高压电动机转子笼条断条的原因及改进方法五篇

时间:2019-05-15 06:55:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高压电动机转子笼条断条的原因及改进方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高压电动机转子笼条断条的原因及改进方法》。

第一篇:高压电动机转子笼条断条的原因及改进方法

高压电动机转子笼条断条的原因及改进方法 引 言

大武口发电厂锅炉辅机设备高 压异步电动机自投产以来频繁出现电动机线圈烧毁、转子笼条断条、转子熔铝等故障。故障多发生在频繁启动且负荷大的排粉机、磨煤机及渣浆泵。仅1993年就发生了2起因磨煤机转子熔铝致使高压电动机报废的事故,造成了很大的经济损失。1994年利用机组大小修将该设备转子改为铜条笼,但转子断条故障又相继发生,仅1995年统计为11次,故障率为35%,严重影响了电力生产的正常运行和安全。转子笼条断条分析 2.1 转子笼条断条现象

笼条断裂与电机负载形式及起动情况有关,大武口发电厂转子笼条断裂90%发生在起动频繁的排粉机、磨煤机和渣浆泵。从笼条断裂部位看,大多发生在笼条与端环焊接处,如图1所示。

图1 笼条断裂部位示意图

从端环结构图看,端部转子笼条断裂如外翘时,将磨损定子端部绝缘从而引起电机烧坏。2.2 转子笼条断条原因分析

(1)笼条端环结构不合理,端环为整体,笼条与端环采用刚性连接,对单根笼条而言,其不能自由伸缩,易在焊接处产生应力集中。

(2)外笼条为保证其电阻率大,其材质机械强度低,不能承受大的拉力,如焊接工艺不良,其热应力将很容易造成在端环处断条。(3)笼条在铁芯槽内压接不紧,运行中在离心力作用下窜动较大。

(4)由于电机的频繁启动,笼条在启停中加热和冷却过程反复进行,使笼条交替受力,极易被拉断或胀鼓与定子磨擦断裂。3 转子改进方法 3.1 改进方法

利用大小修机会对锅炉辅机及除灰的5台渣浆泵的转子进行了改进,参见图2和图3。

图2 改造前笼条端环结构图及端环平面图

(1)将原刚性悬充端环改造为两部分:指型弹性环部分和防护环部分。

(2)与笼条连接部分改为指型弹性环部分,保证每根笼条轴向自由伸缩,以消除和减少热应力,同时消除笼条由于焊接工艺不良而产生的热应力。

(3)增改防护环以增加转子端部笼条整体紧固力,防止笼条断后翘起刮坏定子绝缘,防护环可用磁性钢环或环氧与玻璃丝布带固定成型的环。

(4)将笼条镀铬加粗使笼条槽孔的间隙小于0.2 mm,减少纵向和轴向移动。(5)改变运行方式,减少设备启动次数。

图3 改造后笼条端环结构图及指型弹性环平面图

3.2 改进工艺要求

如果笼条焊接工艺不良,笼条和端环焊接处更易于断裂。经过逐步改进,得出如下结论:

(1)指型弹性环需采用机械强度高的紫铜制成;

(2)笼条与指型弹性环焊接,要求预热300℃左右,用45%以上银焊条焊接,以减少接触电阻;

(3)要求弹性指板厚度大于5 mm,以保证焊接截面积,否则开焊时易在防护环处形成电弧,将防护环烧损;

(4)防护环采用磁性钢环,工艺要标准,其宽度为20 mm,厚度为25 mm,穿笼条孔与外缘厚度不得低于1.0 mm且各孔应均匀,否则在笼条开焊时易将其烧坏。4 转子改造后的效果(1)逐步改进后转子断条故障情况见表1。

(2)采用铜条指型弹性端环的转子,既具有铜条转子的高运行性能,又具有铸铝转子不断条的优点,其启动电流小、时间短,降低定子绕组温升并延长绝缘寿命。

(3)采用指型环后笼条可以自由伸缩,降低了启动电机过程中笼条所受的热应力,遏制了笼条故障。

总之,电动机转 子改为铜条指型弹性端环后,效果良好,极大地减轻了检修工作人员的劳动强度,提高了设备的安全运行水平。

第二篇:电动机的火灾原因及预防措施

电动机的火灾原因及预防措施

电动机是一种将电能转变为机械能的电气设备。在使用过程中,电动机也存在着火灾危险性。所以研究电动机的火灾原因及其防范措施,是防火工作的一项重要的内容。

1电动机的火灾原因

电动机发生火灾的原因,主要是选型、使用不当,或维修保养不良所造成的。有些电动机质量差,内部存在隐患,在运行中极易发生故障,引起火灾。

1.1电动机过载负载超过电动机额定功率和电源电压过低,电动机都会发生过载,过载必然会引起电动机绕组过热,甚至烧毁电动机,或引燃周围的可燃物,发生火灾。

1.2绝缘损坏如果电动机绕组导线绝缘损坏,会造成匝间或相间短路;如果绕阻与机壳间绝缘损坏,还会造成对地短路。短路产生大量的热,导线有熔断危险或最终烧着引起火灾。

1.3接触不良连接线圈的各个接点或引出线接点如连接不牢;导线线端接触不良;直流电动机转子绕组与换向器连接处脱焊,或更换新电刷后研磨不良,与滑环接触不好,电刷碎裂等,都将形成大的接触电阻,而发出火花或电弧,或损坏接点周围导线的绝缘,或使电动机发生单相运行烧毁电机等等,这都是导致发生火灾的因素。

1.4电动机选用不当选用的电动机如果没有考虑到它的工作环境、功率、启动、调速、机械特性,安装等要求,电动机在运行中会容易发生故障,引起火灾。

1.5单相运行带有负载的电动机发生单相运行后,如不及时发现,采取相应措施,必然要烧毁电动机绕组,甚至起火。

1.6机械磨擦电动机运转中最突出的磨擦是轴承磨擦,它会出现局部过热使润滑脂变稀溢出轴承室,升温更高,升到一定值会引燃周围可燃物。有时轴承环体被碾碎而使转轴被卡住,烧毁电动机引起火灾。此外,如果轴承磨损严重就会产生不同心和气隙不均,使转子和定子摩擦部位温升可达1000℃以上,将定子、转子绝缘破坏而短路,严重磨擦时,甚至产生火花。

1.7铁损过大铁损中的涡流损耗表现在铁芯发热上。如果铁芯硅钢片质量、规格不符要求,或者片间绝缘强度过低,都会使涡流损耗过大而产生大量的热。如果该电动机拖动负载后,必然会发生过载现象。

1.8接地装置不良电动机绕组对机壳发生短路时,如无可靠的保护接地,那么机壳就带电,如果机壳周围堆有其它杂乱的易燃物质,电流就会由机壳通过这些物质流入大地,时间一长也会逐渐发热,有引起火灾的可能。

1.9维护不好①维护不好,使灰尘、纤维和其它杂物堵塞了电动机的通风槽,妨碍了散热,结果使温度升高而起火;②积聚污垢使轴承发热膨胀,甚至轴承被卡住不能转动,结果犹如加大负荷,使线圈电流大大增加,导致线圈发热起火。

2电动机的火灾预防措施

电动机只要结构、型式选择得当,安装合理,装有各种可行的保护装置,并在运行中加强责任制,严密监视运行状态,及时发现和解决问题,并加强对电动机的维护保养,则电机火灾事故是完全可以避免的。

2.1正确选择电动机这是关系到能否安全而又经济使用电动机的首要问题。

2.1.1按照工作环境选定适当的防护形式。如:潮湿环境应选用封闭式电动机;燃爆性气体环境应选用防爆型电动机等。环境因素还应考虑防尘、防腐、温度等情况。

2.1.2电动机的功率必然与生产机械载荷的大小及其持续和间断的规律相适应。电动机的功率应稍大于生产机械的功率,选择时可根据实际情况,事先计算好所需电机的功率。选用电动机功率还应考虑周围环境温度,此外还应正确选择配用导线。

2.1.3选用电机时,除要考虑环境和功率的要求之外,还要考虑到转速、启动、调速,机械特性、安装的要求及其他要求。

2.2采用的起动方法要得当

2.2.1鼠笼式电动机在电源或变压器容量许可的情况下,应优先采用全压起动;当其功率大于变压器容量的20%或其功率超过14KW时,应采用降压起动。

2.2.2绕线式转子电动机起动时,在其转子绕组的回路中接入变阻器。起动变阻器的起动,对于功率转小的电动机,可采用一般三相变阻器或油浸起动变阻器;较大功率的电动机则采用水阻器。

2.3电动机的安装应符合防火要求

2.3.1电动机应安装在牢固的机座上,电动的基础应为非燃烧体。

2.3.2电动机机座的基础外围与建筑物或其他设备之间应留出净距不大于1m的通道;电动机与墙壁之间,或成列装设的电动机,当一侧已有通道时,则另一侧的净距可不小于0.3m。电动机与低压配电设备的裸露带电部分的距离不得小于1m。

2.3.3电动机附近不准堆放可燃物,地面不得有油渍、油棉纱;电动机起动设备附近不准堆放杂物;电动机及联动的机械至开关的通道应经常保护畅通。

2.3.4靠近电动机的一段电源线,必须用金属软管或塑料套管保护。软管与电源线管连接处必须用夹头轧牢、固定;另一端与电动机进线盒连接处,也应作固定支点。

2.3.5电动机与电源线管均应有有效的保护接地。接地线应固定在电动机的螺栓上。接地线的截面作为干线时,一般为电动机进线的30%;但最大截面铝芯不超过35mm,铜芯不超过25mm。如采用橡皮绝缘导线并作为支线时,最小截面铝芯为4mm,铜芯为2.5mm。接地电阻不应大于4Ω;但如供给这些电动机的变压器或发电机的容量在100KVA以下时,则允许在10Ω以下。严禁用铁钎插入地下作为保护接地。

