第一篇:移动通信系统概述教案
移动通信系统
教学目标:
1、理解并掌握移动通信的涵义及移动通信系统的组成。
2、理解移动通信的工作方式,了解移动通信的发展历程。教学方法:讲授法
情境教学法 教学学时:2学时
教学重点:
1、移动通信系统组成2、移动通信的工作方式
教学难点:
1、移动通信的工作方式
教具准备:微机、投影仪、手机
教学内容:
1、移动通信的涵义
2、移动通信系统组成3、移动通信的工作方式
4、移动通信的发展历程
教学过程:
Ⅰ、组织上课
Ⅱ、复习回顾,引入新课
1、什么是通信?并举例说明
2、什么是通信系统?
3、按收信者是否移动,通信系统分为几类? Ⅲ、讲授新课:
一、移动通信
1、定义:通信的双方或一方处于移动中的通信称为移动通信。
2、内涵:
1)移动通信是移动体与移动体之间的通信,是移动体与固定体之间的通信。
2)移动体可以是人,也可以是汽车、火车、轮船、收音机等在移动状态中的物体。
3)移动体之间的通信只能依靠无线电传输。
3、解决的基本问题:动中通
二、移动通信系统的组成:
1、组成:移动通信系统一般由移动台(MS)、基站(BS)、移动业务交换中心(MSC)、传输线等组成。
1)移动台(MS)
分类:便携式、手提式、车载式 2)基站(BS)有收发信道盘等组成
无线小区:每一个基站都有一个可靠的通信服务范围,称为无线小区。无线小区的大小,主要由基站天线高度和发射功率决定。
3)移动业务交换中心(MSC)具有一般市话交换机的功能,还有移动业务所需处理的越区切换、漫游等功能。
4)传输线
连接各设备的中继线。MSC到BS之间的传输主要采用微波或光缆等方式。
2、工作方式:
按通话状态和频率的使用方法(工作方式)分类:
1、单工
2、双工
3、半双工
1)单工:收、发交替
同频单工:收发用一个频率 异频单工:收发各用一个频率
2)半双工:一方双工,另一方单工
3)双工:收发同时工作。(最复杂)移动通信用
时分双工:在通信中在不同时刻进行上下行数据传送模式。发送的时候不接收,接收的时候不发送。上下传送数据的时间不一样,但使用的频率是一样的。
频分双工:上下行在不同的频率上发送和接收。
三、移动通信系统是发展历程
1、第一代移动通信系统(1G,1st Generation)出现时间:1980s 系统类型:FDMA(频分多址),模拟话音通信系统 代表性系统
i.美国AMPS(Advanced Mobile Phone System,也称为IS-54): ii.英国TACS(Total Access Communication System)我国邮电部于1987年确定以TACS制式作为我国模拟制式蜂窝移动电话的标准。2001年关闭模拟网。
讨论:为什么要淘汰第一代模拟移动通信系统?
2、第二代移动通信系统(2G,2st Generation)出现时间:1990s 系统类型:TDMA(时分多址)或窄带CDMA(码分多址),传递话音和低速数据的窄带数字通信系统
代表性系统
i.欧洲的GSM(Global System for Mobile communication): ii.北美的D-AMPS(Digital AMPS,也称为IS-136): iii.北美的CDMA(IS-95,Interim Standard 95)
iv.日本的PDC(Personal Digital Communication system):
3、第2.5代移动通信系统(2.5G,2.5st Generation)出现时间:1996 系统类型
i.TDMA、CDMA(码分多址),中速数据传递的数字通信系统 代表性系统
ii.GPRS(General Packet Radio Service,通用分组无线业务,速率144kbit/s)GSM向WCDMA的演进策略 iii.IS-95B(速率115.2kbit/s)
IS-95向cdma2000的演进策略
4、第三代移动通信系统(3G,3rd Generation)出现时间:2000s 系统类型:FDMA、TDMA和宽带CDMA,传递多媒体业务的宽带数字通信系统
代表性系统
i.欧洲的WCDMA((Wideband CDMA,宽带码分多址))ii.北美的cdma2000 iii.中国的TD-SCDMA((Time Division-Synchronous CDMA,时分-同步码分多址)
四、对两节课的内容进行归纳总结
五、布置作业
第二篇:GSM全球移动通信系统概述-2解析
GSM全球移动通信系统的工作过程 4.1 移动台的位臵登记 4.1.1 第一次登记
当移动台开机后,在它所处的小区,通过空中接口搜索BCCH(广播控制信道,内含有位臵区域识别码(LAI信息(在GSM900规范中定义小区分配编码占用16bit,这个信息在BCCH上规则的广播,以便手机知道自己目前的位臵小区。BCCH是个小容量信道,每0.235 S传一个23字长的消息。移动台依靠收到的频率校正本身的频率,通过同步信息校正本身的信号,锁定到一个正确频率上,从该频率的信道上接收寻呼信号和其它信息。
假如此MS在寄存器中找不到LAI,它就向该业务区的MSC/VLR发送位臵更新请求消息,通知网络它是此位臵区的新用户。此消息经BSS到MSC,最后到VLR。VLR对消息中含有的国际移动用户识别码(IMSI或临时移动台识别码(TMSI以及位臵信息进行分析。此时MSC/VLR就认为该MS被激活,在其数据字段中做“附着”标记,这个标记与IMSI有关。MSC/VLR向HLR发送位臵更新请求信息。HLR位臵更新操作完成后,向VLR 发送位臵更新接受消息。最后由MSC向MS发送位臵更新证实信息,这个过程就算完成,至此MS已在HLR和VLR中注册登记。
4.1.2 分离与附着程序
当一个MS被激活时,对MS标有“附着”标记(IMSI标志;当MS关机时,有IMSI分离程序能使MS通知网络该移动用户为无效用户,此后不再发送寻呼此MS的消息。因此分离与附着程序都与IMSI有关。
当MS关机时,MS向网络发送的最后一条消息是处理分离请求消息,MSC/VLR收到“分离”消息后,就在该MS对应的IMSI上作“分离”标记。归属位臵寄存器(HLR并没有得到这个分离消息,只有拜访位臵寄存器(VLR已“分离”信息作了更新。当MS 再开机时,若它仍处于发送分离消息时的位臵区,则只要完成附着程序即可;若不在原位臵区,它仍要执行位臵更新程序。
4.2 移动台的漫游与位臵更新 4.2.1 漫游的解释
对于处在开机但空闲状态下的MS,它要不断地移动,在某一个时刻它被锁定于一个已定义的无线频率上,即某个小区的BCCH载频上。当MS向远离此小区的方向上移动时,信号强度就会减弱,当它移动到两个小区理论边界附近的某一点时,MS就会因原来小区的信号太弱而决定转到附近信号强的新的无线频率上。为了正确选择无线频率,MS 要对周围的邻近小区的BCCH载频的信号强度进行连续测量,当发现新的BTS发出的BCCH载频信号强度优于原小区时,MS就锁定于这个新的载频上,这就是移动台的切换。MS所接收的BCCH载频的改变并没通知给网络。
移动中的MS,由于接收信号质量的原因,通过无线空中接口不时地改变与网络的连接,这种能力就称为漫游。
4.2.2 移动台的位臵更新
位臵更新过程是由MS引发。在GSM系统中有三个地方需要知道位臵信息,即HLR、VLR和MS(或SIM卡。当这个信息发生变化时,需要保持三者的一致。MS开机后就会对周围进行测试,并连接到接收性能最好的广播信道上。如图4-1所示,移动台所处的区有三种情况: ①在同一位臵区内的不同小区(特征:属于同一BSC(如图中A 其锁定的BCCH载频不同,但没有位臵区的变化,无需位臵更新。②在同一业务区的不同位臵区(特征:属于同一MSC(如图中B, 当MS从LA1向LA2移动时,信号强度会减弱,当它移动到边界附近某一点时,MS就会因原来小区信号太弱而决定转到邻近信号强的新的无线频率上。为了正确选择无线频率,MS要对周围的邻近小区的BCCH载频的信号强度进行连续测量,当发现新的BTS发出的BCCH载频信号强度优于原小区时,MS就锁定于这个新的载频上(小区选择的规则主要来自无线传播条件,以达到最佳传输质量为目的。一个
正常业务状态的MS,收听由业务小区广播的频率表,从中获得同一PLMN(公用陆地移动网中邻近小区的标志信道(CCCH,MS逐一与这些标志信道同步,以解调出每个BCCH上的信息,从中可以确定PLMN和位臵区(LA标志以及各种无线参数。MS对允许接入的小区计算其无线环境并与当前环境比较,这些处理是与当前小区寻呼信道的接收并行的。当MS在同一LA内发现一个更好的小区时,就切换到这个小区并收听新小区的寻呼信道,同时监视新的标识信道表。位臵区的变化要通知网络的MSC,MS要求接入网络来进行MSC/VLR内的位臵更新。此时,VLR中MS的位臵就由原来的LA1改为LA2。
③在不同业务区(特征:属于不同MSC(如图中C MS的业务区改变必须通知网络,以便能找到漫游的移动台,MS开机后就得报告网络它目前所处位臵。当它锁定在新的BCCH的载频上,并在BCCH消息中得知此时它所处的位臵区及所属业务区。首先MS向网络发出位臵更新请求,此信息通过空中接口传到LA1的BSC,再由它传送到新的MSC。第二步是由新的MSC向HLR发送位臵更新请求信息。从HLR向新的MSC发回位臵更新请求接受,这个消息通过LA1所属的BSC到新小区的BTS,再通过空中接口传送给MS,这就是位臵更新证实。此时MS已在新的MSC 业务区,它必须删除旧的MSC中的位臵信息,否则它的位臵就有两处,无法准确找到它。此时由HLR向旧的MSC发送位臵删除信息,旧的MSC得到此信息后,在VLR删除此移动用户的位臵信息,并向HLR报告位臵删除接受,至此,MS已属新MSC/VLR中的一个用户。
