
(4)电磁干扰问题
汽车环境下同样面临电磁干扰问题EMI(ElectroMagnetic Interference)。车载电子产品对噪声很敏感,尤其是导航系统、无线电路和AM 无线电波段接收机。为了最大限度地降低发生噪声干扰的可能性,有些LED驱动器IC 中采用了恒定频率开关拓扑结构。另外,用户还可在200 kHz~2 MHz 的范围内设置开关频率,以使开关噪声远离关键频段(如AM 无线电波段)。车用LED 照明市场展望
LED 在汽车照明系统中的应用虽然刚刚起步,但随着半导体照明技术和汽车工业的飞速发展,车用LED灯具的总体效率以及性价比将会得到很大的提高,应用规模将会逐渐扩大,并最终占据整个汽车车灯市场。
据调查,目前全球车内应用的LED 年销售额大约在5 亿到6 亿欧元,在汽车内部,如汽车仪表盘、车内收音机、开关等已经100%采用LED,并且这一趋势正在加速从车内应用向车外应用。此外,近期欧盟委员会宣布,从2011 年起,欧盟所有新生产轿车必须配置“ 白天驾驶自动照明系统”。与此同时,欧盟委员会已经批准奥迪和丰田将LED 作为照明车灯在汽车上使用。由此可见,车用LED 灯具在全球范围内具有极大的市场潜力。
LED对未来汽车灯照明起决定性作用
目前,LED汽车灯具应用市场的销售额,每年约保持10%的增长速度,但国产LED汽车灯具所占比例却不高。LED运用量比较大的车型集中在中高端的汽车企业,而这些汽车公司一般都会对LED的品牌有所限定,国内LED企业比较难进入其供应链。另外国内LED与国际知名大品牌相比,在寿命及分选的均匀性等方面可能存在的问题更多一些,同时,汽车灯具本身市场监管严格,门槛比较高,汽车作为奢侈消费品,销售后面对的是一对一的客户,任何质量问题都会引起投诉,国产LED没有机会经过这种市场长期大规模的历练,很难达到车用LED标准。汽车灯具是非常专业的领域,要做好LED汽车灯具,无论是汽车灯具企业还是LED企业,单打独斗会很难,需要汽车灯具企业与LED企业进行充分的交流沟通,尤其是在LED汽车前照灯的开发上。
据统计,目前我国有购车能力的家庭为2000万户,我国有可能成为全球第三大汽车市场,占全球份额的6%,仅次于美国和日本。而到2025年,我国汽车市场的规模将达到目前美国汽车市场的规模。中国已经成为当今世界汽车销售增长最快的地区。根据中国汽车行业协会的统计,2009年国内车灯销售额达到 150亿元以上,其中LED车灯所占市场比重逐年上升,以上海小糸车灯公司为例,2009年LED车灯销售占全部车灯销售额的11.7%,预计2011年 LED车灯销售占车灯比例将达到15%以上,而到2015年LED车灯销售占车灯全部销售的比例将达到30%以上。
目前LED车灯与传统灯具价格还有较大差别,如某中高档轿车,白炽灯组合后灯120元/套,而LED组合后灯则需210元/套。因此LED价格大幅下降,发光效率不断提高及散热技术日益改进是未来发展LED汽车灯具的主要着力点。尽管还存在一些问题需要解决,但LED体积小、耐震动、节能、长寿命等优势,同时赋予了设计师更广阔的设计空间,这些都是增加LED在车内外应用的要素。随着产品技术不断提升,产品种类不断拓展,未来汽车将向安全化、智能化方向发展。
第三篇:工作分析常用方法优缺点比较
工作分析常用方法优缺点比较
一、观察法
优点:根据工作者自己陈述的内容,再直接至工作现场深入了解状况。
缺点:
1.干扰工作正常行为或工作者心智活动。
2.无法感受或观察到特殊事故,3.如果工作本质上偏重心理活动,则成效有限。
二、面谈法
优点:
1.可获得完全的工作资料以免去员工填写工作说明书之麻烦。
2.可进一步使员工和管理者沟通观念,以获取谅解和信。