第三篇:电动机引发火灾原因及预防措施

电动机引发火灾原因及预防措施

1.电动机引发火灾的原因

1.1 过载

1.1.1 由于机械荷载过重或电网的电压过低,使电动机的出力降低,转速减小,电流增大。

1.1.2 电动机轴承缺润滑油或太脏,轴承损坏不易转动而卡住转子。

1.1.3 电动机拖动的机械被杂物卡住转不动或皮带过紧,使电流增大,线圈过热导致火灾。

1.2 缺相

三相电动机在运转过程中,电源回路有一相断线时,电动机转速降低,其余两相电流将升高到正常工作电流的倍,引起线圈温度升高或绝缘损坏,造成火灾。

1.3 短路

电动机的定子线圈发生单相匝间短路、单相接地短路或相间短路,都会使线圈局部过热,绝缘损坏。在绝缘破损处,还可能由于对外壳放电而形成电弧和火花,引起绝缘层起火。

1.4 接触不良

在电动机的接线端处,由于安装不当或接线松动,接触电阻过大,产生高温或火花,引起绝缘或附近可燃物燃烧。

1.5 散热不良

电动机的维修保养不到位,通风槽被粉尘或纤维物堵塞,以及风叶损坏,不能起到散热作用,使线圈过热,引发火灾。

另外,电动机质量差,安装场所通风不良等,也同样会引发火灾事故。

2.电动机引发火灾的预防措施

2.1 安装电动机要符合防火安全要求。在潮湿、多灰尘的场所,应选用封闭型电动机。在比较干燥、清洁的场所,可选用防护型电动机,在易燃、易爆场所,应采用防爆型电动机。

2.2 电动机应安装在非可燃性材料的基座上;电动机不允许安装在可燃结构内;电动机与可燃物之间应保持一定距离,周围不得堆放杂物。

2.3 每台电动机必须安装独立的操作开关和适当的热继电器作为过负荷保护,电动机电源回路选用的熔丝应适当,过小容易熔断而缺相,过大不能很好地起到保护作用;对容量较大的电动机,在三相电源线上宜安装指示灯,当发生一相断电时,便于立即发现,防止缺相运行。

2.4 电动机要经常检查保养,及时清扫保持清洁;润滑系统要保持良好状态;散热用风叶要完好;碳刷要完整。

第四篇:动车组转向架故障原因及改进方法

摘要

安全是铁路运输的永恒主题,客车安全又是铁路安全的重中之重。旅客列车作为复杂系统集成,任何细小的故障隐患,都将可能造成无法估量的损失。本论文以 25K 型客车 CW-2 型转向架的故障统计数据作为分析依据,统计梳理了客车走行部的多种故障模式,综合乌鲁木齐车辆段的运营线路、季节气候、运行里程以及维修水平等多方面因素,运用数据统计以及相关性分析,确定出影响客车走行部故障主要的相关因素以及故障模式。合现场作业实际,本论文选取了客车走行部维修班组作为基于风管理维修策略的实施对象。根据“管理规范化”的要求,融合岗位安全职责、基本作业过程、规章管理制度以及安全质量控制措施等方面,修订出符合现场风险管理实际的《检车员岗位风险控制说明书》;根据“作业标准化”的要求,客车走行部故障模式、事故基本事件、安全风险点、基本作业过程以及质量标准,修订完善出具有操作性的《25K 型客车转向架流程风险辨析指导书》。通过对基于 25K 型客车 CW-2 型转向架故障统计以及因素相关性分析,运用故障模式故障树分析,基本事件的风险辨析、评估和层级防控,完善了分级管理、预警预控的客车维修策略,确保了现场安全作业管理的全面、准确、有效,进一步提高了客车维修水平。

关键词:CRHIn型动车组;转向架构架;车轴齿轮箱;转向架轴承

I

目 录

摘要.............................................................................................................................I 第1章.绪论..................................................................................................................1

1.1转向架的总体概括.........................................................................................1 1.2故障案例分析.................................................................................................1 1.3故障原因分析.................................................................................................2 第2章转向架的结构....................................................................................................3

2.1转向架由那些组成.........................................................................................3 2.2转向架的结构图.............................................................................................3 2.3轮对踏面压到异物后的异响.........................................................................3 2.4管路泄露故障引发的异响.............................................................................3 2.5油压减振器引发的异响.................................................................................3 2.6 自动车钩偏移引发的异响............................................................................4 第3章.转向架的作用..................................................................................................6

3.1转向架的历史.................................................................................................6

3.1.1准高速客车型.....................................................................................6 3.1.2高速型.................................................................................................7 3.2转向架的主要作用.........................................................................................7 第4章 转向架的故障分析..........................................................................................9

4.1动车转向架故障类型分析.............................................................................9 4.2动车组转向架故障原因分析.......................................................................12 4.2.1部件设备漏油分析...........................................................................12 4.3制动装置故障分析.......................................................................................12 4.4其他零部件的故障分析...............................................................................12 4.5动车组转向架的故障模式、致命性分析(FMECA).....................................13 第5章.动车组转向架轴承的检测技术与处理........................................................14 5.1动车组转向架轴承故障诊断的基本内容...................................................14 5.2动车组转向架轴承故障监测常用技术.......................................................14 5.3机车车辆轴承故障机理分析.......................................................................16 5.3.1轴承故障的振动原因.......................................................................16 5.3.2动车组转向架轴承缺陷产生的特征频率........................................16 结束语..........................................................................................................................18 参考文献:..................................................................................................................19

第1章.绪论

1.1转向架的总体概括

转向架是轨道车辆结构中最为重要的部件之一,其主要作用如下: 1)转向架是车辆的一个独立部件,在转向架于车体之间尽可能减少联接件。2)支撑车体,承受并传递从车体至车轮之间或从轮轨至车体之间的各种载荷及作用力,并使轴重均匀分配。

3)转向架的结构要便于弹簧减振装置的安装,使之具有良好的减振特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,减小动应力,提高车辆运行平稳性和安全性。

4)充分利用轮轨之间的粘着,传递牵引力和制动力,放大制动缸所产生的制动力,使车辆具有良好的制动效果,以保证在规定的距离之内停车。

5)车辆上采用转向架是为增加车辆的载重、长度与容积、提高列车运行速度,以满足铁路运输发展的需要;

1.2故障案例分析

动车组在检修时发现有部分构架组成制动吊座表面有损伤现象,损伤状态主要呈现麻点状损伤(片状麻点,深度小于1 mm)、线性损伤1(长度贯穿吊座安装面,宽度小于0.5 mm,深度约0.1 mm)、线性损伤2(长度小于10 mm,宽度约2 mm,深度小于0. 5mm)、面状损伤(长度约10 mm,宽度约5 mm,深度小于0.5mm)四种现象,具体如图1 ~ 4 所示。

图1 麻点状损伤 图2 线性损伤1

图3 线性损伤2 图4 面状损伤

2012年6月2日D6242次CRH1092A运行途中随车机械师发现05车A架异响,出动热备车组替换CRH1092A回动车所后对05车A端转向架进行落轮检查,落轮后手动旋转05车2轴4位轴箱轴承时,可以听到轴承内部有异音。随后对轴承进行分解,内圈和滚子组件油脂状况:后挡侧(A)保持架上有金属。

图5 后挡侧(A)保持架

外圈滚道状况 :A侧外圈滚道面承载区有约90°范围的剥离区(见图 5)。外圈滚道状态 :A侧外圈滚道承载区下方约90°范围剥离剥离区内可见与滚子接触形状和间距对应的原始剥离区域,非剥离有其它点状异物压痕,且非承载区较轻。由此可见该转向架异响是由轴承外圈滚道剥离造成的。

1.3故障原因分析

通过汇总动车组转向架在运行中出现的异响故障,分析主要原因如下:(1)轴承内部故障引发的异响中巡视发现(故障表现为动车组运行达到一定速度后发出固定频率的异响,通过随车机械师途因福州动车段发现的轴承故障造成的异响均在故障初发阶段,轴温升高尚未达到报警界限,所以在监控动车组状态的 IDU 上未能发现该(故障),此故障较难发现,要在一定速度才会发出异响,需随车机械师认真甄别。其产生的主要原因为:[1]轴承材质问题;[2]热处理不良;[3]局部外伤、锈蚀、偏载或过载;[4]材质正常疲劳破坏。

(2)轮对踏面擦伤、剥离或局部凹入引发的异响故障表现为运行过程中走行部发出固定频率的响声,并引起车辆振动。运行速度越快,响声频率越高;擦伤、剥离长度越长,响声越大。这类故障较易发现。踏面擦伤是动车运行中制动力过大、抱闸过紧,车轮在钢轨上滑行,踏面局部被磨成平面。

第2章转向架的结构

2.1转向架由那些组成

转向架的附属装置,轮对电机组装,构架,一系弹簧悬挂装置,二系弹簧悬挂置牵引装置,电机悬挂装置基础制动装置,手制动装置和砂箱等组成。

2.2转向架的结构图

图2 2.3轮对踏面压到异物后的异响

故障表现为某一转向架轮对踏面压到钢上的异物后发出一声巨响,因坚硬异物造成轮对踏面局部凹入而发出固定频率的异响。

2.4管路泄露故障引发的异响

故障表现为车辆下部发出尖啸声,漏泄量大可通过 IDU 所报故障信息进行判断,漏量小可通过随车机械师途中巡视或地勤机械师入库检查作业发现。其主要原因为车组经长时间运行震动或运行途中管路遭异物击打,使管路连接处出现松动、变形,导致管路中的压力空气漏泄发出异响。

2.5油压减振器引发的异响

其主要原因为车组在转弯时车体两边出现高度差情况下(特别是左右空气弹簧压力差超过 20kpa 以上时),造成油压减振器的偏磨(主要为二系横向)而发出异响,此为正常现象。如油压减振器发生严重偏磨或漏油则属于故障。

2.6 自动车钩偏移引发的异响

在动车组运行中,通过曲线时自动车钩支架左右弹簧位置发生偏移,导致晃动产生共所发出间断的敲击声,此为正常现象。(1)车钩的结构特点

车钩的连挂间隙小;车钩具有联锁和防脱功能;钩舌销不受力;耐磨性;良好的防跳性能;结构强度高;自动对中功能。(2)车钩的结构图见图3

图3 4

(3)原送料皮带存在的问题

在用户使用过程中,发现送料机构问题不少。由于每边采用(根3带,两边共有6根,换带时间长6虽然皮带的型号是一样的,但张紧后,还是有紧有松,影响正常送料。如果下面或中间的一根带断了,更换起来特别费劲6而且换了一根新的,松紧程度又不同了;特别是由于采用A型带,6带露在带轮外面的高度最多只能有5mm(如露在外面的部分多,带轮的轴线是在竖直方向,即带是在垂直方向工作,这样带很容易从带轮上滑落),皮带用不了10天就得更换6造成生产线停顿,经济损失大,用户的意见非常大。(4)新型送料皮带的优点