4.3 移动台的切换过程 切换处理分成几个级别: BTS内的切换类型由BTS自主决定;BTS之间、BSC之内的切换由BSC决定;BSC之间、MSC之内的切换由MSC处理;
MSC之间的切换由GMSC决定。
BSC与MSC之间的接口协议称为BSSMAP(BSS管理应用部分,用以支持各种连接处理和切换过程,其承载方式是A接口上的CSS.7信令协议。BTS与BSC之间的协议称为RSM(无线分系统管理,用于支持分配传输路径和测量报告处理,其承载方式是Abits接口上的LAPD信令协议。BTS与MS之间的协议称为RIL3—RR(无线接口第三层RR协议,它只是整个第三层实体的一部分,用于支持无线连接处理和测试报告处理,其载体是Um接口上的LapDm信令协议。除此之外,还有邻近MSC之间交换消息的协议,称为MAP/E(移动应用部分—E ,它只是MAP的一部分,用于支持MSC之间的交换处理,其承载是MSC之间的CSS.7信令系统。
越区切换是指移动台正处在呼叫建立状态或忙状态下的无线信道转换过程。移动台从一个小区移动到另一个小区,两小区的无线频率是不相同的,若想要维持通话,MS的频率必须改变,即从一个小区的一个无线频率下的一个时隙转换到另一个小区的另一个无线频率上,并占有它的一个时隙。
切换是由网络决定的。通话中的移动台从一个小区移动到另外一个小区,这个小区可能是同一业务区的同一BSC管辖下的小区;也可能是同一业务区不同BSC管辖下的另一小区;还可能是不同业务区中的另一小区。根据这三种不同情况要进行不同的操作。4.3.1 BSC内的切换
这是最简单的切换过程。BSC根据MS和BTS的测量报告,经分析处理后,确定此时MS所在区,即MS报告中最强信号的小区。BSC与新小区的BTS建立链路,并在新小区中给MS分配一个TCH供MS切换后使用。MS切换后,BSC向MSC报告,MS由A点移动到B点的情况,此时MS仍属BSC1管辖。MS在切换后继续测量周围小区的信号强度,并接收新小区的信息。
4.3.2同一业务区不同BSC之间的切换
移动台从B点移动到C点就属于这种切换,此时MS已跨越两个BSC,即从BSC1到BSC2。
切换过程如下:首先是MS向原来的MSC1报告其测量结果。经BSC1的分析处理,得知MS所到的小区属BSC2管辖,做出切换判决,向MSC发切换请求。MSC与BSC2建立新路径到BTS(新小区,即MSC向BSC2发出切换请求。BSC2收到切换请求消息后,与新的BTS建立链路,为MS提供切换用的新TCH,即允许切换,BSC2向MSC发出切换请求证实。此时MSC向原来的BSC1发出执行切换命令,经BTS到MS。MS切换后,送出切换完成消息到BSC2,即MS与MSC2建立通路。BSC2向MSC报告切换完成,送出MS 接入新TCH信息到MSC。MSC向BSC1发出清除命令,释放原来MS的信道。BSC1完成信道释放后向MSC报告清除完成。
MS到达一个新的位臵区后,要继续测量周围小区的信号强度,同时接收BSC2的有关信息。位臵区发生变化时,它还要进行位臵更新。
4.3.3不同业务区之间的切换
MS从C点移动到D点就属于这种切换,即从MSC A,动到MSC B,这是最复杂的切换情况,要进行多种信令的传递过程才能实现。当主呼MSC(MSC A发送执行切换消息给另一个MSC(MSC B时,消息中包含MSC B分配无线信道的部分参数,并应标明呼叫所切换到的基站(BS。当该基站完成无线信道分配,并且MSC B从其相关VLR取回切换号码后,MSC B将返回MSC A无线信道应答消息。切换号码用于将呼叫从MSC A接续到MSC B。
如果MSC B中没有空闲业务信道可用,将告诉MSC A,并由MSC A结束切换进程。MS 现存的线路连接将不被消除。
收到无线信道响应消息后,MSC A用固定网络的信令(IAM在MSC A和MSC B之间建立连接。MSC B发出地址完成消息(ACM并开始无线信道的切换。收到ACM后, MSC A开始切换过程,即向BSC2和MS发出切换命令。移动台完成无线信道切换后,发送证实消息给MSC B,然后MSC B发送结束信号给MSC A。收到此消息后MSC A释放原有无线信道。
为了不与MSC A和MSC B之间所用的PSTN/ISDN信令系统冲突,MSC B收到证实后产生回答信令(ANS。
MSC A将掌握总的呼叫控制直至固定用户或MS挂机。然后,MSC A释放至MSC B的连接,并发送结束信令消息来中止MAP进程。MSC-B将释放RR子层的连接,并发送切换报告消息给其相关的VLR,用来释放切换号码。
4.4 移动台呼出 步骤如下: ①原先工作在广播控制信道(BCCH上,后MS向BS发出申请信道的请求,收到BS发来的立即分配消息后,MS转到指定的专用信道(DCCH上
② MS申请业务信道(由BS发给MSC,MSC向VLR发送请求以获得移动台的参数,网络要求对MS进行鉴权,产生一128 bit的RAND传给MS,MS处理后发送鉴权响应给网络,VLR向MSC回送信息证实,由网络方面判断此用户的合法性。
通过鉴权,网络就保密方面考虑向MS发送臵密码模式消息(加密模式管理是无线传输性之一,传输是否采用加密取决于MSC的选择,加密模式用于无线路径,管理主要涉及MS和BTS,MS提供加密参数(KC到BTS,以决定是否选用加密模式。将有关用户数据加密的信息传给移动台,MS对此消息返回密码模式完成消息给MSC,(如果需要, VLR将重新分配一个TMSI给MS。
对密码模式作出响应后,MS发送建立消息给MSC,MSC为此次呼叫分配一路地面信道,并要求BS分配无线业务信道TCH。
③移动网络的通信链路建立后,MSC向固定网络发送消息IAM(初始地址,以便将呼叫接续到固定网络。固定网络首先通过FIN(连接证实消息将设备信息返回MSC。被叫接通后,送回铃消息给MS。在被叫摘机后,固定网发给MSC回应信息(ANS。MSC发给MS 连接命令,MS发回响应并转入通话,至此,完成了MS 主呼进程。
4.5 移动台呼入
移动台被叫时,主叫方发出的被叫电话号码并不说明某条电话用户线或某个地理位臵,而只是指向某个HLR中的用户数据存储区。在GSM系统中,移动用户电话号码的结构是基于ISDN的编号方式,因此称为MSISDN,其编号方式是按照CCITT的E.164建议。移动用户电话号码中的前几位数字可表明该用户归属的移动通信网,分析开头几位号码还能确定存放该用户数据的HLR,从这个HLR的用户数据中就能读出该用户目前访问的移动交换中心VMSC。因此通过查询HLR,可以确定最终到达该移动用户的路由。由此可见,整个呼叫建立过程可分为两部分:查询HLR以前和查询以后。这使得呼叫路由分为两部分:从主叫地到发出查询的地点,再从查询地到被叫处。
GSM用户的电话号码格式 CC NDC X1 X2 X3 X4 X5 X6 X7 国内有效ISDN号码 国际移动用户ISDN号码 其中:CC为国家码
NDC为PLMN识别码(不一定与地区号一致 X1 X2 X3为HLR的号码 X4 X5 X6 X7为用户号码 举例:+86 139 中国电信 +86 130 中国联通
①呼叫用户拨出移动用户号码(MSISDN后,固定网络将此呼叫接续到最近的相关移动交换中心(GSMC,GSMC向归属位臵寄存器(HLR发出查询消息以获得路由信息。固定网发出的初始地址(IAM0就是移动用户号码。HLR根据其保留的被叫用
户数据,确定MS目前所在的VLR,并向该VLR发查询消息。VLR返回该MS的移动台漫游号码(MSRN,并由HLR返回给GMSC(第一部分查询HLR以前。根据这些消息, GMSC将呼叫接续到拜询MSC,即MS目前归属的MSC。MSC向VLR发送信息I/C,以获得呼叫信息
② MSC向相关的基站BS发出寻呼请求信息,以建立至MS的呼叫连接。BSC确定被呼MS所归属位臵区的BTS后,向其发送呼叫分组信息,BTS再通过寻呼信道(PCH发出被叫MS的识别号和寻呼模式。
③当被呼MS接收到它的呼叫后,在MS中的RR子层启动随机接入进程(RAP,在随机接入信道(RACH上发送信道请求信息给BS。此请求给BS的RR子层。RR子层分配专用控制信道(DCCH,并在公共控制信道(CCCH上发送立即指配消息给MS。MS转换到相应的DCCH上,从而建立起主信令链路(MSL。然后,MS向BS和MSC返回寻呼响应信息。
④接到MS的寻呼响应后,MSC向VLR发送过程接入请求。然后,开始常规鉴权和密码参数传递过程。如果成功,VLR向MSC发送完成呼叫消息,启动MSC发送设臵消息给MS。被呼MS收到此消息后进入呼叫存在状态,同时向BS返回呼叫证实消息,以说明MS已具备受话的条件。
⑤收到呼叫证实消息后,MSC为此次呼叫分配地面信道,并命令基地台分配无线业务信道TCH。此过程与MS主呼中的相应过程一样。若TCH连接成功,MSC将收到的应答为指配完成信息。