3.可以不拘形式,问句内容较有弹性,又可随时补充和反问,这是填表法不能办到的。
4.收集方式简单。
缺点:
1.信息可能受到扭曲-因受访者怀疑分析者的动机、无意误解、或分析者访谈技巧不佳等因素而造成信息扭曲。
2.分析项目繁杂时,费时又费钱。
3.占去员工工作时间,妨碍生产。
三、问卷法
优点
1.最便宜及迅速。
2.容易进行,且可同时分析大量员工。
3.员工有参与感,有助行双方计划的了解。
缺点:
1.很难设计出一个能够收集完整资料之问卷表。
2.一般员工不愿意花时间在正确地填写问卷表。
四、特殊事件法:
优点:
1.针对员工工作上的行为,故能深入了解工作的动态性。
2.行为是可观察可衡量的,故记录的信息容易应用。
缺点:
1.须花大量时间收集、整合、分类资料。
2.不适于描述日常工作。
五、实作法
优点:
1.可于短时间内由生理、环境、社会层面充分了解工作。如查工作能够在短期内学会,则不失为好方法。缺点:不适合须长期训练者及高险工作。
六、工作日志法
优点:
1.对工作可充分地了解,有助于主管对员工的面谈。
2.逐日或在工作活动后及记录,可以避免遗漏。
3.可以收集到最详尽的资料。
缺点:1.员工可能会夸张或隐藏某些活动周时掩张其它行为。2.费时、费成本助干扰员工工作。
第四篇:LED照明的优缺点
LED照明设计(1)LED照明基础
导读: LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学方面对LED照明进行介绍。
LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学方面对LED照明进行介绍,首先介绍LED照明设计。
随着近年来人们对环境关注度的提高,LED照明作为新一代照明受到了广泛的关注。展会上,只要是与LED照明有关的展位都是人头攒动,同时,LED照明也更多的出现在我们的日常生活中。一般家庭能够消费的LED灯都是由各大照明制造商销售的灯泡型LED灯。另外,很多公司也都陆续研发出了荧光灯型的LED灯。在这种情况下,势必有更多的公司参与到LED照明行业中。
LED灯与白炽灯、荧光灯等传统光源有着不同的特性。仅仅依靠LED封装并不能制作出良好的照明灯具。为了设计出更好的LED照明灯具,必须对LED进行区别于传统光源的正确的光学设计。
本文围绕LED照明灯具的设计进行介绍。具体来说主要是从电子电路、热分析、光学方面进行说明。首先是LED照明概要及其与迄今为止的光源的区别。
LED 照明
用于照明的LED大多是白色。LED照明很大程度上依赖蓝光LED芯片的发明和发光效率的提高。
实现白光LED主要有两种方式。一种是使用LED芯片和荧光粉,另外一种是使用RGB 3色LED芯片。目前主要是采取第一种方式。
使用荧光粉一般都是在蓝色LED芯片上涂覆黄色荧光粉。从LED芯片中发出的蓝色光遇到荧光粉时,部分光转换为黄色光。这部分转换的黄色光和蓝色光参杂在一起,就变成了白色光。通过调整荧光粉的量可以控制白光LED的色温,因此发光颜色在制作时就已经决定,后期不能调整。
同时,混合蓝色光和黄色光的话,由于红色和绿色的成分不足,造成显色性不佳。这样,可以通过在蓝色LED芯片中参杂红色和绿色荧光粉或者是在紫外LED芯片中参杂RGB荧光粉,来提高其显色性。
使用RGB 3色LED芯片的优势在于RGB可以调整各种色度,所以不仅能够产生白光,还能产生其他各种颜色的光。但是,LED芯片使用量增大,成本也就会上升。
LED照明的优势及其与迄今为止的其他光源的区别
接下来就LED照明与白炽灯、荧光灯等传统光源的区别,从热、电、光的特性方面进行分析。
热的特性