为了改变这种状况,对送料机构进行了改造。去掉原来的3带,重新设计了一种新式带。因为这种带的内面带有凸起的糟形,使得带在垂直位置工作时,靠凸起的槽形定位,不会改变位置,而向下掉,相应的带轮也改成中间有一槽。配合情况这种带实际上是由平带和 3 带组合而成。采用这种皮带后,调整带的张紧力非常方便,也不会出现松紧的现象。送料过程中也不会出现停顿,更换也非常方便。更为重要的是,这种带的厚度增加(相对平皮带来说),带的寿命大大增加。5

第3章.转向架的作用

3.1转向架的历史

20世纪50年这个时期,我国首次自行设计了转向架,主要型号有101、102、103型,是21型客车使用的导框式转向架,构造速度是100km/h,其结构复杂,笨重,运行性能差,现已淘汰!70年代,四方厂研制了U型结构的206型转向架,浦镇厂研制了H型构架的209转向架。206型转向架采用侧部中梁下凹的U型构架,干摩擦导柱式轴箱定位装置,带横向拉杆的小摇动台式摇枕弹簧悬挂装置,双片吊环式单节长摇枕吊杆外侧悬挂以及吊挂式闸瓦基础制动装置等,结构可靠,运行平稳,磨损少,检修方便,1993年开始在中央悬挂部分加装横向油压减振器,加装两端具有弹性节点的纵向牵引拉杆,形成206G型转向架,后加装盘型制动装置,形成206P型转向架。

209转向架是浦镇厂在205转向架的基础上研制的,于1975年开始批量生产。它采用H型构架,导柱式轴箱定位装置,摇动台式摇枕弹簧悬挂装置,长吊杆,构架外侧悬挂,两高圆弹簧,摇枕弹簧带油压减振器,吊挂式闸瓦基础制动装置等。1980年后,又生产了具有弹性定位套的轴箱定位结构和牵引拉杆装置的209T转向架。在此基础上,还生产了采用盘型制动的209P转向架。

在209T转向架的基础上,浦镇厂又开发了供双层客车使用的209PK转向架,其构造速度为160km/h。主要有以下方面的改进:采用盘型制动和单元制动缸,取消踏面制动;设空重调整阀;采用空气弹簧和高度调整阀;安装抗侧滚扭杆;保留了摇动台结构。209PK 转向架(P 代表盘型制动,K 代表空气弹簧)在这段时期内,我国还制造了少量用于公务车的三轴转向架,在原德意志民主共和国进口的软座,软卧车上采用了 211 等型号的转向架。

3.1.1准高速客车型

1994 年,四方厂、长客厂、浦镇厂相继研制出了 206WP、206KP、CW-2、209HS 转向架,在广深线动力学试验中最高时速达到了 174km/h,这些转向架的研制成功,标志着我国客车转向架技术上了一个新台阶。

206KP、206WP 转向架是四方厂为广深线准高速客车和发电车设计的转向架,二者除中央悬挂部分和构架侧梁全旁承支重;中央悬挂为有摇动台结构;设带橡

胶套的中心销轴牵引拉杆横向挡,横向拉杆,横向油压减振器,抗侧滚扭杆;轴箱悬挂系统设垂直油压减振器;基础制动装置为单元盘型制动,设电子防滑器;广泛采用橡胶元件,改善隔振、隔音性能,减小磨耗。

3.1.2高速型

1998 年起,各工厂相继推出了自己的高速转向架,例如浦镇厂的PW-200转向架,长客厂的CW-200转向架,四方厂的SW-200、SW-220K转向架等。PW-200转向架(PW代表PuzhenWork)是在209HS转向架的基础上重新研制的,它优化了一系和二系悬挂参数;采用了无磨耗的橡胶堆轴箱弹性定位装置;采用高速轻型轮对;轴颈中心距改为2000mm ;更换轴箱减振器安装位置;装用带可调阻尼和弹性支承的空气弹簧,采用两端为球铰的纵向拉杆;装用新型盘轴式基础制动装置;优化了结构设计。

SW-200 转向架结构与 SW-160 转向架基本相同,其改进如下:优化了一系、二系悬挂系数;采用轴盘式基础制动装置,适用于200km/h的高速列车。该转向架在1998年6月的郑武线动力学试验中最高时速达到了240km/h。在这一阶段,长客厂生产了我国第一台 CW-200 型无摇枕转向架。其构架采用4块钢板拼焊,横梁采用无缝钢管,与侧梁连通作为附加空气室,中央悬挂。

3.2转向架的主要作用

转向架是承载车体重量和传递走行动力的导向部件,是大型养路机械的重要组成部分,其主要作用如下:

1)承载车体重量转向架作为一个独立的走行装置,它直接支撑车体,承受和传递车架以上各部分(车体,车架,动力传递装置及作业装置等)的重量。2)传递走行动力把轮轨接触处产生的轮轴牵引力,以及通过曲线时轮轨之间的横向作用力传至转向架构架,经过减震环节再传向车体,同时,转向架引导车辆在线路上运行。

3)曲线通过转向架可相对车体回转,其固定轴距也较小,故能使车辆顺利通过半径较小的曲线,并大大减少车辆的运行阻力。

4)提高车辆的运行平稳性转向架的结构要便于弹簧减振装置的安装,使之具有良好的减振特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,使车体在各振动方向上的位移量减小,提高车辆运行平稳性和安全性。

5)保证必要的粘着力和制动力,充分利用轮轨之间的粘着,传递牵引力和

制动力,放大制动缸所产生的制动力,使车辆具有良好的制动效果,以保证在规定的距离之内停车。

6)便于检修,转向架是车辆的一个独立部件,在转向架于车体之间尽可能减少联接件。易于从车辆底架下推进,推出,便于检修,有利于劳动条件的改善和检修质量的提高。

7)转向架的主要技术要求,转向架是大型养路机械的主要组成部分之一,它用来传递车辆的各种载荷,并利用轮轨间的粘着作用保证牵引力的产生。转向架结构性能的好坏,直接影响大型路养机械的牵引能力、运行品质、轮轨磨耗和运行安全。

第4章 转向架的故障分析

4.1动车转向架故障类型分析

在分析产品故障时,一 般是从产品故障的现象入手,通过故障现象(故障模式)找出原因和故障机理。对机械产品而言,故障模式的识别是进行故障分析的基础之一。

由于故障分析的目的是采取措施、纠正故障,因此在进行故障分析时,需要在调查、了解产品发生故障现场所记录的系统或分系统故障模式的基础上,通过分析、试验逐步追查到组件、部件或零件级(如螺母)的故障模式,并找出故障产生的机理。

故障的表现形式,更确切地说,故障模式一般是对产品所发生的、能被观察或测量到的故障现象的规范描述。

故障模式一般按发生故障时的现象来描述。由于受现场条件的限制,观察到或测量到的故障现象可能是系统的,如制动系统不能制动;也可能是某一部件,如传动箱有异常响声;也可能就是某一具体的零件,如油管破裂等。因此,针对产品结构的不同层次,其故障模式有互为因果的关系。

故障模式不仅是故障原因分析的依据,也是产品研制过程中进行可靠性设计的基础。如在产品设计中,要对组成系统的各部分、组件潜在的各种故障模式对系统功能的影响及产生后果的严重程度进行故障模式、影响及危害性分析,以确定各种故障模式的严酷度等级和危害度,提出可能采取的预防改进措施。因此将故障的现象用规范的词句进行描述是故障分析工作中不可缺少的基础工作。

依据某检修部门几年内积累的故障数据;故障数据中的列车号主要是从002A到190A;车辆编号是从1车厢到8车厢;二级系统包括车体系统、车外系统、电气系统、给水卫生系统、供风系统、内装系统、转向架系统7大系统;各系统的故障百分比如表1所示。

由表1可知转向架系统在整个动车组系统中故障频率所占有效百分比达20%以上。根据转向架系统的结构特点和功能,将转向架划分为悬挂装置、架构组成。轮对轴箱定位装置、排障装置、驱动装置、制动装置、转向架配管及配线等。

表1 二级系统频率分布的输出结果

制动夹钳安装槽底部的加工刀痕是新造时遗留的质量问题,在制动夹钳检修工艺文件中并未规定该部位细化的检修要求。据此完善制动夹钳检修工艺文件,增加了安装槽底部检查及打磨工艺要求,在检修过程中须检查制动夹钳安装槽底部是否存在异物及是否有明显的接刀痕迹的施工工序。对于安装槽底部有异物的,须打磨清除;对于安装槽底部存在明显加工刀痕的,使用细砂纸打磨消除刀痕,保证安装槽底部的平面度。同时要求将检修过程出现的问题在后续新造产品中须做好产品质量控制,即对于新造产品也增加了底部平面度检查工序,确保后续产品的质量,这样就可杜绝出现损伤现象。在完善制动夹钳检修工艺的前提下增加了制动夹钳底部安装面的防护工艺。要求制动夹钳在运输过程中需对底部安装槽进行合理防护,以防止安装槽底部受到磕碰或沾染异物而影响组装质量。

依据某机车车辆股份有限公司采集积累的大量使用维护数据,进行了分类处理,得到动车组转向架的故障部位和故障类型表,如表2所示。

0

表2 转向架系统故障模式统计表

从表2中明显看出,转向架系统总共有42个故障模式,制动装置包括轮对等故障达到30条,占26.78%,应重点加强与制动装置相关部件的管理维修和保养工作,及时发现故障隐患,杜绝事故。1 4.2动车组转向架故障原因分析 4.2.1部件设备漏油分析

通过表2分析可知零部件设备漏油在转向架故障中较为常见,可以占到总故障数的25%。通过对设备运行的观察发现可能故障原因是

(1)动车在运转时,在相对封闭的机械箱里,机器在运转时会产生大量的热量。动车组在全日制工作时,箱内温度逐渐升高,箱内压力也会逐渐增大.油液在箱内压力作用下从密封间隙处渗出。