⑥信道建立完成后,MSC将收到MS发来的回铃消息。然后,MSC在FIN(连接证实中发送连接证实消息给呼叫端,并在发送给固定网的ACM(地址完成消息中指示被呼移动台已接通。被呼用户摘机后,MS发送连接消息给MSC。MSC返回被呼MS应答并发回应消息(ANS给主叫用户。至此,完成了移动台被呼的接续过程。
4.6 移动台工作原理
移动台设备是GSM系统中用户所使用的入网设备。它分阶段地为用户提供GSM系统的所有业务功能。移动台设备分为终端设备(TE和用户身份卡(SIM卡两部分。移动台设备应包括一套无线收发信机、一个控制器及话音编译码器,另外还应提供用户接入网络必需的键盘、显示器,除此以外还提供用户接入网络必需的键盘、显示器,除此以外还提供ISDN终端接入功能,因此在移动台中还提供终端接入所必须的码速适配功能。通常一个移动台的组成方框如图4-2所示。
4.6.1 简化描述 语音信号为模拟量,通过话筒送入手机,对它进行抽样模数转换及语音编码,变成 13kbit/s 数据流,编码输入为每 20ms 一段,将 2080bit 经编码压缩后变为 260 bit,语音 编码后再进入信道编码,编码完成后在与控制器产生的信令信号经编码后的混合,形成传 输速率为 22.8kbit/s。编码后的语音和信令再进入交织及加密单元。交织单元分两步交织: 一为 3 组 8 个 57 bit 块交织组合为 2 组 114 bit 块,二为此 114 bit 块再内自行交织,然后 这些块进入加密单元与加密数据的 114 bit 进行异或形成加密后的比特流。加入其它变成 156.25 bit 的 Burst。然后组合到 TDMA 帧和时隙中去,形成复帧、超帧及超高帧,最后 形成 270.833kbit/s 的 TDMA 帧数据流送到调制解调器发送。4.6.2 射频单元的工作 射频单元包括从调制器、发信到天线合路器及接收到解调输出部分电路,其主要功能 是将基带单元所形成的 TDMA 帧调制到射频及其相反过程。射频单元发射频率为
890~915MHz,收信频率为 935~960MHz,频道间隔为 200kHz。合路器是将移动台发信和收信组合到一根天线上。在 GSM 数字移动通信系统中,由 于收发不在一个时隙(发比收慢 3 个时隙),因此移动台可以省去用于收发共用的双工 器,只需要使用简单的收发合路器(组合)功能,即可将发信和收信信号组合到一根天线 上而不会互相干扰。调制将从 TDMA 帧来的 270.833kbit/s 数据流信号按 GSMK 调制方法形成 I、Q 信 号,再送到发信上变频器调制到 900MHz 频段。解调和均衡将从收信单元接收的模拟 I、Q 信号进行数字化处理恢复出基带信号。频率合成器为发信和收信单元提供变频所必须的本 振信号,它通常从时期电路获得基准频率源,然后采用锁相技术实现频率合成。4.6.3 基带部分的工作 基带部分电路包括信道编/译码、加密/解密、TDMA 帧形成/信道分离及基时钟电路,它还包括话音/译码、码速适配器等电路。
来自送话器的话音信号经过 8kHz 抽样及 A/D 转换,变成 13bit 均匀量化的 104kbit/s 数据流,再由话音编码器进行 RPE-LTP 编码。编码输入为每 20ms 一段,经话音编码压 缩后为 260bit,其中 LPC-LTP 为 72bit,RPE 为 188bit。话音编码后的信号速率为 13kbit/s。同时话音编码器还提供话音活性检测(VAD)功能,即当有话音时,其 SP 信号 为 1;当无话音传输时,将 SP 示为 0(即 SID 帧)。13kbit/s 话音信号进入信道编码器进行编码。对于话音信号的每 20ms 段,信道编码 器首先对话音信号中最重要的 Ia 类 50bit 进行分组编码(CRC 校验),产生 2bit 校验 位,再与 132bit 的 Ib 类比特组成 185bit,再加上 4 个尾比特“0”,组合为 189bit,这 189bit 再进入 1/2 速率卷积编码器,该编码限制长度为 5,最后产生出 378bit。这 378bit 再与话音信号中对无线信道最不敏感的 II 类 78bit 组成最终的 456bit 组。同样,对于信令 信号,由控制器产生并送给信道编码器,首先按 FIRE(法尔)码进行分组编码(称为块编 码),然后再进入 1/2 卷积编码,最后形成 456bit 组。因此信道编码后信道传输速率为 22.8kbit/s 编码后的话音和信令信息再进入交织及加密单元。在交织单元,这些 20ms 话音的 456bit 被分为 8 个 57bit 块,这些 57bit 块被存储,并和前后面 8 个 20ms 话音的 57bit 块分别再交织组合为 8 个 114bit 块,并且在每个 114bit 块中这些从两个 20ms 来的 57bit 再一次每比特每比特交织形成的 114bit 块。这些 114bit 块进入加密单元与加密数据的 114bit 进行异或形成加密后的比特流。加密后的 114bit 流被加入训练序列及头、尾比特等 组成 156.25bit(包括 8.25 防护比特)的突发,这些突发被按信道类型组合到不同的 TDMA 帧和时隙中去,形成复帧、超帧及超高帧,最后形成 270.833kbit/s 的 TDMA 帧数 据流送到调制解调器发送。在接收通道,执行与上述相反的过程。在这些成帧及信令控制 过程中,都是以时钏基准部分提供的统一帧号、时隙号、1/8bit 时钟等为基础的,以便各 部分同步执行。4.6.4 控制器的工作 控制器实现对移动台的控制,包括对无线信道频率合成器的控制以选择合成的频道; 根据从信道解码得到的信令信息,执行相应的信令协议并送到信道编码器再发射出去,以 便与网络建立信令通信;对信道编译码、TDMA 帧形成等部分的控制。此外,它还控制键 盘的输入、显示器的显示输出以及与外部 SIM 卡的接口与通信。码速适配器的控制也由控 制器等单元完成。
第三篇:移动通信3G技术概述
中国移动与中国联通在移动通信市场的竞争日趋激烈,竞争领域从原先的话音业务发展到增值业务。伴随着移动增值业务的不断发展,迈向3G(3rd Generation,第三代移动通信)则是两大移动运营商的必然选择。与前两代系统相比,第三代移动通信系统的主要特征是可提供丰富多彩的移动多媒体业务,其传输速率在高速移动环境中支持144kb/s,步行慢速移动环境中支持384kb/s,静止状态下支持2Mb/s。其设计目标是为了提供比第二代系统更大的系统容量、更好的通信质量,而且要能在全球范围内更好地实现无缝漫游及为用户提供包括话音、数据及多媒体等在内的多种业务,同时也要考虑与已有第二代系统的良好兼容性。
目前国际电联接受的3G标准主要有以下三种:WCDMA、CDMA2000与TD-SCDMA。CDMA是Code Division Multiple Access(码分多址)的缩写,是第三代移动通信系统的技术基础。第一代移动通信系统采用频分多址(FDMA)的模拟调制方式,这种系统的主要缺点是频谱利用率低,信令干扰话音业务。第二代移动通信系统主要采用时分多址(TDMA)的数字调制方式,提高了系统容量,并采用独立信道传送信令,使系统性能大为改善,但TDMA的系统容量仍然有限,越区切换性能仍不完善。CDMA系统以其频率规划简单、系统容量大、频率复用系数高、抗多径能力强、通信质量好、软容量、软切换等特点显示出巨大的发展潜力。
1、WCDMA
全称为Wideband CDMA,这是基于GSM网发展出来的3G技术规范,是欧洲提出的宽带CDMA技术,它与日本提出的宽带CDMA技术基本相同,目前正在进一步融合。该标准提出了GSM(2G)—GPRS—EDGE—WCDMA(3G)的演进策略。GPRS是General Packet Radio Service(通用分组无线业务)的简称,EDGE是Enhanced Data rate for GSM Evolution(增强数据速率的GSM演进)的简称,这两种技术被称为2.5代移动通信技术。目前中国移动正在采用这一方案向3G过渡,并已将原有的GSM网络升级为GPRS网络。
2、CDMA2000
CDMA2000是由窄带CDMA(CDMA IS95)技术发展而来的宽带CDMA技术,由美国主推,该标准提出了从CDMA IS95(2G)—CDMA20001x—CDMA20003x(3G)的演进策略。CDMA20001x被称为2.5代移动通信技术。CDMA20003x与CDMA20001x的主要区别在于应用了多路载波技术,通过采用三载波使带宽提高。目前中国联通正在采用这一方案向3G过渡,并已建成了CDMA IS95网络。
3、TD-SCDMA
全称为Time Division-Synchronous CDMA(时分同步CDMA),是由我国大唐电信公司提出的3G标准,该标准提出不经过2.5代的中间环节,直接向3G过渡,非常适用于GSM系统向3G升级。但目前大唐电信公司还没有基于这一标准的可供商用的产品推出。
三个技术标准的比较
WCDMA、CDMA2000与TD—SCDMA都属于宽带CDMA技术。宽带CDMA进一步拓展了标准的CDMA概念,在一个相对更宽的频带上扩展信号,从而减少由多径和衰减带来的传播问题,具有更大的容量,可以根据不同的需要使用不同的带宽,具有较强的抗衰落能力与抗干扰能力,支持多路同步通话或数据传输,且兼容现有设备。WCDMA、CDMA2000与TD-SCDMA都能在静止状态下提供2Mbit/s的数据传输速率,但三者的一些关键技术仍存在着较大的差别,性能上也有所不同。