虽然LED发热很少,但是由于LED照明中,需要使用多颗数瓦级的LED,所以就会产生很高的热量。虽然LED效率比较高,但是高效率仅支持在微小电流中的运行。大电流、高温状态下,效率较低。
另外,荧光粉型的LED,在转换波长的时候会损失能量,从而产生热量。持续高温就会导致LED芯片、荧光粉、封装树脂寿命降低。因此,为了使LED的“高效率”、“长寿命”的优势保持下去,就必须控制LED的结温。
电的特性
LED电源与白炽灯、荧光灯有很大的区别。白炽灯可以直接连接到220V的交流电上。荧光灯虽然有镇流器和转换开关,但也使用220V的交流电。而LED的电源则需要直流的恒定电流,所以需要将220V的交流转换为直流。电源的效率不高将直接影响到整个照明灯具的效率,因此提高电源效率对于提高LED照明效率来说显得尤为重要。
调节LED光的方法主要有两种。一种是改变恒定电流,一种是改变脉冲调制。LED是电子与空穴再结合时发光,光束依赖于电流。电流小的情况下,光束和电流基本是成正比的,但当LED电流增大,热量随之增大,导致发光效率变低,光束和电流就不成正比了。在改变脉冲占空比的方法中,由于Talbot-Plateau 效应(反复接受瞬间闪光后,人眼会感受到反复时间内的平均亮度),可以根据脉冲占空比改变亮度。
光特性
与白炽灯和荧光灯相比,1颗LED发出的光比较少,所以需要使用多颗LED。同时,由于LED的发光面积小,亮度高,人眼直视的话很容易眩晕。为了降低亮度,需要使用扩散板。但是,使用扩散板的话,光向各个方向发散,降低了光的效率。
LED、白炽灯、荧光灯的配光分布各不相同。所谓配光分布是指光源的方向以及各方向的发光强度。即使是相同光束的光源,如果配光分布不同,照度分布也会不同。有时也会出现本来想要照射的地方照度减小,其余部分反而照度增加的情况。
要减少光的浪费,控制配光分布,需要使用透镜和反光镜。LED本身就具有发光面积小、光的放射范围在半球内、配光分布旋转对称等优点,再加上透镜和反光镜,就能构成一个好的光源。
其他在光源属性中,还有光谱。LED的发光光谱集中在特定波长的一个很窄的范围,不放射红外线。因此,在不想使照射物变热的时候,使用LED较好。但是,LED自身会发热,所以需要注意防止其导热。另外还需要注意,荧光粉类型的LED,温度变化,色温也会随之变化。
总结:LED照明设计
LED照明灯具备受期待的原因就是节能、使用寿命长。确实,与白炽灯相比,目前的球泡型LED灯效率更高。但是荧光灯与LED照明灯具相比,还是荧光灯较高。这是因为,虽然单独的LED芯片比荧光灯效率高,但是由于发热降低了发光效率,交流电转换成直流电时,电源效率变低以及由于配光分布变换和使用扩散板导致光效降低,进而造成整个LED照明灯具的效率下降。
因此,为了实现LED的节能,长寿命,必须对热、电、光进行各种设计。单纯依靠LED封装并不能发挥LED的优势。
导读: 虽然白炽灯和荧光灯的能量损失大,但是大部分能量都是通过红外线直接放射出去,光源的发热少;而LED,除了作为可视光消耗的能量,其它能量都转换成了热。另外,由于LED封装面积小,通过对流和辐射的散热少,从而积累了大量的热。
LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学等方面对如何运用LED特性的设计进行解说。近年来,随着电子产品的高密度、高集成度,热解决方案的重要性越来越高,LED照明也不例外,也需要热解决方案。虽然白炽灯和荧光灯的能量损失大,但是大部分能量都是通过红外线直接放射出去,光源的发热少;而LED,除了作为可视光消耗的能量,其它能量都转换成了热。另外,由于LED封装面积小,通过对流和辐射的散热少,从而积累了大量的热。
热解决方案是?