(2)设计不合理;制造质量不良;使用维护不当,检查不及时。设备上的某些静、动配合面缺少密封装置,或采用的密封方案不合适;设备上的某些润滑系统只有给油路,而没有回油路,使油压越来越大,造成泄漏。

4.3制动装置故障分析

动车组制动装置故障在转向架系统故障中占到最大的比例,达到了26%以上。动车组转向架制动装置采用空液转换液压制动方式。制动装置故障不仅会造成动车组途中晚点,而且如处理不当会导致动车组发生事故,严重影响运输秩序,威胁乘客的生命财产安全。

制动系统的常见故障包括了制动控制装置传输不良、制动控制装置故障、制动控制装置速度发电机断线、制动力不足、制动不缓解、监控显示器显示抱死、列车紧急制动不能复位、监控器等控制设备无电等。制动控制装置传输不良时,制动时会检测制动力不足。传输不良主要是光连接器的连接插头松动、接触不良,终端装置接口卡板故障。当制动控制装置速度发电机断线时,车辆将无法进行滑行控制。制动力不足时,可能是UB-TRTD继电器故障、电路故障、制动管系泄漏、EP阀故障、检测传感器故障、BCU故障等。但出现制动抱死故障显示时,可能是由速度传感器断 线、PCIS防滑阀故障、CI与BCU信息传输故障导致再生制动与空气制动同时发生、BCU内部滑行、抱死检测控制错误显示制动系统故障等造成的。

4.4其他零部件的故障分析

轮对组成故障损伤,因其裸露车体外,且直接与地面钢轨接触,运行状况复杂,且轮对组成乃转向架的重要部件,如有故障易造成严重的事故。其次空气弹簧故障因其材质特殊为橡胶所制,较易被划伤,若运行时间长易造成空气弹簧的故障。其次还有横向减振器和抗蛇行减振器,这两者均为油压减振器,易造成漏 1 2 油故障,从而降低减振效果。制动夹钳的长时间使用及检修维护不当,使制动装置易出现故障。

4.5动车组转向架的故障模式、致命性分析(FMECA)

经过前面的分析,基本了解了动车组转向架的故障模式和发生原因,但是仍不清楚每种失效模式对转向架功能所造成的致命度的大小,所以需要对转向架进行FMECA分析[5-7],以便掌握其可靠性薄弱环节,为可靠性评估与提高可靠度提供科学依据

部件i以失效模式j 发生失效时,该零部件的致命度为:

CRij =α

ijβijλ

i

ij是部件式中aij是部件i以失效模式j而引起部件的失效模式概率;βi以失效模式j发生失效造成部件损伤的概率。国标草案中将此称为丧失功能的条件概率。其值为1,表示肯定发生损伤;0.5表示可能发生损伤;0.1表示很少可能发生损伤;0表示无影响。λi是部件i成为基本失效件的故障率采用平均故障率。

通过上面的分析,可以看到在转向架的各个主要部件中轮对部件的部位致命度最大,主要是因为轮对承受了车辆与线路间相互作用的全部载荷及冲击,且直接与地面钢轨接触。其次是制动卡钳(动车)、空气弹簧和轴箱体,它们将是影响转向架可靠性的关键部件。另外,横向减振器部件的致命度也不小,虽然抗蛇行减振器的故障致命度并不很大,但它是使动车组在行驶时具有良好的平稳性、舒适度和安全性的保证,列车在高速行驶中易发生转向架蛇行运动,所以也应该加以重视。具体到故障模式致命度来看轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损等,是重点针对的对象,对此可以采取以下措施:

(1)对于轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损、磨损、弹簧断裂、弹力不足等故障,要加强车辆行驶前、行驶后检查,必要时采取无损检测或磁力探伤,如发现部件有微小裂纹,应及时更换防止裂纹进一步扩展,磨损加剧等。同时建议使用抗拉压、抗剪切、抗扭转、耐磨损的材料来制造,合理改进制造工艺过程,提高部件的质量和使用寿命。

(2)动车组维修部门维护转向架时应严格按照维修手册规定进行,并对致命度大的部件和模式加以重视。

第5章.动车组转向架轴承的检测技术与处理

5.1动车组转向架轴承故障诊断的基本内容

动车组转向架轴承故障诊断与监测是通过轴承的劣化损伤以及性能状态参数,来判断和预测其可靠性和使用性,对异常情况的部位!原因和危险程度进行识别和诊断,及时的可靠的反映故障,防止事故的发生,保证整个动车组运行正常“总的来说,动车组转向架故障诊断的内容是:状态的监测,故障诊断和正确指导轴承的管理与维修三部分。

1.状态监测状态监测就是要采用各种方法掌握设备的运行状态,如检测!测量!分析和判别等”还需要结合系统的现状以及经验,考虑环境和突发因素,准确判断轴承状态,当其出现异常时,发出警报,提醒相关人员采取及时的措施“系统要具有显示和记录其状态的功能,为设备的故障分析和可靠性分析提供信息和基础数据”

2.故障诊断故障诊断技术的实质是:根据状态监测所获得的信息与数据,结合滚动轴承的运行历史!结构特性和参数条件,对滚动轴承的各种不同类型的故障进行预报和分析,并确定其性质!类型!原因!部位!严重程度!性能趋势和后果“

3.指导轴承的管理维修根据诊断结果,决定设备的维修方式和维修周期”避免/过剩维修0,防止因不必要的拆卸使设备精度降低,延长设备寿命;减少维修时间,提高生产效率和经济效益;减少和避免重大事故发生,故不仅能获得巨大经济效益,而且能获得很好的社会效益“ 5.2动车组转向架轴承故障监测常用技术

机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点,从诊断技术的各分支技术来看,美国占领先地位”美国的一些公司,如Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平“发展至今,动车组转向架轴承故障监测的常用技术主要有:振动诊断技术,温度诊断技术,油样分析技术,油膜电阻诊断技术,声发射诊断技术等”下面简要介绍这些方法“1.振动诊断技术振动诊断技术是应用最早的!使用范围最广的故障监测诊断技术”运行的机械设备产生振动的原因是:表面的接触摩擦和旋转部件的不平衡等“进一步的研究表明:振动的强弱及其包含的主要频率成份和故障类型!部位和原因等有着密切的联系。本论文就是采用振动诊断技术是通过安装在轴承座和箱体上的压电式传感器采集轴承的振动信号,并采用有效的方法对其进行分析和处理,振动分析法具有: 4 1.对各种类型工况的轴承适用;对早期轻微故障诊断有效;信号采集方便,分析简单,直观;诊断结果可信度高,在实际中得到了极为广泛的应用,在实际诊断中,传感器采集振动信号中不仅反映轴承本身的工作情况,还包含了动车组中其他运动部件和结构的干扰噪声,在动车运行中,有轻微的局部故障的滚动轴承的振动信号成分往往会被干扰信号淹没,很难被分离与识别,对轴承的工况和故障的诊断会有一定的影响,因此,轴承振动诊断技术的关键是采用先进合理的振动诊断分析处理技术来抑制干扰信号,提取故障特征信息,有效地及时地发现轴承故障。

2.温度监测技术温度监测是通过测量运行中滚动轴承的温度来监测其工作状态是否正常的方法,温度监测法是一种常规!操作简单的故障诊断技术,轴承的温度对轴承的磨损程度和烧伤较为敏感,其应用在一定程度上能较好的反映轴承运行故障,提高了故障检测效率和增加了行车可靠性,但这种方法的缺点是:只有当轴承故障累积到相当严重的程度后,也就是轴承故障的晚期症状,温度才有明显的变化,而轴承出现早期故障如点蚀!剥落和轻微磨损时,温度监测无法发现”由于摩擦产生的热量与相对速度的平方成正比,车辆速度与切轴时间成反比,因此,温度监测逐渐成为滚动轴承的辅助监测技术,降低风险。

3.油样分析技术磨损断裂腐蚀和润滑不当是动车组转向架轴承失效的方式,其中润滑不当占主要部分,由于轴承在运行过程中是用油润滑或油冷却,零部件磨损等原因产生微小颗粒必然会带入到循环油液中,对轴承所使用的润滑油进行常规理化分析,或对其中的金属颗粒进行铁谱分析!颗粒计数等分析以及根据其形状和尺寸来判断轴承故障,就是油样分析技术,它能发现轴承的早期疲劳失效,可作磨损机理研究等特点,但是,这种方法易受其它外界因素的影响,一般用于离线监测,这样会导致信息可能不全面,还得依靠人力来管理,所以,这种方法具有很大的局限性

4.油膜电阻诊断技术动车组转向架轴承在旋转过程中,如果润滑良好,滚道和滚动体之间会有一层良好的油膜,由于油膜的作用,内圈与外圈之间有很大的电阻,达到兆欧姆以上;当油膜遭到破坏时,其电阻的值就会降低,甚至接近0欧姆,故电阻越大,油膜就越厚,摩擦就小,属于正常运行状态;若电阻很小时,油膜就比较薄,轴承摩擦大,属异常运行状态,我们可以通过测量轴承内外圈的电阻, 1 5 对滚动轴承磨损腐蚀等异常进行判断,但对表面剥落压痕裂纹等异常诊断效果差,其特点是适用于旋转轴外露的场合,对不同的工况条件可使用同一评判标准。

5.声发射诊断技术声发射(AcousticEmiSSion简称AE)是指物体在受到形变或外界作用时,因迅速释放弹性能量而产生瞬态应力波的一种物理现象发射检测是一种动态无损检测方法,即:使构件或材料的内部结构,缺陷或潜在缺陷处在运动变化的过程中进行无损检测发射信号来自缺陷本身,对被检件的接近要求也不高,可以利用发射诊断技术长期监测轴承的运行状态与安全性发射检测到的是一些电信号,根据这些电信号来解释结构内部的缺陷变化往往比较复杂,需要丰富的知识和其他试验手段的配合,另一方面,声发射检测环境常常有强的噪声干涉,虽然声发射技术中己有多种排除噪声的方法,但在某些情况下还会使声发射技术的应用受到限制。

5.3机车车辆轴承故障机理分析 5.3.1轴承故障的振动原因

动车组转向架一般是内圈与动车的传动轴的轴顶过盈配合连接,工作时随轴一起转动;而外圈安装在轴承座或箱体上,工作时是固定或相对固定“由于内圈与传动轴连接,外圈又安装在轴承座或轴箱上,这样在动车组的运行过程中,对轴承和轴承座或箱体组成的振动系统产生激励,使该系统振动”引起轴承振动的原因除了外部激励因素(传动轴上其它零部件的运动和力的作用等)之外,如图 3-1所示。