1、双工模式
WCDMA与CDMA2000都是采用FDD(频分数字双工)模式,TD-SCDMA采用TDD(时分数字双工)模式。FDD是将上行(发送)和下行(接收)的传输使用分离的两个对称频带的双工模式,需要成对的频率,通过频率来区分上、下行,对于对称业务(如语音)能充分利用上下行的频谱,但对于非对称的分组交换数据业务(如互联网)时,由于上行负载低,频谱利用率则大大降低。TDD是将上行和下行的传输使用同一频带的双工模式,根据时间来区分上、下行并进行切换,物理层的时隙被分为上、下行两部分,不需要成对的频率,上下行链路业务共享同一信道,可以不平均分配,特别适用于非对称的分组交换数据业务(如互联网)。TDD的频谱利用率高,而且成本低廉,但由于采用多时隙的不连续传输方式,基站发射峰值功率与平均功率的比值较高,造成基站功耗较大,基站覆盖半径较小,同时也造成抗衰落和抗多普勒频移的性能较差,当手机处于高速移动的状态下时通信能力较差。WCDMA与CDMA2000能够支持移动终端在时速500公里左右时的正常通信,而TD-SCDMA只能支持移动终端在时速120公里左右时的正常通信。TD-SCDMA在高速公路及铁路等高速移动的环境中处于劣势。
2、码片速率与载波带宽
WCDMA(FDD-DS)采用直接序列扩频方式,其码片速率为3.84Mchip/s。CDMA20001x与CDMA20003x的区别在于载波数量不同,CDMA20001x为单载波,码片速率为1.2288Mchip/s,CDMA20003x为三载波,其码片速率为1.2288×3=3.6864Mchip/s。TD-SCDMA的码片速率为1.28Mchip/s。码片速率高能有效地利用频率选择性分集以及空间的接收和发射分集,可以有效地解决多径问题和衰落问题,WCDMA在这方面最具优势。
载波带宽方面,WCDMA采用了直接序列扩谱技术,具有5MHz的载波带宽。CDMA20001x采用了1.25MHz的载波带宽,CDMA20003x利用三个1.25MHz载波的合并形成3.75MHz的载波带宽。TD-SCDMA采用三载波设计,每载波具有1.6M的带宽。载波带宽越高,支持的用户数就越多,在通信时发生网塞的可能性就越小。在这方面WCDMA具有比较明显的优势。
TD-SCDMA系统仅采用1.28Mchip/s的码片速率,采用TDD双工模式,因此只需占用单一的1.6M带宽,就可传送2Mbit/s的数据业务。而WCDMA与CDMA2000要传送2Mbit/s的数据业务,均需要两个对称的带宽,分别作为上、下行频段,因而TD-SCDMA对频率资源的利用率是最高的。
3、智能天线技术
智能天线技术是TD-SCDMA采用的关键技术,已由大唐电信申请了专利,目前WCDMA与CDMA2000都还没有采用这项技术。智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。TD-SCDMA智能天线的高效率是基于上行链路和下行链路的无线路径的对称性(无线环境和传输条件相同)而获得的。智能天线还可以减少小区间及小区内的干扰。智能天线的这些特性可显著提高移动通信系统的频谱效率。
4、越区切换技术
WCDMA与CDMA2000都采用了越区“软切换”技术,即当手机发生移动或是目前与手机通信的基站话务繁忙使手机需要与一个新的基站通信时,并不先中断与原基站的联系,而是先与新的基站连接后,再中断与原基站的联系,这是经典的CDMA技术。“软切换”是相对于“硬切换”而言的。FDMA和TDMA系统都采用“硬切换”技术,先中断与原基站的联系,再与新的基站进行连接,因而容易产生掉话。由于软切换在瞬间同时连接两个基站,对信道资源占用较大。而TD-SCDMA则是采用了越区“接力切换”技术,智能天线可大致定位用户的方位和距离,基站和基站控制器可根据用户的方位和距离信息,判断用户是否移动到应切换给另一基站的临近区域,如果进入切换区,便由基站控制器通知另一基站做好切换准备,达到接力切换目的。接力切换是一种改进的硬切换技术,可提高切换成功率,与软切换相比可以减少切换时对邻近基站信道资源的占用时间。
在切换的过程中,需要两个基站间的协调操作。WCDMA无需基站间的同步,通过两个基站间的定时差别报告来完成软切换。CDMA2000与TD-SCDMA都需要基站间的严格同步,因而必须借助GPS(Global Positioning System,全球定位系统)等设备来确定手机的位置并计算出到达两个基站的距离。由于GPS依赖于卫星,CDMA2000与TD-SCDMA的网络布署将会受到一些限制,而WCDMA的网络在许多环境下更易于部署,即使在地铁等GPS信号无法到达的地方也能安装基站,实现真正的无缝覆盖。而且GPS是美国的系统,若将移动通信系统建立在GPS可靠工作的基础上,将会受制于美国的GPS政策,有一定的风险。
5、与第二代系统的兼容性
WCDMA由GSM网络过渡而来,虽然可以保留GSM核心网络,但必须重新建立WCDMA的接入网,并且不可能重用GSM基站。CDMA20003x从CDMA IS95、CDMA20001x过渡而来,可以保留原有的CDMA IS95设备。TD-SCDMA系统的的建设只需在已有的GSM网络上增加TD-SCDMA设备即可。三种技术标准中,WCDMA在升级的过程中耗资最大。
移动运营商的3G策略
目前全球已经颁发了73个WCDMA运营牌照,13个CDMA2000运营牌照。我国的3G牌照尚未发放,中国移动、中国联通等运营商将采用何种技术标准目前仍未确定。不久前信息产业部已经对WCDMA、CDMA2000、TD-SCDMA的使用频率进行了规划,预示着这三种标准在我国都将被采用。
在2G与3G之间衍生出了2.5G技术。2.5G技术突破了2G电路交换技术对数据传输速率的制约,引入了分组交换技术,从而使数据传输速率有了质的突破,是一种介于2G与3G之间的过渡技术。目前中国移动已经建成了2.5代的GPRS网络,正朝着WCDMA的方向发展。中国联通在发展了GSM网络后突然转向发展CDMA IS95网络,正朝着CDMA2000的方向发展。虽然CDMA2000在升级的过程中节省投资,但由于中国联通是由GSM网络改而发展CDMA IS95网络,其网络成本投入也相当大。由于中国联通的CDMA网络建设起步较晚,目前尚未建成2.5代的CDMA20001x网络,在与中国移动的2.5代业务竞争上处于劣势。今年10月1日,中国移动正式推出了基于2.5代网络的彩信业务(MMS,多媒体信息服务),该业务能在手机短信中加载声音、图像、视频等多媒体信息,利用GPRS网络能达到约40Kbit/s的传送速度,揭开了移动多媒体时代的序幕,具有彩屏和弦内置数码相机等新功能的手机立刻走俏市场。为应对中国移动的彩信业务,广东联通不久前推出了彩e业务,但中国联通的CDMA IS95网络只能基于电路交换方式提供14.4Kbit/s的传送速度,对多媒体信息的发送形成瓶颈。迅速发展2.5代的CDMA20001x网络已经成为中国联通的当务之急。
我国具有独立知识产权的TD-SCDMA能否在3G技术标准争霸中抢占一席之地倍受关注。TD-SCDMA能有效地节约频谱资源,能够实现从GSM系统的廉价升级,但其通信质量较WCDMA及CDMA2000差。毕竟能否节约频谱资源与投资成本只是政府与运营商们关心的事,作为用户永远是将通信质量作为首选。在我国移动通信市场激烈竞争的格局下,满足用户的需求始终是运营商们努力追求的目标,将来TD-SCDMA可能会在低端3G市场得到应用。目前TD-SCDMA技术尚未被国外的运营商所采纳,如果今后只有我国采用这一标准将对国际漫游提出新的难题。大唐电信至今还没有基于TD-SCDMA技术的成熟产品推出,其研发进度落后于WCDMA与CDMA2000。但不久前我们高兴地看到“TD-SCDMA产业联盟”成立,大唐电信、南方高科、华立、华为、联想、中兴、中国电子、中国普天等8家企业组成了联盟的第一核心,使该技术迈向商用有了强大的技术力量支持。TD-SCDMA是中国在移动通信领域的第一个标准,它的出现是中国百年电信史上零的突破。我们乐见TD-SCDMA能够走向成熟。
目前第二代移动通信系统中,无论是GSM或是CDMA IS95都已经能提供令人基本满意的话音质量与通信稳定性,但其数据传输速率低下,因而第三代移动通信系统最吸引人的地方并不在于话音质量与通信稳定性的提高,而是数据传输速率的大幅提升,这将大大促进移动多媒体业务的发展。然而手机的主要用途毕竟是通话,而不是其它的增值业务。3G的巨大投资能否创造出效益,目前还是个未知数。目前2.5代的业务发展状况可以为我们的3G策略提供一定的帮助。
中国移动的GPRS推出至今,较为成功MMS业务是基于GPRS带宽的多媒体业务,而直接利用GPRS手机与电脑连接上网的用户数始终不多,毕竟具有移动上网需求的人还只是少数。目前2.5代的GPRS或CDMA20001x已经可以提供40Kbit/s左右的数据传输速率,能基本满足声音、图像、简短的视频等多媒体信息传输的带宽要求。移动上网的主要用途是对时间要求非常紧迫的收发E-Mail等公务,而不是下载视频等的娱乐活动,目前的带宽也可以基本满足。GPRS或CDMA20001x的理论传输速率都在150kbit/s左右,今后随着2.5G网络的不断升级,其实际传输速率将逐步接近这一数值,可对移动多媒体及移动上网业务提供更强有力的支撑。