接下来来考虑怎么制定热解决方案。热解决方案简单的说就是解决因为热产生的各种问题。主要有:
1.因为热膨胀导致弯曲和龟裂
2.电子电路的运行障碍
3.材料品质恶化
除此之外,也会担心如果发热会不会损坏设备?为了避免这些问题,要尽量控制电子设备的温度,也就是说有效散热很重要,重点是考虑机器的使用环境和安装方法制定最佳的热解决方案。下面列举了由热导致的问题。后半部分以LED灯为例,就LED相关的解决方案进行解说。
由热导致的问题
1.因为热膨胀导致弯曲和龟裂
电子设备由多个零件构成,每个零件的材质都不一样,热胀冷缩的尺度也不一样。因此,当各种材质组合在一起的时候就有可能使材质发生弯曲,膨胀时,产品在连接处因为应力过多就会产生龟裂。
2.电子电路的运行障碍
一般来说,作为热源的半导体元件,有这样一个特性,即当电子设备中的半导体元件温度上升,电的阻抗就会变小。这样就容易陷入“温度上升-阻抗下降-电流增加-热增加-温度上升”的恶性循环,进而容易发生烧断的现象。
3.材料品质的恶化
一般说来,电子设备中使用的材料容易氧化,温度越高氧化越快,如果让这些材料反复经过高温氧化,就会缩短其寿命。同时,反复加热,材料多次膨胀,多次冷缩,会降低材料的强度,从而破坏了材料。
LED的热解决方案
下面以LED灯为例,具体讨论LED的热解决方案。
要避免电子设备的发热有多种方法。比如,加散热器,在热源周围安置能提供冷气的风扇。前者是通过增加散热面积,来增加散热的通道,后者是使热不在热源周围聚集。但是,正如图1 LED灯的概括图所示,LED封装时不能直接连接散热器,也没有安装风扇的位置。而且内部电源电路板也会产生热量,因此LED灯的散热问题可以说是一个非常棘手的问题。这样,如何有效使用LED安装材质和散热器就变得很重要。
那么如何有效利用LED安装材质和散热器呢?首先必须把握产生热的传热路径。LED元件产生的热通过封装的导线向电路板移动,然后再通过散热器放热。电源电路板产生的热也是如此,通过电路板周围的空气和填充材质,透过散热器向外部散热。
热解决方案中重要的是排除传热路径中阻碍传热的因素,比如可以考虑在传热路径中使用导热性能好的材质、扩大路径的断面面积(例如,粗的铜线比细的铜线更容易导热)、涂导热润滑剂使产品的连接部位不留空隙。
另外,即使通过这些提高了导热特性,但如果散热器不向外部散热,内部还是会聚集很多热。因此也必须提高散热器表面的放热特性。典型的方法就是在表面多安装几个散热片,扩大散热器的放热面积。
运用CAE工具,通过仿真验证热解决方案
CAE的运用
那么怎样验证热解决方法是否有效呢?一种是通过实验测量温度,但是一旦条件改变就要重新测量,效率比较低。因此需要使用CAE软件进行仿真。图2 运用ANSYS解析软件,在LED灯横向摆放时,对LED灯周围的热和空气的流动进行仿真。(ⅰ)(ⅱ)是整个灯的温度分布图,红色部分代表温度高,蓝色部分代表温度低。(ⅲ)(ⅳ)是灯与LED封装周边(盖子内部)的自然对流图,红色箭头部分表示对流速度快,蓝色部分表示对流速度慢。与实际情况相比,这个例子只是一个非常简单的模型,但从某种程度上却能验证产品的温度
分布和空气的自然对流。从整个灯的温度分布来看,虽说盖子的温度低,其他部位温度高,但是某种程度上还是处于一个均等的温度分布。这表面产生的热量大部分都转移到散热器上,而且传送路径中没有障碍。散热器可以起到一个散热的作用,但是如果散热特性不好,整个灯的温度就会上升,因此必须注意散热器的形状(安装散热片的大小、形状、个数等)。
仿真中需要解析对象的形状、产品特性、条件等各种信息,但是通过想要确认的信息可以区别简易解析模型和详细解析模型,从而有效把握想要验证的热解决方法的好坏。例如,本例是对整个电灯的简易建模,并不能把握LED封装内部详细的温度分布,但是如果对该部分进行详细的建模,就能够确认元件实际的温度。
反复实验,通过仿真修改部分信息就可以简单的进行操作,例如容易把握散热器中散热片的形状和个数对温度的影响。作为仿真用软件,可以直接使用CAD信息进行分析,可以在统一环境中对构造、导热、热流体等进行广泛的分析,而且可以进行各种组合分析。在设计中不仅要考虑热的问题,其他因素也必须考虑,组合分析的难易是熟练进行仿真的一个关键点,这些我们在后面进行论述。