5.3.2动车组转向架轴承缺陷产生的特征频率

当滚动体和滚道接触处遇到一个局部缺陷时,就有一个冲击信号产生缺陷在不同元件上,接触点经过缺陷的频率是不相同的,这个频率就称为特征频率,特征 6 频率可以根据轴承的转速!轴承零件的形状和尺寸由轴承的简单运动关系分析得到如图3一2所示,在外圈固定,内圈与轴一起旋转的情况下,假如内圈滚道!外圈滚道或滚动体上有一处局部缺陷,则两种金属在缺陷处相接触时的冲击振动间隔频率。1 7

结束语

踉踉跄跄的忙碌了半个月,我们的实习论文课题也终将告一段落,也基本达到预期的效果,心里也有一丝丝的成就感。但由于能力和时间的关系,总是觉得有很多不尽如人意的地方,本设计在何剑和曹楚君老师的悉心指导和严格要求下已经完成。从课题选择、方案设计到具体的设计和定稿,每一次改进都是我学习的收获。在实训的这段时间,也始终感受着导师们的精心指导和无私的关怀,我受益匪浅,在此向何剑和曹楚君老师表示深深的感谢。

转向架是动车组的走行部,而构架组成作为转向架的重要组成部分,其重要性尤为突出。一个小的产品缺陷也有可能引发大的产品质量问题。车辆检修过程不仅是产品功能恢复的过程,而且是车辆故障隐患排除的过程。所以对待修车要从问题的根源进行分析并彻底解决,完全消除影响列车安全运行的因素,为列车的安全运行保驾护航。1 8 参考文献:

[1].袁清武.车辆构造与检修[M].北京:中国铁道出版社,2006.[2].陈世和.车辆修造工艺与装备[M].北京:中国铁道出版社,2004.[3].宋永增.动车组制造工艺[M].北京:中国铁道出版社,2007.[4].中国铁道部.CRH1型动车组途中故障应急处理手册[M].北京:中国铁道出 [5].曾全君.地铁车辆车轮寿命分析[J].铁道技术监督,2008,36 [6].国莹,马贤海,杨存法.转K2型转向架轮对偏磨故障分析[J].铁道机车车辆,2007,27(4).[7].李春艳,霍秀峰.转K2型转向架故障分析及改进建议[J].铁道车辆,2001,39(6).[8].萨师煊,王珊数.数据库系统概论[M].北京:高等教育出版社.2000.[9].施敏芳.滚动轴承在线监测与故障诊断系统[J].轴承,2001,(8):4一7.1 9

第五篇:动车组系统故障原因及改进方法资料

目 录

第1章 绪 论...............................................................................................................................2 研究背景及意义.......................................................................................................................2 1.2国内外研究现状................................................................................................................3 1.2.1国内外动车组可靠性研究现状............................................................................3 1.2.2国内外动车组预防维修周期研究现状................................................................6 1.3文章结构............................................................................................................................7 第2章动车组故障等级的划分.......................................................................................................9 2.1动车组故障定义的建议....................................................................................................9 2.2层次分析法划分动车组故障等级..................................................................................12 2.2.1层次分析法简述..................................................................................................14 2.2.2故障等级划分的基础..........................................................................................15 2.2.3分析过程及分析结果..........................................................................................17 致谢................................................................................................................................................24 参考文献.........................................................................................................................................25

摘 要

动车组子系统的可靠性分析以及维修策略的优化研究已成为保障动车组安全、高效运营的关键课题。根据调研得到的动车组故障、维修数据,在总结和分析现有可靠性理论和模型的基础上,主要对动车组故障等级的划分、动车组子系统故障模式危害度分析、动车组子系统寿命分布的拟合、预防维修对动车组子系统可靠性的影响以及预防维修周期决策模型的优化方面进行了研究,得到如下结果:(1)对现有故障数据进行统计分析,利用层次分析法,基于故障的影响等级、影响时间以及发生概率三个维度将动车组的故障分为四个等级。由于评价指标都是针对故障本身,所以得出的结论对于分析故障、优化维修策略等都有一定的指导意义。对某型动车组高压牵引系统的故障模式进行了统计分析,提出了一种结合故障等级的故障模式危害度计算方法,计算得到此系统各种常见故障模式的危害度,并针对高危害度故障模式提出了相应的处理措施,以提高易发高故障模式的部件的可靠性。

(2)推导出了基于维修条件下动车组的可靠度函数和平均失效前工作时间表达式;采用统计学与可靠性理论,拟合出某型动车组高压牵引系统的基本寿命分布函数,并验证了其分布服从威布尔分布;将得到的寿命分布函数代入新建立的预防性维修条件下的可靠度函数模型进行定性、定量的对比分析,得到了预防维修可以明显增加此系统的运用寿命并且可以减慢其可靠度下降速度的结论,同时,也验证了此系统现行的预防维修周期较为合理。

(3)建立了一种适用于以可用度最大为目标的蒙特卡洛法制定预防维修周期的模型。在此基础上,采用多目标规划方法对提出的模型进行了优化,设置综合评价指标,综合考虑动车组在一个维修周期内的可用度、经济性和可靠度,此模型以通过调节权重系数来改变计算过程中可用度、经济性和可靠度的优先级,应用范围较广。两个模型以某型动车组高压牵引系统作为算例分别进行分析,得到了该子系统在相应目标下的预防维修周期。

关键词:动车组;状态监测;故障数据挖掘;知识库

第1章 绪 论

研究背景及意义

为了满足人们口益增长的运输需求,铁路列车的运行速度逐步提高,密度也在不断加大,铁路运输生产对列车运行的可靠性要求越来越高。动车组列车是完成铁路高速运输任务最重要的移动设备,其可靠性研究和维修策略的优化是高速铁路系统综合保障工程中的重要组成部分,也是动车组安全、高效运行的重要保障。

高速铁路技术已经成为衡量一个国家铁路技术发展水平的重要标志。截至到2014年底,中国高速铁路总运营里程已超过一万六千公里,全路动车组保有量已超过一千余列,分成5大系列14种子车型fl-Zl。为了满足社会和国民经济对交通运输需求的口益增长,根据我国铁路发展战略确立了铁路近期的发展规划:在2020年以前,构建以北京、上海、广州和武汉为中心,部分省会城市为节点,辐射全国主要城市,逾几万公里的铁路客运专线网。届时,将会有更多的cRH系列高速动车组投入使用。国产C动车组结构复杂,其运用、维修方式与传统机车车辆有所不同,并且动车组开行密度大、运营里程长、运用环境复杂、检修质量要求高,所以动车组能否保证以高可靠度,安全、高效的运行,成了铁路部门科研工作者和技术人员所关注的最重要问题。

动车组运行速度快、运行图编排密集,过长的停车时间会大大降低运输效率。动车组的故障可能会直接影响高速铁路的运行安全,造成运输中断、线路阻塞,给国民经济造成较大损失。为此,提高动车组的可靠性是今后保障铁路安全的一项重要工作。

本论文是在中国铁道科学研究院行业服务技术创新项目《高速动车组故障规律分析及可靠性试验方案研究》的支持下开展研究的。通过对我国动车组的可靠性评估及维修技术的深入调研发现:基于动车组实际运行故障数据来探索动车组系统故障规律及评估可靠性的研究较少,而我国动车组维修策略也主要是借鉴国外的一些维修制度。我国动车组维修的技术政策是“在计划预防修的前提下,逐步实施状态修、换件修和主要零部件的专业化集中修”。计划预防修符合先进维 2 修理论思想,属于预防性维修,也适用于我国铁路维修现状。但是,我国动车组可靠性研究刚刚起步,动车组子系统的可靠性分析与维修决策优化方面的理论基础和指导方法比较少,对于动车组故障的定义以及故障等级的划分尚无明确、统一的标准,所以仍需要在这方面进行一些基础研究,为动车组运用部门优化维修策略提供了理论依据,具有一定的实际意义和参考价值。

1.2国内外研究现状

1.2.1国内外动车组可靠性研究现状

发达国家轨道交通行业的可靠性工程已发展到比较先进的水平,建立了系统的可靠性行业标准,具备先进的可靠性设计分析技术和有效的验证方法。国外已经尝试将可靠性技术运用于机车车辆并逐步渗透到动车组列车,以可靠性为中心的维修体制将其设计、制造、评估和维修有机的结合成一体,为动车组安全可靠运行提供了保障,已引起国内相关研究者的高度重视。德国联邦铁路非常重视机车车辆的可靠性工程研究,率先建立了可靠性数据库,收集全路各机务段和修理工厂的数据,并进行数据处理、分析。

德国联邦铁路特别重视对机车车辆故障的分析研究,包括运用中的故障以及机务段、车辆段和修理工厂在机车车辆检修中发现的故障。联邦铁路认为,采用近代可靠性工程方法,可以最大限度地利用故障数据资料,得出具有参考价值的结论,对机车车辆的近期以及中长期的发展均有一定的指导作用。联邦铁路还应用可靠性工程方法对机车车辆主要零部件的磨损情况进行了研究,取得了一定的成果。近年来,德国ICE列车在设计和评价方面充分融入了可靠性理论,采用了模块化设计和等寿命设计原则,在保证可靠性的前提下降低养护维修费用。在列车系统和部件设计制造完成以后,有关部门将对其进行大量的可靠性试验考核,包括单一零部件的可靠性考核和装车后整车的可靠性考核,并对其可靠性做出评价,直到确认所有零部件和整个系统是完全安全可靠的,才允许批量生产和投运营使用

英国铁路对机车车辆的可靠性十分重视,在上个世纪60年代就规定了机车车辆的可靠性指标:发生故障前行驶里程不足24000 km的机车为不良机车,超过 3 24000 km的机车为合格机车,大于48000 km的机车为良好机车。英国铁路经对17个系列2500台内燃机车的故障进行了统计,计算得出它们的可靠性指标,经过对比分析找出主要故障部位以及故障原因,进而采取改进措施,提高了机车的可靠性