而3G网络在手机静止状态下能够具有2Mbit/s的数据传输速率。就多媒体业务而言,3G较2.5G的优势在于能够提供更加丰富多彩的视频信息;就移动上网而言,能够使手机上网速度基本达到目前有线宽带网的水平。但大幅提高的带宽能否增加足够多的业务量以使3G达到赢利呢?在多媒体应用方面,可以采用手机进行数码录像后迅速将视频发往其它手机,这可以应用于记者采访和婚宴等重要聚会。这是3G的一个赢利点,但用户数毕竟很少。在移动上网方面,可以采用手机上网下载视频或收看在线电影、在线电视直播等。但由于有线宽带网的迅速普及,这类用户廖廖无几。况且移动通信的成本大大高于有线通信,其资费自然不低,价格也将成为制约3G业务发展的不利因素。
综合以上各种因素考虑,我国目前尚不具备发展3G的市场条件。而世界其他国家对发展3G也都采取了十分谨慎的态度。作为WCDMA发展较快的日本已经推迟了3G的发展计划。英国沃达丰集团宣布原计划今天秋季在德国推出的3G服务将推迟约6个月,同时终止了正在英国和欧洲其它地区进行的3G网络基础建设。法国电信旗下的Orange公司正在与瑞典官方进行谈判,要求推迟在瑞典的3G服务。西班牙电信Telefonica和芬兰Sonera电信公司宣布暂停向德国、意大利、奥地利和瑞士提供3G服务。德国的6家通用移动通信系统的供应商均已被迫推迟3G商业化运营的时间。而在我国香港,原先预计在今明两年全面发展3G的运营商也把时间推迟到2005年或2006年。
目前移动运营商们需要重点考虑的应是如何建设并进一步优化2.5G网络,对移动多媒体及移动上网业务提供更好的支持,这毕竟是投入少而效益大赢利项目。发展3G是大势所趋,但应以潜在市场的成熟作为启动的依据,切不可陷入国与国或运营商与运营商的盲目攀比之中。
第四篇:移动通信系统概念
移动通信系统
目录[隐藏] 移动通信系统 1 ,蜂窝系统 2 ,集群系统 3 ,卫星通信系统 4,AdHoc 网络系统 5,无线通信网 6,移动通信系统的特点 1 7,相关图书信息内容简介 1 图书目录
[编辑本段 移动通信系统 编辑本段]移动通信系统 编辑本段
移动通信系统主要有蜂窝系统,集群系统,AdHoc 网络系统,卫星通信系统,分 组无线网,无绳电话系统,无线电传呼系统等.
[编辑本段 编辑本段]1 , 蜂窝系统 编辑本段
蜂窝系统是覆盖范围最广的陆地公用移动通信系统.在蜂窝系统中,覆盖区域一 般被划分为类似蜂窝的多个小区.每个小区内设置固定的基站,为用户提供接入和信 息转发服务.移 动用户 之间以及移动用 户和非 移动用户之间的 通信均 需通过基站进 行.基站则一般通过有线线路连接到主要由交换机构成的骨干交换网络.蜂窝系统是 一种有连接网络, 一旦一个信道被分配给某个用户, 通常此信道可一直被此用户使用.蜂窝系统一般用于语音通信.
[编辑本段 编辑本段]2 , 集群系统 编辑本段
集群系统与蜂窝系统类似,也是一种有连接的网络,一般属于专用网络,规模不 大,主要为移动用户提供语音通信.
[编辑本段 编辑本段]3 , 卫星通信系统 编辑本段
卫星通信系统的通信范围最广,可以为全球每个角落的用户提供通信服务.在此 系统中, 卫星起着与基站类似的功能.卫星通信系统按卫星所处位置可分为静止轨道, 中轨道和低轨道3种.卫星通信系统存在成本高,传输延时大,传输带宽有限等不足.
上述移动通信系统都需要有线网络通信基础设施的支持,如基站,交换机,卫星 等.这些设施的建立和运转需要大量的人力和物力,因此成本比较高,同时建设的周 期也长.Ad Hoc 网络不需要基站的支持,由主机自己组网,因此,网络建立的成本 低,同时时间短,一般只要几秒钟或几分钟.上述通信系统中,移动终端之间并不直 接通信,并且移动终端只具备收发功能,不具备转发功能.而 Ad Hoc 网络由移动主 机构成,移动主机之间可以直接通信,而移动主机不仅收发数据,同时还转发数据.此外目前的移动通信系统主要为用户提供语音通信功能,通常采用电路交换,拓扑结 构比较稳定.而 Ad Hoc 网络使用分组转发技术,主要为用户提供数据通信服务,拓 扑结构易于变化.
[编辑本段 , AdHoc 网络系统 编辑本段]4, 编辑本段
Hoc 网络是一种没有有线基础设施支持的移动网络, 网络中的节点均由移动 Hoc 网络最初应用于军事领域,它的研究起源于战场环境下分组无线
Ad
主机构成.Ad
网数据通信项目,该项目由DARPA资助,其后,又在1983年和1994年进行了抗 毁可适应网络SURAN(Survivable Adaptive Networ k)和全球移动信息系统GloMo(Global Information S y
stem)项目的研究.由于无线通信和终端技术的不断发展,Ad Hoc 网络在民 用环境下也得到了发展,如需要在没有有线基础设施的地区进行临时通信时,可以很 方便地通过搭建 Ad Hoc 网络实现.在 Ad Hoc 网络中,当两个移动主机(如图1中的主机A和B)在彼此的通信覆 盖范围内时,它们可以直接通信.但是由于移动主机的通信覆盖范围有限,如果两个 相距较远的主机(如图1中的主机A和C)要进行通信,则需要通过它们之间的移动 主机B的转发才能实现.因此在 Ad Hoc 网络中,主机同时还是路由器,担负着寻找 路由和转发报文的工作.在 Ad Hoc 网络中,每个主机的通信范围有限,因此路由一 般都由多跳组成,数据通过多个主机的转发才能到达目的地.故 Ad Hoc 网络也被称 为多跳无线网络.其结构如图2所示.Ad Hoc 网络可以看作是移动通信和计算机网络的交叉.在 Ad Hoc 网络中,使 用计算机网络的分组交换机制,而不是电路交换机制.通信的主机一般是便携式计算 机,个人数字助理(PDA)等移动终端设备.Ad Hoc 网络不同于目前因特网环境 中的移动 IP 网络.在移动 IP 网络中,移动主机可以通过固定有线网络,无线链路和 拨号线路等方式接入网络,而在 Ad Hoc 网络中只存在无线链路一种连接方式.在移 动 IP 网络中,移动主机通过相邻的基站等有线设施的支持才能通信,在基站和基站(代理和代理)之间均为有线网络,仍然使用因特网的传统路由协议.而 Ad Hoc 网 络没有这些设施的支持.此外,在移动 IP 网络中移动主机不具备路由功能,只是一 个普通的通信终端.当移动主机从一个区移动到另一个区时并不改变网络拓扑结构, 而 Ad Hoc 网络中移动主机的移动将会导致拓扑结构的改变.
[编辑本段 , 无线通信网 编辑本段]5, 编辑本段
分组无线网是一种利用无线信道进行分组交换的通信网络,即网络中传送的信息 要以“分组”或者称“信包”为基本单元.分组是由若干比特组成的信息段.通常包含“包头”和“正文”两部分.包头中含有 该分组的源地址,宿地址和有关路由等信息等.正文是真正需要传送的信息.适用特点:分组无线网特别适用于实时性要求不严和短消息比较多的数据通信.网络结构:星形结构 分布式结构
[编辑本段 , 移动通信系统的特点 编辑本段]6, 编辑本段
1.移动通信必须利用无线电波进行信息传输 移动通信必须利用无线电波进行信息传输 这种传播煤质允许通信中的用户可以在一定范围内自由活动,其位置不受束缚, 不过无线电波的传播特性一般要受到诸多因素的影响.移动通信的 运行环 境十分复杂,电 波不仅 会随着传播距离 的增加 而发生弥散消 耗,并且会受到地形,地物的遮蔽而发生“阴影效应”,而且信号经过多点
反射,会从 多条路径到达接收地点,这种多径信号的幅度,相位和到达时间都不一样,它们互相 叠加会产生电平衰落和时延扩展.移动通信常常在快速移动中进行,这不仅会引起多普勒频移,产生随机调频,而 且会使得电波传输特性发生快速的随机起伏,严重影响通信质量.故移动通信系统须 根据移动信道的特征,进行合理的设计.2, 通信是在复杂的干扰环境中运行的 , 移动通信系统是采用多信道共用技术,在一个无线小区内,同时通信者会有成百 上千,基站会有多部收发信机同时在同一地点工作,会产生许多干扰信号,还有各种 工业干扰和认为干扰.归纳起来有通道干扰,互调干扰,邻道干扰,多址干扰等,以 及近基站强信号会压制远基站弱信号,这种现象称为“远近效应”.在移动通信中,将 采用多种抗干扰,抗衰落技术措施以减少这些干扰信号的影响.3, 移动通信业务量的需求与日俱增 , 移动通信可 以利用 的频谱资源非常 有限, 但不断地扩大移 动通信 系统的通信容 量,始终是移动通信发展中的焦点.要解决这一难题,一方面要开辟和启动新的频段, 另一方面要研究发展新技术和新措施,提高频谱利用率.因此,有限频谱合理分配和 严格管理是有效利用频谱资源的前提,这是国际上和各国频谱管理机构和组织的重要 职责.4, 移动通信系统的网络结构多种多样 , 网络管理和控制必须有效 , 根据通信地区的不同需要,移动通信网路结构多种多样,为此,移动通信网络必 须具备很强的管理和控制能力,如用户登记和定位,通信(呼叫)链路的建立和拆除, 信道分配和管理,通信计费,鉴权,安全和保密管理以及用户过境切换和漫游控制等.5, 移动通信设备(主要是 移动台)必须适于在移动环境中使用 , 移动通信设备(主要是移动台 移动通信设备要求体积小,重量轻,省电,携带方便,操作简单,可靠耐用和维 护方便,还应保证在振动,冲击,高低温环境变化等恶劣条件下能够正常工作.