本次仅就热的问题进行了探讨,但也存在即使解决了热的问题,却不能解决光、电的问题的情况。产品重在寿命长、无性能损坏、使用安全,因此我们的课题就是实现整体的最优化设计。下次我们将针对电路和光学设计的问题展开讨论。
第五篇:2018年LED芯片行业的发展趋势
2018年LED芯片行业的发展趋势
(附国内外知名厂商)
前言
从2016年开始,LED行业就出在高速发展的阶段,到2018年,又出现了新的格局。纵观整个LED产业链,我们可以看到,LED 芯片领域是LED 产业链的高毛利环节。
国内主要LED芯片企业相继扩产,国内LED芯片将会出现产能过剩的问题,芯片价格将会转而下行,国外LED芯片大厂扩产趋于谨慎,供给增长有限,中国LED芯片厂澳洋顺昌、华灿光电、三安光电等借助地方政府的支持政策,依靠资金、规模等方面的优势积极扩产,全球LED芯片产能逐渐向中国大陆转移。
2018年LED芯片市场规模
2016年受LED芯片巨头晶元光电关停25%蓝光芯片产能,LED芯片供需关系发生变化,LED芯片行业在2016年下半年开始回暖,2017年随着小间距LED市场的爆发以及LED芯片下游封装行业的扩产,导致LED芯片供应仍有一定缺口,中国LED芯片企业的稼动率接近100%,中国LED芯片产值规模保持快速增长。
数据显示,2017年中国LED芯片(不包括台湾,下同)行业产值规模达到188亿元,较2016年增长29.7%,占全球LED芯片产值比例达到40%;中国MOCVD保有量超过1600台,全年净增加246台,LED芯片产能占全球的比例超过54%。
预计,2018年中国MOCVD机台将继续增加288台,达到2200台,随着国内主要LED芯片企业相继扩产,国内LED芯片将会出现产能过剩的问题,芯片价格将会转而下行,国内LED芯片产值规模增速将有所放缓,预计2018年中国LED芯片产值将达225亿元,同比增长19.7%,市场前三企业的产能占比将达47.8%。
中国在全球LED芯片市场中占比逐步提升
LED芯片价格逐渐降低
经过多年的发展,LED 芯片的价格已通过光效的提升得以降低。芯片生产的成本主要有可变成本和固定成本两部分,可变成本包括衬底、金属有机反应源和气体等约占 65%,固定成本包括折旧及其它约占 35%。
厂商技术的提升带来 LED 光效的提高,单位面积外延片上可切割的芯片数量增加,芯片成本下降,芯片价格亦逐年下降。
LED芯片行业格局变化
统计数据显示,2016 年中国 LED 芯片行业市场规模超过 145亿元人民币,同比增长 11.54%,2016 年下半年开始至 2017 年价格止跌并稳健上涨。随着中国大陆厂商产能的提升,以及技术上与台湾的差距越来越小,价格、交期、市场反应迅速等优势明显,2008 年-2016 年 LED 芯片国产率从 50%提升至80%,达到了 106 亿元,进口则为 33 亿元。由于大陆芯片厂商性价比优势明显,出口比率也有所提升,2015 出口率为 8.1%,2016 年则提升至 9.6%。
中国LED芯片行业产值情况(亿元)
全球前十大厂商市场份额从2010年的66.1%提升至了2017年的85.3%。大陆LED芯片产能向三安光电、华灿光电等龙头集中,外资厂商中除了欧司朗仍然有扩产计划,其他厂商均无大量扩产的计划,中国本土芯片厂商多数已经无力扩产,逐渐退出产能竞赛。兆驰虽然有新的LED芯片项目上马,短期内对市场的影响还非常有限。
大陆芯片厂的产能集中度提升
预计2018年三安光电、华灿光电和澳洋顺昌三家厂商将占据71%的大陆LED芯片产能。
LED芯片产业发展趋势
近几年,由于我国政府政策支持及企业研发资金密集投入,并伴随大量我国台湾地区和韩国 LED 产业技术专家和团队加入本土企业,国内 LED 外延芯片企业的平均技术水平有了长足发展,已经达到国际先进水平。
降低外延、芯片成本对推广 LED 应用至关重要。近年来,研究人员从新技术、新结构、新工艺着手,通过技术创新,不断降低外延、芯片生产成本。白光 LED 封装的成本将从 2009 年的 25 美元/klm 降至 2020年的 0.7 美元/klm,LED 成本的终极目标为 0.5 美元/klm,平均每年的成本下降在 30%以上。
除发光效率及单位成本外,在 LED 显示屏、背光源等应用领域,LED 芯片的光衰、亮度、色度一致性以及抗静电能力也是关系 LED 应用的关键技术指标。