日本原国铁于上世纪70年代对新干线高速铁路及机车车辆大力开展了可靠性工程方面的研究工作,以保证高速动车组运行的可靠性和安全性。口本原国铁利用电力机车及动车组列车在干线上发生的故障数据进行了威布尔解析分析,并推测出电力机车的可靠度,所得结论证明了当时电力机车和动车组的故障皆处于初期故障和偶发故障阶段,为延长检修周期找出了依据。与此同时,他们根据可靠性工程理论和现场实际损坏的数据来确定机车车辆主要零部件的寿命,从口本机车车辆最佳全寿命周期费用的角度来检验维修工作的正确性。口本原国铁利用机车车辆监测系统和信息系统对发生的各种故障形式随运行公里或运行时间的变化进行分析,分析结果可供可靠性设计参考;用故障树(FTA)和故障模式及影响分析(FMEA)对机车车辆故障及其影响进行了分析,找出系统的薄弱环节,从而改进设计来提高机车车辆及其主要零件的可靠性和安全性

美国各大铁路公司广泛开展了可靠性工程的研究。例如美国联合太平洋铁路公司建立了完善的可靠性信息系统,利用可靠性工程理论对数据进行处理分析,从而使机车及其零部件的可靠性评价由定性分析提高到定量分析,并制定了可靠性定量指标。美国机车车辆制造公司也应用可靠性技术来提高机车车辆的可靠性,例如在提高内燃机车的可靠性的问题上,不只是通过对薄弱零件的改进来解决,而且要将可靠性技术贯穿于内燃机车设计、制造、试验、使用、维修和管理等各个环节,形成一个系统工程,只有这样才能使复杂先进的内燃机车系统达到真正的高可靠性的目的

我国铁道部门近年来在提高机车车辆可靠性方面做了很多工作,并取得一定的成效。设计制造部门针对机车车辆运用中暴露出来的问题和故障进行了分析研究;在机车车辆企业中推行了全面质量管理,提高了质量意识,促进产品质量的提升;运用单位在车辆运用中积累了大量的可靠性数据与经验,运用维修效率不断提高;一些高校和科研单位也开始开设有关可靠性工程的课程和培训班,并招收了相关专业的学生,为可靠性工程的研究提供人员保障。中国铁道科学研究院 4 对机车车辆可靠性工程的研究始于机车车辆研究所在1992年开始的“可靠性工程理论在机车车辆中的应用”课题研究,经过科研人员的多年努力,现已取得了一些成果。中国铁道科学研究院开发了动车组运用检修管理信息系统,该系统采集了目前国内运用的全部动车组的全寿命周期各个阶段的故障信息和维修数据,动车组在运用检修过程中产生的故障维修数据,是动车组在真实运行环境条件下产生的第一手资料,是动车组可靠性的真实反映,为今后的可靠性研究积累了重要的数据。

Bocchi W 机械产品的可靠性进行了研究,初步得出其可靠性分布模型服从指数分布的结论;但经后续研究表明Bocchi W J.的评价结果相对保守,有学者通过论证分析,认为机械产品的可靠性分布模型大多服从威布尔分布,这种分布成为现今对有耗损的动车组子系统进行可靠性分析时常用的分布,Rafal Dorociak建立了贝叶斯网络算法,即通过建立故障传播模型来给出机电整合系统的主要解决方案,适用于复杂的机电系统的可靠性分析,贝叶斯网络算法的优点在于有效识别关键弱点并定义各自的对策,其优越性在动车组可靠性研究领域得以体现;Hanmin Lee等建立了产品资料管理的方法(PDM),处理动车组的部件管理维护和历史故障数据,以确保系统运行的可靠性和安全性,研究表明此法有助于减少动车组的故障率,使其可靠性增加了30%;王华胜基于我国动车组实际运用状况,依据可靠性理论和现场数据统计分析,验证了动车组整车可靠性服从指数分布的规律,依据可靠性抽样检验理论,计算不同置信度、不同故障率等级要求下的动车组允许故障发生的次数和最小累计运行里程,据此给出动车组整车可靠性的验证方法、CRH2型动车组结构功能特征和运用维修特点,分析了各系统、分系统间逻辑功能关系,初步建立其可靠性模型,并根据其对可靠性的不同要求划分评价等级,采用综合评分法对动车组整车可靠性指标进行分配;胡川建立了动车组系统及其子系统故障树模型,运用蒙特卡洛法和MATLAB软件,对动车组可靠性进行仿真试验和分析,并依据假设检验理论对动车组故障数据进行分析,基于可靠性抽样检验理论,给出动车组可靠性抽样检验的方案;刘建强等分析了CRH3型动车组高压电器系统组成结构及逻辑功能关系,建立高压电器系统的可靠性框图模型,依据系统可靠性理论与故障统计数据,推导并证明CRH3型动车组高压电器系统各部件的可靠性规律,给出可靠性评估指标的计算方法,分 5 析计算高压电器系统各部件的故障率与可靠度。

我国动车组在可靠性工程领域的研究刚刚起步,尚缺乏全面、系统的可靠性工程方面的规划、研究和分析。随着我国经济的发展和科学技术的进步,动车组在安全可靠的前提下向着高速的方向前进,许多可靠性问题函待解决,进行相关可靠性工程的研究工作迫在眉睫。动车组可靠性工程是一个系统工程,需要有关各部门进行长期的工作和积累,投入大量的人力、物力,才能真正达到提高产品可靠性、扩大运输能力、增加运输效率以及降低运输成本的目的。1.2.2国内外动车组预防维修周期研究现状

动车组的维修是客运专线系统综合保障工程中的重要组成部分,国内、外动车组普遍采取以预防维修为主,与事后维修相结合的维修方式。预防维修思想要求装备及其零部件在即将磨损到限,或者即将发生故障之前要及时更换、修理,维修工作在故障发生之前进行。在预防维修思想的指导下,形成了以磨损理论为基础的预防维修制度,这种计划维修制度以机械装备的故障率曲线来确定维修的时机。计划预防维修制度的具体内容可以概括为“定期检查、按时保养、计划修理”,通过降低故障率来保证设备的高可靠性。这种维修制度最关键的一步是确定设备或者子系统的预防维修周期,进而合理划分维修等级和维修周期结构,制定相应的维修规程和规范。所以,预防维修周期的制定成了可靠性范畴内研究动车组维修策略关键的一步。国内一些学者和相关专业技术人员对此做了很多工作,研究最为广泛的模型是以最大可用度为原则确定最佳预防维修周期和以最大经济性为原则制定最佳预防维修周期,随着这方面研究的深入和对动车组维修、运用的逐渐熟悉,也出现了一些其他方法来制定最佳预防维修周期。

Joung E J等指出只通过改善驱动电机来提高动车组的可靠性是难以实现的需要对动车组的零部件和各个子系统分别预测可靠性目标,基于可靠性目标对零部件进行设计和运行检测,对不同零部件和子系统制定不同的维修周期,以提高动车组子系统的可靠性、可用性和可维护性;Lee K M等提出通过统计动车组实际的检验任务周期的方法来确定其预防维修周期,该方法是基于以可靠性为中心的维修、将不必要的检查次数降到最低并尽可能减少维护成本;宋永增等提出利用可靠性的理论,对客车零部件的故障记录进行了数理统计,根据最大有效度原 6 则,得出旅客列车零部件最佳预防维修周期取决于平均预防性维修时间和平均事后维修时间之比;郭乃文对比了货车转向架零部件维修周期的可用度模型和经济性模型,得出在定量分析中最大可用度模型更加方便的结论,并结合实例从理论上计算出转向架零部件的最佳预防维修周期;王彩霞以可靠性工程为基础,通过危害度评估方法确定了动车组不同零部件的维修方式,并建立了分析动车组维修周期常用的任务可靠度模型、经济费用最小模型和最大有效度模型;王灵芝在以可靠性为中心的维修思想指导下,确定了高速列车设备维修决策过程,着重研究了设备重要度分析、设备寿命模型、预防维修周期及维修优化等。

目前,国内针对动车组子系统预防维修周期的研究较少,一方面是由于动车组子系统包含的部件较多,故障模式也比其他机械设备复杂,所以并不能完全套用之前对其他机械设备或系统的预防维修周期决策模型;另外,动车组的维修数据的统计涉及到多个部门,由于没有统一的故障数据管理体系和标准,导致可靠性数据的缺失或者数据统计难度增大。所以动车组运用、维修部门应该在以后的研究过程中,逐渐建立规范的可靠性数据收集、管理体制,为今后进一步的研究提供强大的数据支撑,为动车组可靠性理论研究打下基础。

1.3文章结构

本文分为五个章节,第一章为绪论,第二章为动车组故障等级的划分,第三章为动车组子系统在预防维修条件下的可靠性分析,第四章为动车组子系统预防维修周期决策模型的研究,第五章为结论和展望,具体结构如图1.1所示。

第2章动车组故障等级的划分

可靠性工程是从宏观的角度分析发生故障的可能性、故障分布规律以及发生的故障对整个系统的可靠性带来的影响,是从总体上以系统工程的观点来分析和研究故障的,所以故障数据是可靠性工程研究的基础。想要研究故障,首先要明确故障的定义、对故障的等级进行合理的划分,然后才能科学地筛选、整理、分析数据,从而在庞大的数据库中获取有价值的资料。

采用结合故障等级的危害度计算方法,对某型动车组高压牵引系统常见故障 模式的危害度进行计算,并针对易发生高危害度故障模式的系统或部件提出了提 高其可靠性的建议。

2.1动车组故障定义的建议

根据国家标准GB3187,失效(故障)的定义为:“产品丧失规定的功能。对可修复产品通常也称为故障。”由此可以看出,失效与故障在含义上大致相同,又有所区别,他们都是指“产品丧失规定的功能”,但传统意义上的“故障”一词,用于可修复产品,而“失效”一词多指不可修复产品。动车组属于可修复产品,在机车车辆专业中“故障”一词已经被相关专业人员普遍使用,所以本文在下面讨论中使用“故障”来表示动车组丧失规定的功能。另外,定义中所指的“丧失规定的功能”包括以下情况:产品发生破坏性故障,使其无法工作,因而丧失其功能;产品尚能工作,但有一个或几个性能参数达不到规定的要求;因操作失误而造成产品功能丧失;由于环境应力变化,导致功能丧失。