第五篇:移动通信教案
《移动通信》教案
授课单位:信息工程学院
授课人:尹立强
授课对象:信工041-2
授课时间:2007~2008学年第一学期
1、本课程教学目的:
“移动通信”是信息工程专业的专业课程.该课程较详细地介绍了移动通信的原理和实际应用系统。通过本课程的学习使学生掌握和了解移动通信的基本理论,以及移动通信的发展、蜂窝移动通信系统的基本概念、移动通信的信道、移动通信系统的调制和组网技术、移动通信中的多址接入、移动通信网以及GSM系统、CDMA系统和第三代移动通信技术等。
2、本课程教学要求:
1.掌握移动通信的概念、特点;了解移动通信组网理论的基本内容;理解移动通信的发展历程及发展趋势;了解第三代移动通信系统的主要差别;了解移动通信的应用系统。
2.理解关于蜂窝的概念;了解频率复用的概念以及频率复用的模型;理解信道分配策略以及切换策略;理解干扰与系统容量之间的关系,了解如何在实际系统中用功率控制减少干扰以提高系统容量;了解各种提高系统容量的方法。3.了解无线电波的传播特性,移动通信中的快衰落与慢衰落;掌握无线信道中信号的多径衰落和多普勒频移,掌握多径传播与快衰落、阴影衰落、时延扩展与相关带宽以及信道的衰落特征;掌握分集技术的基本概念;掌握分集信号的合并技术。
4.掌握多址接入的基本概念和多址接入方式,掌握FDMA技术的原理及系统的特点,了解FDMA系统中的干扰问题,掌握TDMA技术的原理及系统的特点,熟悉TDMA的帧结构,了解TDMA系统的同步与定时,掌握CDMA技术的原理及系统的特点,了解空分多址(SDMA)技术的原理;掌握系统容量的定义,熟悉FDMA、TDMA、CDMA系统容量的分析与比较。
5.掌握FDMA模拟蜂窝网,TDMA数字蜂窝网,CDMA移动通信系统。
3、使用的教材:
郭梯云编,《移动通信》,西安电子科技大学出版社 主要参考书目:
啜钢 王文博 常永宇等编,《移动通信原理与应用》,北京邮电大学出版社,赵长奎编,《GSM数字移动通信应用系统》,国防工业出版社,顾肇基译,《GSM网络与GPRS》,电子工业出版社,第一章
概论
本章的教学目标和要求:
重点掌握移动通信的概念、特点;了解移动通信组网理论的基本内容;理解移动通信的发展历程及发展趋势;;掌握移动通信的三种工作方式;了解移动中继方式;了解移动通信的应用系统。
本章总体教学内容和学时安排: 本章重点:
移动通信的主要特点和工作方式;蜂窝移动通信系统;移动通信的网络结构和接口.本章难点:
蜂窝移动通信系统的频率复用,集群系统的集群方式.本章教学方式: 课堂讲授 本章教学手段: 多媒体 本章课时安排: 6 本章习题: P28 1 2 3 4 5 8 10 教学过程组织:本章课程以移动通信的发展史为切入点,介绍移动通信的特点和分类以及几种比较常见的移动通信系统。教学时注重理论与实际的联系,特别是常用移动通信系统,应与实际使用状况相结合。
本章的具体内容:
§1-1 移动通信的主要特点 一.移动通信的定义
移动通信就是指通信的双方,至少有一方是在移动中进行的通信。例如,固定点与移动体(车辆、船舶、飞机)之间、移动体之间、活动的人与人之间以及人与移动体之间的通信。都居于移动通信的范畴。
二.移动通信的发展史
蜂窝移动电话系统首先运营的是模拟蜂窝系统(第一代蜂窝移动电话系统)。其主要特征是用模拟信道传送模拟话音信号。模拟蜂窝系统主要有如美国的AMPS系统、英国的TACS系统、日本的NTT系统等。但模拟蜂窝系统容量小,频谱及频道利用率低,业务形式单一,话音质量不高,难以和综合业务数字网(ISDN)互通互连,通信保密问题严重,现在,模拟系统已难以满足使用的要求,基本退出了移动通信的舞台。
目前运营的数字蜂窝系统有欧洲的GSM系统,美国的IS-54TDMA、IS-95CMA和日本的PDC系统,它们被称为第二代蜂窝系统。数字蜂窝系统直接传输与处理数字信息,具有一切数字系统所具有的优点。在频谱及频道利用率、系统容量、话音质量、通信保密性、手机的体积、重量、功耗等诸方面均优于模拟蜂窝系统。
第三代蜂窝系统最早是国际电联(ITU)在1985年提出的,当时把它命名为未来公众陆地移动通信系统(FPLMTS)。由于该系统预期在2000年使用,工作频段在2000MHz,故于1996年易名为IMT-2000。
总的来讲.第三代蜂窝系统是一个综合系统,它具有以下特点:包括地面系统和卫星系统;具有海陆空三维的服务面;有话音、数据、视频、ISDN和多媒体等多种业务;包括从不到50m的微微小区一直到大于500km的卫星小区;具有多种空中接口和接入方式。它可向高速与慢速移动的用户提供服务,是一个高度智能的、全球覆盖的、具有个人服务持色的移动通信系统。三.移动通信的特点
1.移动通信必须利用无线电波进行信息传输 2.移动通信是在复杂的干扰环境中运行的
3.移动通信可以利用的频谱资源非常有限,而移动通信业务量的需求却与日俱增 4.移动通信系统的网络结构多种多样,网络管理和控制必须有效 5.移动通信设备必须适与在移动环境中使用 §1-2 移动通信系统的分类 一.移动通信的分类
能够实现移动通信的技术系统称为移动通信系统。移动通信系统,按用途、制式、入网方式等不同,可以有不同分类方法:按使用对象,可分为军用、民用;
按用途和区域,可分为陆地、海上与空间;按信息的流向,可分为单向和双向;技经营方式,可分为公众网、专用网;技服务区结构,可分为单区制(大区制)、多区制(小区制);按与地面固定网的连接方式,可分为人工、半自动、全自动;按工作方式,可分为模拟与数字;按调制方式,可分为调幅、调频、调相等。二.工作方式 1.单工通信 1)同频单工制
同频是指通信的双方,使用相同工作频率。单工是指通信双方的操作采用“按-讲”方式。平时,双方的接收机均处于守听状态。如果A方需要发话,按装在A方的“按——讲”开关即收发控制按钮,关掉A方接收收机,使其发射机工作。这时由于B方接收机处于守听状态,即可实现由A至B的通话。同理,也可实现由B至A的通话。在该方式中,同一部电台(如A方)的收发信机是交替工作的,发射时不能接收,接收时不能发射,故收发信机可使用同一副天线,而不需要使用天线共用器。2)双频单工制
双频单工是指通信的双方使用两个频率,而操作仍采用“按-讲”方式的通话制。同一部电台(如A方)的收发信机也是交替工作的,只是收发各用一个频率。在移动通信中,基地站和移动台收、发使用两个频率实现双向通信,这两个频率通常称为一个信道,若基地站设臵多部发射机和多部接收机且同时工作,则可将接收机设臵在某一频率上,而将发射机设臵在另一频率上。只要这两个频率有足够频差(或称频距),借助于滤波器等选频器件就能排除发射机对接收机的干扰。2.双工通信
双工制指通信双方的收发信机均同时工作,即任一方在发话的同时也能收听到对方的话音,操作方便。但采用这种方式,不管是否发话,发射机总是工作的,故电能消耗大。这一点对以电池为能源的移动台是很不利的。此外,这种方式需用天线共用器,才能使收发共用一副天线。
目前,这种工作方式在移动通信系统中获得了广泛应用。蜂窝移动电话系统无论是模拟还是数字的都采用双工制工作。
3.半双工通信
半双工制是指通信的双方,有一方(如A方)使用双工方式,即收发信机同时工作,且使用两个不同的频率,收发信机可以各用一副天线,也可通过天线共用器合用一副天线;而另一方(如B方)则采用双频单工方式,即收发信机交替工作。平时,B方处于守听状态,仅在发话时才按压“按-讲”开关,切断收信机使发信机工作。目前,集群移动通信系统大多采用半双工方式工作。二.模拟网和数字网 三.话音通信和数据通信 §1-3 常用移动通信系统 一.无线电寻呼系统
目前的无线电寻呼系统是一种传送简单信息的单向呼叫系统。它由寻呼控制中心、基站和寻呼接收机三部分组成。二.蜂窝移动通信系统(重点)蜂窝移动电话系统是一种双向双工通信系统。该系统一般由移动台(MS)、基站(BS)、移动业务交换中心(MSC)及与市话网(P5TN)相连的中继线等组成,如图所示。
移动业务交换中心的主要功能是信息的交换和整个系统的集中控制管理,基站和移动台设有收发信机和天馈线等设备。每个基站都有一个可靠通信的服务范围,该范围的大小主要由发射机功率和基地站天线的有效高度等决定。三.无绳电话系统