尽管单独看几大厂商扩产幅度惊人,然而整体产能扩增的幅度相对有限(145%),再考虑到以Veeco的红牛,中微的A7以及部分Axitron的R6等大腔体新机台成为主力机型后,K465i,CRUIS2及更早期的机型渐次退出市场,整体市场供给更为集中,产能增幅也比预期的要低。
加上地方政府的MOCVD设备补贴相对来说也更为集中。与早期的雨露均沾的模式不同,现在的地方政府更倾向于相机挑选补贴在市场经济竞争中已经证明具有良好的运营与管理能力的公司。
补贴的力度也需要根据企业的实力和谈判能力以一事一议的模式来确定,而具有优势行业地位和良好纳税能力的公司在与地方政府的讨价还价中处于更有利的地位。
从供给结构的角度看,因为三安2017~2018年的扩产进度与幅度仅仅略高于全行业的扩产速度,相比之下尽管扩产的绝对数量不小,但是相对华灿和澳洋,扩产动作显得过于保守。
LED芯片行业的供给结构失去了转化为类似半导体代工行业的结构的机会,可能会逐渐形成类似DRAM存储器行业的三足鼎立格局。相比之下,假定CR3相等时,三足鼎立的结构缺乏稳定性,竞争强度高于一超多强,也高于双寡头结构。
以占据全行业利润接近75%的盈利能力,作为行业龙头的三安有实力牺牲部分利润操作产能威慑的策略,逼退潜在进入者(兆驰)和迫使竞争对手(华灿,澳洋顺昌)更谨慎的扩张。
LED芯片行业几大寡头之间虽然不会明目张胆的以正式协议的方式共同定价分配产量,但是越来越高的行业集中度,加之LED芯片需求较大的需求价格弹性,也会迫使各企业之间也很容易达成默契,主动限产保价。
简而言之,2018年的LED芯片市场,不会出现一家独大的垄断式定价,因此难以保持超高毛利的情形,但是也大概率不会再次像2015年一样价格崩盘。三寡头之间的默契和合作程度会成为决定2018年LED芯片价格趋势的关键因素。然而三寡头结构又具有天然的不稳定性,新的博弈模式还在形成中。
附国内外知名厂商: 国内知名厂商
1、三安光电 三安光电股份有限公司是具有国际影响力的全色系超高亮度发光二极管外延及芯片生产厂商,主要从事全色系超高亮度LED外延片、芯片、化合物太阳能电池及Ⅲ-Ⅴ族化合物半导体等的研发、生产与销售,产品性能指标居国际先进水平。
2、华灿光电
华灿光电以技术为先导,汇集国际技术力量,包括MOCVD在内的世界先进水平的全套蓝绿光LED外延和芯片生产线的生产规位列国内前列,在中国LED芯片市场已形成品质超群的良好口碑。
3、德豪润达
广东德豪润达电气股份有限公司是一家以小家电、LED和新能源相关业务为主的集团性公司。主要业务包括LED芯片、LED外延片、LED照明、LED显示屏、LED封装、LED设备以及厨房小家电的制造和服务。
4、澳洋顺昌
公司致力于中国金属物流行业的开拓与发展,只要业务是LED芯片的研发、生产及销售
5、乾照光电
厦门乾照光电股份有限公司成立于2006年2月,总投资超过3亿元人民币,是专业从事红、黄、橙四元系LED外延片、芯片以及高性能砷化镓太阳电池研发、生产和销售的高新技术企业。
6、聚灿光电
聚灿光电科技(苏州)于2010年4月8日出资设立。主要提供所有白光制程的蓝光芯片,包括8*
15、10*
18、20*
38、40*40等产品规格,应用在商业照明、工业照明、室内照明,笔记本背光、电视背光等领域。
7、上海蓝光
上海蓝光科技有限公司成立于2000年4月,是一家从事氮化镓基LED外延片、芯片研发和产业化生产的企业。主要产品有:氮化镓基高亮度蓝、绿光外延片及芯片。
8、同方光电 同方光电是上市公司同方股份的子公司,资金背景雄厚,主营白光芯片的研发、生产和销售,生产基地主要在江苏南通(2013年,北京基地机台已迁至南通)。目前公司MOCVD数量为59台,排名全国第五。
上游外延芯片方面,公司依托清华大学的科研实力并结合中科院、部分台湾地区研发团队,成功掌握了芯片的关键技术,并申请国内外专利近百个。公司中小尺寸芯片现已被各大封装厂家认可,目前其芯片产值规模仅次于三安。
9、圆融光电
圆融光电科技股份有限公司(股票代码:832502)成立于2010年底,注册资金2.4亿人民币,是国内专业从事全色系发光二极管外延片、芯片的研发、生产和销售为一体的高科技产业。
10、华磊光电