以前的机车车辆的可靠性分析中,各国铁路对故障定义不尽相同,例如美国、德国规定,列车在线路上由于破损而停止运行,则算作故障;而英、法和口本铁路都以列车破损造成的时间延误而算作故障。并且不同国家对延误时间值有不同的规定。因此,在利用可靠性指标对动车组进行评价时,首先要明确动车组故障的定义。

下面是国外机车车辆对故障的规定,如表2.1所示。

我国目前还没有对机车车辆的故障做出规定,有文献[25]曾经针对其提出了建议,即:在可靠性工程分析中,凡是由于机车车辆破损造成的机破事故就算作故障。也就是说,由于机车车辆破损而造成行车事故的,即列车在区间非正常停车或在车站内非正常停车时间超过3 Omin以上,或由于车钩破损而造成列车分离的均为故障。

对于动车组的运用故障尚没有明确的定义,有专门的动车组书籍[}a6]中提出了,影响运行的故障定义为出现下列情况之一: ①动车组在经过维修后仍能正常运行,但维修导致超过15 min的延误。②动车组经过维修后部分功能受到影响但仍然可以运行,维修导致的延误超过15 minx ③动车组需要被救援或回送。在动车组的实际运用中,故障可能在运用过程中或者预防性维修过程中发现。在预防性维修过程中发现的故障其实是出现在上一个运用周期中,只是没有对行车造成明显的影响,而在运用过程中出现的故障,对行车造成了非正常停车等影响,即影响运行的故障。我国动车组的运用是处在预防维修条件之下的,所以讨论在运行过程中发生的造成晚点或运输中断的故障(运行故障)更有意义。随着动车组技术的进步和动车组维修保障技术的完善,动车组的可靠性已经达到了一个相当高的水平,发生严重故障的几率大大降低。所以,传统的故障定义已经不能完全满足当今动车组可靠性分析的需要。

根据CRHIA,CRHIB,CRHIE,CRH2A,CRH2B,CRH2C,CRH2E,CRH380A,CRH380AL, CRH380B, CRH380BL, CRH380CL, CRH3C, CRHSA共计14个车型980列动车组8557条晚点记录,对晚点时间进行了统计分析,结果如图 2.1所示:

由图2.1可知,超过15 min晚点的情况只占所有晚点情况的7.14%,超过3 0 min晚点情况只占所有晚点情况的2.59%,由此可见,目前动车组非正常停车造成的晚点绝大部分在15 min以内,所以文献中建议的故障定义已经不能完全满足可靠性逐渐提高的动车组的故障定义需求。

动车组的运用范围越来越广,运用条件也越来越苛刻,我国新形势下的运输需求对动车组的可靠性提出了更高的期望,所以结合国内外对机车车辆故障的定义,以及对故障引起的晚点时间的统计分析,本文对动车组故障定义的建议为: ①动车组在经过线上或站内处理、维修后仍能正常运行,但维修导致临时 停车或晚点。

②动车组经过线上或站内处理、维修后部分功能受到影响但仍然可以运行,但维修导致临时停车或晚点。

③动车组经过线上处理、维修后可以限速运行到附近车站,但无法担当后 续交路,需要乘客换乘热备车。

④动车组在线路上非正常停车,无法继续运行,需要被救援与回送。即动车组只要发生非正常停车或因其他原因造成晚点,这种情况就算作一次故障。对故障进行定义是对故障分析的基础,对故障的分析又是开展可靠性工作的基础。故障数据是可靠性分析中最重要的开展可靠性研究的数据,建立故障数据存储和处理系统对推进可靠性技术的发展起着重要作用。故障问题贯穿于产的整个寿命周期,在产品投入使用后,对故障产品进行故障数据分析也是可靠性工程中极其重要的一环,所以故障问题是可靠性工程的核心问题之一。故障数据分析可以对可靠性工程的整个过程做出有效、实际的检验和评定,而且,最重要的 是故障数据是对使用现场的真实反馈,通过运用、检修数据的积累和分析,指导设计、制造运用部门逐步规范业务流程,持续改进检修工艺、优化修程修制、控制维修成本,完善和优化动车组运用检修生产力布局,为动车组高效运营提供了强有力的支撑,作为可靠性设计和可靠性试验以及评审的依据。

目前,国内对动车组运用维修的故障数据统计记录最及时、最准确、最完整以及连续性最好的系统是中国铁道科学研究院开发的动车组运用检修管理信息系统,它是客运专线信息化的重要组成部分,是支撑客运专线运营的必要技术手段。该系统是实现全路动车组运用、维修信息化管理,及时掌握动车组检修运用状态,提高动车组专业化管理水平的重要技术平台,也是已上线运行的重要铁路生产系统之一。它采集了国内几乎所有动车组全寿命周期各个阶段的故障信息、维修数据。动车组在运用过程中产生的故障维修数据,是动车组在真实运行环境条件下产生的第一手资料,是动车组可靠性的真实反映。对其统计的故障数据进行归纳分析和等级划分具有如下的意义: 分析动车组故障,可以从中提取出表征动车组可靠性的特征属性,为掌握动车组的故障规律提供理论基础;动车组的可靠性分析就是根据动车组故障模式、故障机理、故障的影响及其后果的严重程度,分析动车组各个关键零部件的失效规律,预测关键零部件的寿命分布模型和可靠性指标,从而采取有效措施,提高高速列车的可靠度;划分故障等级,并通过危害度分析,可以确定动车组关键零部件的维修方式,同时,动车组各子系统的可靠性评估及其薄弱环节的辨识可为可靠性改进设计及维修策略的制定提供参考依据。

2.2层次分析法划分动车组故障等级

故障等级的划分是为了便于掌握零部件的故障对系统的影响和造成后果的严重程度,以便进行可靠性评价和故障模式及影响分析,也是对于决策发生此故障模式的子系统或部件维修方式的一个依据。

之前的故障等级的划分依据是:按故障造成人员伤亡的情况;按故障造成设备和环境的损失情况;按故障造成的直接和间接损失的情况。根据《铁路行车事故处理规则》中的行车事故等级,有文献[28]建议将我国机车车辆故障等级划分为五级,如表2.2所示:

在故障模式的描述中,通常采用发生频度的高低、严酷度的大小等模糊语言,判断标准由于人员各异而产生不同,这给系统的可靠性分析带来了较大的困难。模糊数学能够通过定量的方法来处理定性问题,使得其评价更为科学和准确 传统的故障等级的划分,参照的主要是故障产生的事故造成的损失,伤亡人数和经济损失,是通过对事故的损失情况来衡量故障的严重程度的,并没有针对故障本身,对于动车组后续的故障研究以及可靠性研究并没有指导意义。并且,随着动车组技术的进步和预防性维修体制的不断完善,动车组的运用可靠性已经达到了一个相当高的水平,即使发生故障也极少会出现表2.2中工、且、且I.IV以及V中A类所描述的危害情况。故障并不等同于事故,表2.2更加适用于故障造成的事故等级的评定。并且,在实际运用过程中,列车由于故障晚点情况比较复杂,发生的概率也有所不同,用表2.3中将故障概念和事故概念混在一起,无法客观地对故障的严重程度进行等级的评定,不适用于可靠性工程中对于故障的分析,所以有必要针对故障本身对动车组故障等级进行划分。2.2.1层次分析法简述

层次分析法(Analytic Hierarchy Process,简记AHP)是一种定性和定量相结合的、系统化的、层次化的分析方法。它是将半定性、半定量问题转化为定量问题的行之有效的一种方法,使人们的思维过程层次化,将决策问题的有关元素分解成目标、准则、方案等层次。构建层次结构模型后,利用较少的定量信息,把决策的思维过程数学化,进而求解多目标、多准则结构特性的复杂决策问题。具体地说它是用一定标度对人的主观判断进行客观量化,在此基础上进行定性或定量分析的一种决策方法。

层次分析法把人的思维过程层次化、数量化,并运用数学分析、决策、预报或控制提供定量的依据。应用层次分析法分析问题时,首先把问题层次化,根据问题的性质和要达到的总目标,将问题分解为不同组成因素,并按照因素间的相互影响关系以及隶属关系将因素按不同层次组合,形成一个多层次的分析结构模型。并最终将系统分析归结为最底层相对于最高层的重要性权值的确定或相对优劣次序的排序问题。综合评价问题就是排序问题。在排序计算中,引入1}9标度法,并写成判断矩阵形式,可以通过计算判断矩阵的最大特征值及相应的特征向量,计算出某一层相对于上一层某一个元素的相对重要性权值。在计算出某一层相对于上一层各个因素的单排序权值后,用上一层因素本身的权值加权综合,即可计算出层次总排序权值,总之,由上而下即可计算出最底层因素相对于最高层 14 的相对重要性权值或相对优劣次序的排序值。

层次分析法是一种模拟人的思维过程的工具。如果说比较、分解和综合是大脑分析解决问题的一种基本思考过程,则层次分析法对这种思考过程提供了一种数学表达及数学处理的方法。因此,层次分析法十分适用于具有定性的,或定性、定量兼有的决策分析,是一种十分有效的系统分析和科学决策方法。由于层次分析法有着严密的数学逻辑,所以可以借助计算机程序进行辅助计算,大大简化了分析过程。

2.2.2故障等级划分的基础

根据调研得到的5000余条运行故障记录,考虑故障影响程度、故障影响时间和故障发生概率三个方面来对动车组故障等级进行划分。

根据运行过程中发生的故障对于动车组后续运行、整条线路产生的影响以及社会影响等,综合考虑对故障的处理方式、处理难度以及处理时间,将故障影响程度分为4个等级,如表2.4所示。

动车组发生不影响继续运行的故障,可以运行到站后由随车机械师或者站内工作人员进行快速的检修,一般操作为隔离、复位等,对旅客的出行和线上其他车次动车组影响极小,故将其划为轻微影响;线上临时停车或限速,将会影响故障动车组所在的整条线路其他车次动车组的正常运行,根据临停时间或限速造成的晚点时间的不同,将其划分为一般影响对旅客的出行造成的影响也会随之不同但是影响不大闭临线围较大将会影响上在出现线上临时停车后机械师下车检查的情况时,需要封下行两条线路上的其他车次的动车组的正常运行,影响范且机械师将承担一定的风险,故将其划分为较大影响;当动车组产生故障不能继续运行时,需要救援车来救援或者需要旅客全部换乘到热备车上以进行后续的旅程,这种情况无论对车上乘客的正常旅行,还是整条线上其他车次动车组的正常运行都会产生很大的影响,车上乘客的不满情绪如果通过网络迅速传播会对铁路运用部门造成负面的社会影响,故将其划分为严重影响,铁路部门应尽量避免此类故障的发生。