CT2是由第一代无绳电话(CT1)改进演变而来的。它与CT1相比有两大改进:一是实现了全数字化,二是座机改成了基站。CT2系统由手机(HS)、基站(BS)、网络管理中心(MNCC)及计费系统构成,它依附于公用电话交换网(PSTN),是市话网的延伸。
四.集群移动通信系统 五.移动卫星通信系统 六.分组无线网
§1-4 移动通信的基本技术
一.调制解调技术(复习通信原理中这部分内容)二.移动信道中电波传播特性的研究(第三章详细讲)三.多址方式(6、7、8三章有重点详细的讲解)四.抗干扰措施(第四章详细讲)五.组网技术(重点)1.网络结构 2.网络接口
3.网络的控制与管理
第二章
调制解调
说明:本章内容在通信原理课程中已有详细的讲解,在本课程中仅做复习内容。
第三章 移动信道的传播特性
本章的教学目标和要求:
了解电波的传播方式和损耗;重点掌握移动信道的特征;理解陆地移动信道的场强估算.本章重点:
移动信道的特征;多径效应、瑞利衰落、多径时散与相关带宽等概念的理解与掌握.本章难点:
移动信道的场强的估算.本章教学方式: 课堂讲授 本章教学手段: 多媒体 本章课时安排: 6 本章习题: P101 1 3 4 8 9 教学过程组织:本章课程以复习电波的传播方式为切入点,介绍移动信道的特点和电波传播过程中的衰落。本章课程理论性强,内容较难理解,讲授时应注重调动课堂气氛,使学生积极思考。对多径时散与相关带宽概念的讲授应相应加大力度。
本章的具体内容:
§3-1 无线电波传播特性 一.电波传播方式
电磁波从发射机发出,传播到接收天线,可以有不同的传播方式,主要的传播方式有四种:
地波传播:是一种沿着地球表面传播的电磁波,称为地面波或表面波传播,简称地表波。天波传播:电波向天空辐射并经电离层反射回到地面的传播方式称为天波传播,也称电离层传播。
直射波传播:电波从发射天线直射到接收天线的传播方式,称为直射波传播,有时也称视距传播或视线传播。
散射传播:这种传播主要是由于电磁波投射到大气层(如对流层)中的不均匀气团时产生散射,其中一部分电磁波到达接收地点。二.直射波
三.大气中的电波传播 1.大气折射
2.视线传播极限距离
直射波传播最大距离受收、发天线高度、地球曲面半径以及大气折射影响共同决定,下图示出了求视线传播的极限距离。假定发射天线高度为ht,接收天线高度为hr。从几何关系可求出极限的距离d为:
d2R(hthr)
在实际情况下,在超过上述极限距离的地方也可能收到较强信号。这种现象叫超视距传播。产生超视距传播的主要原因是大气折射的缘故,电波在大气层中折射的通常结果是,传播距离要比极限视距更远—些,也可以说似乎是地球变得平坦了,或说是地球半径变大了。根据通常情况,按标准大气折射计算,等效的地球半径增大了三分之一。四.障碍物的影响与绕射损耗
在实际情况下,电波在直射传播的路径上可能存在山丘、建筑物等障碍物,由这些障碍物引起的附加衰耗(除了自由空间传播衰耗外),称为绕射衰耗(或绕射损耗)。
设障碍物与发射点、接收点的相对位臵如下图所示,图中x表示障碍物顶点P至直射线TR的距离,在传播理论中称作费涅尔余隙。图(a)所示情形规定余隙x为负,图(b)时余隙为正。由费涅尔绕射理论可求得障碍物引起的绕射衰耗与费涅尔余隙的关系如下图所示。图中横坐标为x/x1,其中x1称为费涅尔半径,并由下式可求得: x1式中λ为电波波长。
d1d2d1d2
五.反射波
当电波传播中遇到两种不同介质的光滑界面时,如果界面尺寸比电波波长大得多时就会产生镜面反射,因此从发射天线到接收天线的电波包括直射波和反射波。通常,在研究地面对电波的反射时,都是按平面波处理的,即电波在反射点的入射角等于反射角,电波的相位发生—次反相。§3-2 移动信道的特征 一.传播路径与信号衰落 二.多径效应与瑞利衰落
在陆上移动信道中,移动台往往工作在城市建筑群和其它地形地物极为复杂的环境中。基地台和移动台之间的电波传播不再是单纯的直射波形式,而出现各个路径的反射,以致到达接收天线的信号是来自不同传播路径的各个分量的合成波。由于各分量的互相干涉而产生深度的快衰落,即多径衰落。多径衰落后信号的包络服从瑞利分布,所以多径衰落又称作瑞利衰落。三.慢衰落特性与衰落储备
移动台接收信号除瞬时值出现快速起伏瑞利衰落外,其场强中值随着所处位臵改变而呈现较慢变动,称为慢衰落。发生慢衰落的主要原因是障碍物的阴影效应,即在电波传播的路径上遇到建筑物、树林等障碍物的阻挡,产生了电磁场的阴影。当移动台通过不同的障碍物的阴影时,就造成接收信号场强中值的变动。变动的大小取决于障碍物的状况及工作频率。变化的速率不仅与障碍有关,而且和移动台的移动速度有关。造成慢衰落的另一个原因是由于气象条件的变化,使电波折射系数随时间变化,多径传播到达接收点的信号时延也随之变化,从而也造成场强中值电平的慢变化,即慢衰落。大量测试表明,无论是由阴影效应引起的慢衰落,还是由大气折射状况缓慢变化引起的场强中值变动,都近似服从对数正态分布规律,即场强的分贝数接近正态分布。其标准偏差约5~7dB。四.多径时散与相关带宽(重点)
§3-3 陆地移动信道的场强估算
接收机输入电压、功率与场强的关系(难点)1.接收机输入电压的定义 2.接收场强与接收电压的关系 一.地形、地物分类 1.地形的分类与定义
3.为了计算移动信道中信号电场强度中值(或传播损耗中值),可将地形分为两大类,即中等起伏地形和不规则地形,并以中等起伏地形作传播基准。所谓中等起伏地形是指在传播路径的地形剖面图上,地面起伏高度不超过20m,且起伏缓慢,峰点与谷点之间的水平距离大于起伏高度。其它地形如丘陵、孤立山岳、斜坡和水陆混合地形等统称为不规则地形。
4.由于天线架设在高度不同的地形上,天线的有效高度是不一样的。(例如,把20m的天线架设在地面上和架设在几十层的高楼顶上,通信效果自然不同。)因
5.此必须合理规定天线的有效高度。若基站天线顶点的海拔高度为hts,从天线设臵地点开始,沿着电波传播方向的3km到15km之内的地面平均海拔高度为hga,则定义基站天线的有效高度为 6.hb=hts-hga
7.若传播距离不到15km, hga是3km到实际距离之间的平均海拔高度。8.移动台天线的有效高度hm总是指天线在当地地面上的高度。9.地物分类
10.不同地物环境其传播条件不同,按照地物的密集程度不同可分为三类地区:① 开阔地。在电波传播的路径上无高大树木、建筑物等障碍物,呈开阔状地面,如农田、荒野、广场、沙漠和戈壁滩等;② 郊区。在靠近移动台近处有些障碍物但不稠密,例如,有少量的低层房屋或小树林等;③ 市区。有较密集的建筑物和高层楼房。
11.当然,上述三种地区之间都是有过渡区的,但在了解以上三类地区的传播情况之后,过渡区的传播情况就可以大致地估计出来。1.中等起伏地形上传播损耗的中值(难点)2.市区传播损耗的中值 3.郊区和开阔地损耗的中值 4.不规则地形上传播损耗的中值 5.任意地形地区的传播损耗的中值
第四章
抗衰落技术
本章的教学目标和要求:
掌握分集技术的基本概念;掌握分集信号的合并技术,了解其性能;掌握隐分集技术的概念和原理,了解其应用;掌握时域均衡的概念和工作原理;了解自适应均衡技术的应用。
本章重点:
分集的方式及其分集信号的合并技术.本章难点: 时域均衡的工作原理和自适应均衡技术的应用。
本章教学方式: 课堂讲授 本章教学手段: 多媒体 本章课时安排: 6 本章习题: P122 1 3 6 教学过程组织:本章课程以复习电波的非相关性为切入点,介绍分集接收原理和分集合并性能。本章课程理论性强,内容较难理解,讲授时应注重调动课堂气氛,使学生积极思考。对均衡技术的讲授应相应加大力度。
本章的具体内容:
§4-1 分集接收 一.分集接收原理(重点)1.分集接收的定义 2.分集方式 1)宏分集 2)微分集
3.合并方式
二.分集合并性能的分析与比较 1.选择式合并的性能 2.最大比值合并的性能 3.等增益合并的性能 4.平均信噪比的改善 §4-2 RAKE接收 §4-3 均衡技术(难点)一.均衡的原理 二.自适应均衡技术
第五章
组网技术
本章的教学目标和要求:
理解多址技术的定义和几种多址方式;了解移动通信的信道配臵;重点掌握数字蜂窝移动通信网的网络结构;理解移动通信系统的信令;掌握越区切换和位臵管理.本章重点:
多址技术的定义;数字蜂窝移动通信网的网络结构;越区切换和位臵管理.本章难点:
移动通信的信道配臵;移动通信系统的信令.本章教学方式: 课堂讲授+实验 本章教学手段: 多媒体+实验演示 本章课时安排: 10 本章习题: P162 2 8 9 13 17 18 20 21 26 27 29 教学过程组织:本章课程以复习第一章讲述的多址方式的定义为切入点,重点介绍5种多址技术以及移动通信的网络结构。本章课程在该课程中有很高的地位,关系到对整个课程体系的掌握,讲授时应相应增加教学时数,充分调动学生的积极性,以更好地理解本章内容。
本章的具体内容:
§5-1 概述
一.提出移动通信系统在组网方面要解决的问题 1.如何共享频率资源 2.区域覆盖问题 3.网络结构问题 4.移动性管理问题 5.通信系统中的信令问题
本章就是针对上述5问题展开的,重点学习这5个方面的内容。二.简述分层协议模型的概念
物理层 链路层 网络层
§5-2 多址技术(重点)一.频分多址
1.频分多址的定义和特点 2.话务量与呼损率的定义 3.完成话务量的性质与计算 4.呼损率的计算
5.用户忙时的话务量与用户数
6.空闲信道的选取
二.时分多址的定义和特点 三.码分多址
1.码分多址的定义和特点 2.FH-CDMA 3.DS-CDMA 4.混合码分多址
四.空分多址的定义和特点 五.随机多址
§5-3 区域覆盖和信道配臵 一.区域覆盖 1.带状网 2.蜂窝网
二.信道配臵(难点)1.分区分组配臵法 2.等频距培植法
§5-4 网络结构(重点)一.基本网络结构
二.数字蜂窝移动通信网的网络结构 §5-5 信令(难点)一.信令的定义和种类 二.接入信令 1.数字信令
2.音频信令 3.信令传输协议 三.网络信令 四.信令应用
§5-6 越区切换和位臵管理(重点)
一.越区切换 1.越区切换的准则 2.越区切换的控制策略 3.越区切换时的信道分配 二.位臵管理
1.位臵登记和呼叫传递 2.位臵更新和寻呼
第六章
频分多址(FDMA)模拟蜂窝网
本章的教学目标和要求: 了解模拟蜂窝网移动电话系统结构;重点掌握AMPS系统的组成及各功能实体的主要作用;理解系统的控制结构和数字信令;了解移动台主呼和被呼的工作过程.本章重点:
AMPS系统的组成及各功能实体的主要作用.本章难点:
移动台被呼的工作过程.本章教学方式: 课堂讲授+实验 本章教学手段: 多媒体 本章课时安排: 6 本章习题: P230 3 5 6 8 教学过程组织:本章课程以回顾模拟蜂窝通信网的起源为切入点,学习模拟蜂窝移动通信系统的结构。本章课程讲述的模拟蜂窝移动通信系统已过时,故对该部分知识的理解可相应降低要求,讲授速度可适当加快。该部分知识主要是与第七章和第八章讲授的内容做比较。
本章的具体内容:
§6-1 概述 一.发展简况 二.系统结构 三.主要功能
§6-2 系统控制及其信令
一.系统的控制结构 二.控制信号及其功能 1.监测音SAT 2.信令音ST
3.定位与过境切换 4.寻呼与接入 5.冲突退避
6.移动台的功率等级信号 7.移动用户识别号 三.数字信令 1.前向控制信道 2.反向控制信道
3.前向话音信道中的控制信令 4.反向话音信道中的控制信令 5.有线数据信道的控制信令 §6-3 系统的工作过程(重点)一.初始状态 二.移动台被呼 1.寻呼 2.寻呼响应 3.指配话音信道 4.振铃 三.移动台主呼 1.呼前拨号 2.申请话音信道 3.指配话音频道 4.振铃 四.话终拆线
第七章
时分多址(TDMA)数字蜂窝网
本章的教学目标和要求:
重点掌握GSM系统的网络结构以及系统的控制与管理;理解GSM系统的无线接口;了解D-AMPS、JDC系统与GSM系统的异同.本章重点:
GSM系统的网络结构;系统的控制与管理,包括位臵登记、鉴权与加密、呼叫接续、过区切换.本章难点:
GSM系统的信道类型;语音和信道编码.本章教学方式: 课堂讲授+实验 本章教学手段: 多媒体+实验演示 本章课时安排: 10 本章习题: P274 1 2 3 4 7 8 9 10 教学过程组织:本章课程着重讨论TDMA数字蜂窝移动通信系统的网络组成、传输方式和网络控制等内容,其中GSM以为主,并对D-AMPS和JDC系统做简要比较。数字蜂窝移动通信系统是移动通信现行的方式,讲授时理论联系实际,使学生对GSM系统有更深刻的认识,以提高课堂教学效果。
本章的具体内容:
§7-1 GSM系统总体 一.GSM的发展史 二.网络结构(重点)1.移动台 2.基站子系统
3.网络子系统 4.GSM网络接口
三.GSM的区域、号码、地址与识别(重点)1.区域定义 2.号码与识别 四.主要业务 1.通信业务分类 2.业务定义
§7-2 GSM系统的无线接口(难点)一.GSM系统无线传输特征 二.信道类型及其组合
§7-3 GSM系统的控制与管理(重点)一.位臵登记 二.鉴权与加密 1.鉴权 2.加密 3.设备识别 4.用户识别码保密 三.呼叫接续 1.移动用户主呼 2.移动用户被呼 四.过区切换
§7-4 三种TDMA蜂窝系统分析比较 一.D-AMPS的特征 二.JDC系统的特征 三.蜂窝系统的通信容量 1.FDMA 蜂窝系统的通信容量 2.TDMA蜂窝系统的通信容量
第八章
码分多址(CDMA)移动通信系统
(一)本章的教学目标和要求:
CDMA蜂窝通信系统的特点;理解CDMA蜂窝通信系统的通信容量;了解CDMA蜂窝系统的无线传输;理解CDMA蜂窝系统的控制功能.本章重点:
CDMA蜂窝通信系统的特点;CDMA蜂窝系统的控制功能.本章难点:
CDMA蜂窝系统的无线传输;CDMA蜂窝系统的控制功能.本章教学方式: 课堂讲授 本章教学手段: 多媒体 本章课时安排: 6 本章习题: P319 1 2 3 5 6 7 教学过程组织:本章课程着重讨论CDMA数字蜂窝移动通信系统的网络组成、传输方式和网络控制等内容。CDMA数字蜂窝移动通信系统发展非常迅速,已成功地应用到第二代和第三代移动通信系统中,其优势已成为人们的共识。本章主要介绍CDMA2000系统。本章与第九章相互联系,可结合起来讲解。
本章的具体内容:
§8-1 概述 一.扩频的概念
二.码分多址的特征(重点)1.CDMA蜂窝通信系统的多址干扰 2.CDMA蜂窝通信系统的功率控制 3.码分多址蜂窝通信系统的特点
§8-2 CDMA蜂窝通信系统的通信容量 一.话音激活期的影响 二.扇区的作用
三.邻近小区的干扰
§8-3 CDMA蜂窝系统的无线传输
(难点)
一.信道组成 二.正向传输 三.反向传输
§8-4 CDMA蜂窝系统的控制功能(重点)
一.登记注册 二.切换 三.呼叫处理 1.移动台呼叫处理2.基站呼叫处理
第九章
码分多址(CDMA)移动通信系统
(二)本章的教学目标和要求:
WCDMA蜂窝通信系统的特点;理解WCDMA蜂窝通信系统的网络结构;了解WCDMA蜂窝系统的无线接口.本章重点:
WCDMA蜂窝通信系统的网络结构.本章难点:
WCDMA蜂窝系统的无线接口.本章教学方式: 课堂讲授 本章教学手段: 多媒体 本章课时安排: 4 本章习题: P368 1 2 3 5 6 7 教学过程组织:本章课程以复习第八章内容为基础,介绍WCDMA系统。本章与第八章相互联系,可结合起来讲解。
本章的具体内容:
§9-1 WCDMA系统 一.WCDMA系统结构 二.WCDMA无线接口 三.WCDMA系统的网络
第十章
移动通信的展望
本章的教学目标和要求:
理解个人通信的特点和个人通信所要实现的目标;了解个人通信的国际标准;了解第三代移动通信所采用的新技术.本章重点:
个人通信的特点和个人通信所要实现的目标.本章难点:
第三代移动通信所采用的新技术.本章教学方式: 课堂讲授 本章教学手段: 多媒体 本章课时安排: 4 本章习题: P341 1 2 4 教学过程组织:本章课程对未来的移动通信做了展望,即对个人通信网做简要说明。对该部分内容要系统讲解,使学生对移动通信的发展方向有一个明确的了解。
本章的具体内容:
§10-1 个人通信概述 一.个人通信的概念 二.实现个人通信的途径
§10-2 关于个人通信的国际标准
一.第三代移动通信系统理论研究和发展概况 二.几个主要标准化组织的活动情况简介 §10-3 第三代移动通信的新技术
一.新型调制技术 二.智能天线 三.多用户信号检测 四.无线ATM 五.多层网络结构 六.位臵区和寻呼区的管理 七.软件无线电