湘能华磊光电股份有限公司成立于2008年6月,由湖南省煤业集团等公司控股,属国有控股公司,注册资本3.88亿元,公司目前主营蓝、绿光外延片和白光芯片,芯片产品以中小功率为主。2015年公司已形成了年产GaN基蓝绿光外延120万片,芯片110万片,灯具220万盏的生产能力。
国外知名芯片厂商
1、CREE 著名LED芯片制造商,美国CREE公司,产品以碳化硅(SiC),氮化镓(GaN),硅(Si)及相关的化合物为基础,包括蓝,绿,紫外发光二极管(LED),近紫外激光,射频(RF)及微波器件,功率开关器件及适用于生产及科研的碳化硅(SiC)外延片。
2、OSRAM 世界第二大光电半导体制造商,产品有照明,传感器,和影像处理器。公司总部位于德国,研发和制造基地在马来西亚,约有3400名员工,2004年销售额为45.9亿欧元。OSRAM最出名的产品是LED,长度仅几个毫米,有多种颜色,低功耗,寿命长。
3、NICHIA 日亚化学,着名LED芯片制造商,日本公司,成立于1956年,开发出世界第一颗蓝色LED(1993年),世界第一颗纯绿LED(1995年),在世界各地建有子公司。
4、ToyodaGosei ToyodaGosei:丰田合成,总部位于日本爱知,生产汽车部件和LED,LED约占收入10%,丰田合成与东芝所共同开发的白光LED,是采用紫外光LED与萤光体组合的方式,与一般蓝光LED与萤光体组合的方式不同。
5、Agilent 作为世界领先的LED供应商,其产品为汽车、电子信息板及交通讯号灯、工业设备、蜂窝电话及消费产品等为数众多的产品提供高效、可靠的光源。这些元件的高可靠性通常可保证在设备使用寿命期间不用再更换光源。安捷伦低成本的点阵LED显示器、品种繁多的七段码显示器及安捷伦LED光条系列产品都有多种封装及颜色供选择。
6、TOSHIBA 东芝半导体是汽车用LED的主要供货商,特别是仪表盘背光,车子电台,导航系统,气候控制等单元。使用的技术是InGaAlP,波长从560nm(puregreen)到
630nm(red)。近期,东芝开发了新技术UV+phosphor(紫外+荧光),LED芯片可发出紫外线,激发荧光粉后组合发出各种光,如白光,粉红,青绿等光。
7、LUMILEDS LumiledsLighting是全球大功率LED和固体照明的领导厂商,其产品广泛用于照明,电视,交通信号和通用照明,LuxeonPowerLightSources是其专利产品,结合了传统灯具和LED的小尺寸,长寿命的特点。还提供各种LED晶片和LED封装,有红,绿,蓝,琥珀,白等LED.LumiledsLighting总部在美国,工厂位于荷兰,日本,马来西亚,由安捷伦和飞利浦合资组建于1999年,2005年飞利浦完全收购了该公司。
8、SSC 首尔半导体乃韩国最大的LED环保照明技术生产商,并且是全球八大生产商之一(资料来源:StrategiesUnlimited--LED市场研究公司)。首尔半导体的主要业务乃生产全线LED组装及定制模组产品,包括采用交流电驱动的半导体光源产品如:Acriche、侧光LED、顶光LED、切片LED、插件LED及食人鱼(超强光)LED等。产品已广泛应用于一般照明、显示屏照明、移动电话背光源、电视、手提电脑、汽车照明、家居用品及交通讯号等范畴之中。
9、SemiLEDs 旭明
是世界领先的高性能的发光二极管(HPLED),适合于一般照明应用。SemiLEDs的LED芯片是最聪明和最有效的当今市场。利用铜合金基材,SemiLEDs已经成功地开发和商业MvPLED技术(金属垂直光子发光二极管)。随着金属衬底和独特的设备结构,SemiLEDs’HPLEDs有更好的电气和热导率导致较高的亮度,效率和更好的传热,适合照明应用,包括显示器,标牌,通信,汽车和一般照明。
10、SDK 昭和电工
是日本具有代表性的综合化学会社,从60年代就开始开发液相色谱,已有40多年的生产历史。生产GPC、GFC、糖分析专用柱、离子交换色谱柱、亲和色谱柱、有机酸分析柱、手性分离柱以及离子色谱分析等800多个型号的各种专用柱。昭和电工日后会进行相同发光效率的蓝光LED与绿光LED的开发,计划以2010年为目标,将其LED事业营收自2007年的100亿日元提升至150~200亿日元的规模。