每种等级的影响下,都会造成不同的晚点时间,参照表2.3“京津城际铁路高速动车组故障等级的划分”以及对实际故障数据的统计与归类,将晚点时间分为5个等级,如表2.5所示。

不同的故障发生的概率也不一样,小概率故障也可能引起严重的危害,所以在划分动车组故障等级的时候也应该考虑到故障发生概率的因素。参考《故障模式、影响及危害性分析指南》[33],对不同的故障模式发生概率的等级进行划分,如表2.6所示。

对于影响程度等级高的却并没有对动车组、线路的正常运行产生影响的故障(即未临时停车、限速或晚点),并不能与影响等级低却造成了长时间晚点的故障直接进行严重程度的对比,而不同故障发生的概率也不尽相同,甚至还有一些小概率事件,所以,用某单一的标准来评定故障的等级并不科学。本文同时考虑影响程度等级、影响时间等级和发生概率等级三个维度,利用层次分析法进行系统的分析得出一个综合评价的排序,使得我们对于动车组发生故障的严重程度可 以进行更加客观的评价。2.2.3分析过程及分析结果

构建递阶层次结构 应用层次分析法分析实际的问题,首先要把问题条理化、层次化。构造一好的层次结构对于问题的解决极为重要,它决定了分析结果的有效程度。通过对指标体系分析,建立一个由目标层,指标层和方案层组成的递阶层次模型,如图2.2所示。

建立问题的层次结构模型是AHP法中最重要的一步,把复杂的问题分解成称之为元素的各个部分,并按元素的相互关系及隶属关系形成不同的层次,统一层次的元素作为准则对下一层次的元素起支配作用,同时它又受上一层次元素支配。对于评价故障影响这个问题来说,层次分析模型主要分成三层。最高目标层只有一个元素,为对故障影响的评价,中间层则为准则、子准则,在这一问题中准则有影响等级、影响时间、发生概率三个维度,最下面的一层为方案层,即可能出现的各种故障情形。参考专家的意见,将指标层中的三个指标的重要度进行排序:故障影响程度>故障影响时间>故障发生概率。构建两两比较判断矩阵。

建立层次分析模型之后,我们就可以在各层元素中进行两两比较,构造出比较判断矩阵。层次分析法主要是人们对每一层次中各因素相对重要性给出的判断,这些判断通过引入合适的标度用数值表示出来,写成判断矩阵。判断矩阵表示针对上一层次因素,本层次与之有关因素之间相对重要性的比较。判断矩阵是层次分析法的基本信息,也是进行相对重要度计算的重要依据。

假定上一层次的元素从作为准则,对下一层元素代,C1..C2……Cn………有支配关系,我们的目的是要在准则层乓下按它们的相对重要性赋予代C1..C2……Cn………相应的权重。在这一步中要回答下面的问题:针对准则Bk,两个元素C= 25 C….哪个更重要,重要性的大小。需要对重要性赋予一定的数值。赋值的根据或来源,可以是由决策者直接提供,或是通过决策者与分析者的 对话来确定,或是由分析者通过某种技术咨询而获得,或是通过其他合适的途径来酌定。

对于个元素来说,得到两两比较判断矩阵C一Ct72 X 72。其中C=J表示因素Z和因素J相对于目标的重要值。

一般来说,构造的判断矩阵取如下形式:

对于这类矩阵称为正反矩阵。对于正反矩阵,若对于任意i……., j, k有C.C二C,此时称该矩阵为一致矩阵。在实际问题求解时,构造的判断矩阵并不一定具有一致性,常常需要进行一致性检验。

本文采用萨蒂提出的19标度法构建两两判断矩阵。各级标度的含义如表 2.7所示。经过相关领域专家依据其工作及实践经验的判断决策,得到指标层相 对于目标层的判断矩阵如表2.8所示。

构造出比较判断矩阵后,即可对判断矩阵进行单排序计算,在各层次单排序 计算的基础上还需要进行各层次总排序计算,在这个过程中存在一个判断矩阵的一致性检验问题。

(3)计算权重

计算权重是计算判断矩阵的特征值最大值,及其所对应的特征向量,得出层次单排序,通过获得准则层对于目标层的重要性数据序列,从而获得最优决策。由于故障情形较多,计算比较复杂,故借助Matlab编制了计算权重和一致性检验的计算程序,输入判断矩阵即可输出权重系数以及一致性检验结果。计算过程具体如下所示:

1、利用判断矩阵计算权重系数,由公式:

因为CR<0.1,因此该判断矩阵与一致性检验符合要求。所以得到,指标层相对于目标层的权重为:、二(0.5278, 0.3325, 0.1396)o(4)综合评价

根据以上论述,故障影响的等级分为四个等级(工级、且级、III级、IU级),故障影响时间分为五个级别(A, B, C, D, E),故障发生概率的等级分为五个等级(1, 2, 3, 4, 5),因此,故障情形可以分成100种情况。首先对各个指标的不同级别进行量化表示,以便能够对这100种情况进行比较分析。

为了使所有指标具有可比性,对三个评价指标均采用百分制原则进行量化评分处理,从而消除了量纲的影响。量化处理方法如表2.10所示。

利用计算得到的各指标的权重向量、_(0.5278, 0.3325, 0.1396),对100种情况进行综合评价,得到结果如表2.11所示。

根据以上分析得出了各个情形的故障等级由高到低的排序,表2.12可以作 为一个库,将对应的故障对号入座。

致谢

我历时将近两个星期的时间终于把这篇论文写完了,在这段充满奋斗的历程中,带给我是涯无限的激情和收获。在论文的写作过程中遇到了无数的困难和障碍,都在同学和老师的帮助下度过了。尤其要强烈感谢我的论文指导老师何老师何曹老师,没有他们对我进行了不厌其烦的指导和帮助,无私的为我进行论文的修改和改进,就没有我这篇论文的最终完成。在此,我向指导和帮助过我的老师们表示最衷心的感谢!同时,我也要感谢本论文所引用的各位学者的专著,如果没有这些学者的研究成果的启发和帮助,我将无法完成本篇论文的最终写作。至此,我也要感谢我的朋友和同学,他们在我写论文的过程中给予我了很多有用的素材,也在论文的排版和撰写过程中提供热情的帮助!金无足赤,人无完人。由于我的学术水平有限,所写论文难免有不足之处,恳请各位老师和同学批评和指正!

参考文献

[1]动车组运用维修北京交通大学,2005 [2]晏锐,从动车组维修制度、维修模式谈武汉动车段工艺is计高速铁路,2010 24 [3」张航军,加!:中心的故障模式、影响及其危害性分析,机械制造,2007 , 45(519)} 64-E5 [4]董锡明,机车车辆运用可靠性程,中国铁道出版社,2002 [5]严俊,FMECA方法在轨道车辆制动系统故障维修中的应用,地程与隧道,2011-37 [6]董锡明,机车车辆维修基本理论,中国铁道出版社,2002 [7]赵晓明,CRH3型动车组受电弓故障分析及改进措施,机车电传动,2009 1 [8]陈文芳,CRH2型动车组受电弓常见故障处理及改进建议,学术探讨,2011, 8(203)[9]侯宾,温福线CRH1B型动车组拖车闸片磨耗问题分析,铁道机车车辆,2011, 31(2)[10]张曙光,铁路高速列车应用基础理论与I:程技术 , 2007 [11〕侯祥君,CRH3C型动车组常见故障的应急处理方法探讨,上海铁道科技,2010, 4 [12〕王辰永,电力机车“雾闪现象分析及预防”,机车电传动,2011, 6 [13〕动车组制动系统北京交通大学,2005

下载高压电动机转子笼条断条的原因及改进方法五篇word格式文档
下载高压电动机转子笼条断条的原因及改进方法五篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    车组转向架故障原因分析及改进方法

    摘要 安全是铁路运输的永恒主题,客车安全又是铁路安全的重中之重。旅客列车作为复杂系统集成,任何细小的故障隐患,都将可能造成无法估量的损失。客车安全工作就是运用科学的维......

    火灾探测器受干扰的原因及改进方法

    火灾探测器受干扰的原因及改进方法 摘 要:本文从火灾探测器的工作原理入手,分析火灾探测器的部分及主要干扰来源,并对此提出一些改进的方法。一、前言 随着经济的发展、大量楼......

    软包装袋破损的原因分析及改进方法

    软包装袋破损的原因分析及改进方法 江阴市产品质量监督检验所 冯怡 软包装袋的破损是影响产品包装质量的主要问题之一。通常软包装袋在以下两种情况中最容易出现破袋:首先......

    高压加热器投入率低原因分析与改进

    高压加热器投入率低原因分析与改进 摘要:高压加热器投入率低是影响电厂机组安全经济运行的一个重要方面。以某电厂300MW 机组高压加热器为例,分析了高压加热器投入率低的原因,......

    大中型电动机软启动器的应用及改进

    大中型电动机软启动器的应用及改进 传统的大中型电动机控制装置采用的是接触器、磁力启动器直接启停方式,缺点是控制方式简单、不灵活,对系统冲击较大且控制元件易损坏,维护工......

    灌注桩钢筋笼上浮处理方法及预防措施

    浮笼也是施工过程中经常遇到的现象,结合引起浮笼的实际原因,给予不同的处理办法。 a) 钢筋笼太轻,在浇灌混凝土时容易浮起。轻钢筋笼可在导墙上设置锚固点焊接固定。 b) 浇灌......

    灌注桩钢筋笼上浮处理方法及预防措施

    灌注桩钢筋笼上浮处理方法及预防措施 钢筋笼上浮是灌注桩施工过程中经常遇到的现象,应结合引起浮笼的实际原因采用不同的处理办法。a) 钢筋笼太轻,在浇灌混凝土时容易浮起。......

    论文(三相交流电动机常见故障及处理方法)

    三相交流电动机常见故障及处理方法关键词:电动机 轴承 绕组 三相交流异步电动机是工矿企业生产中最常见的电气设备,其作用是把电能转换为机械能。其中用得最多的是鼠笼型异......