乘法公式与因式分解教案

时间:2019-05-15 07:18:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《乘法公式与因式分解教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《乘法公式与因式分解教案》。

第一篇:乘法公式与因式分解教案

乘法公式与因式分解教案

总体说明:

本节课时是通过回顾初中乘法公式的知识进而引出接下来我们高中所要学习的因式分解,通过所学平方差公式和完全平方公式进而引出因式分解所需要掌握的方法,如十字相乘法和分组分解法。加深对整式的乘法和因式分解互逆关系的印象,通过深入浅出的讲解,让同学们逐步熟悉运用因式分解的基本技能,加强因式分解在生活中的运用,加强学生的应用能力和逆向思维能力,通过本节课的教学使同学们对因式分解能有更深的认识和更强的数学能力和数学素养。

学生知识状况分析: 学生技能基础:学生已经学习了因式分解的两种方法,提公因式法和公式法,逐步认识到整式与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深。

学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、讨论等活动的方法,获得了解决数学问题所必要的一些经验基础,并且已具备了一些合作与交流的能力。

教学任务目标:

① 让同学们回忆起乘法公式的运用。

② 让同学们理解整式的乘法和因式分解互逆的关系,体验矛盾的对立统一规律。③ 使同学们了解因式分解的概念意义以及因式分解的常用方法(十字相乘法与分组分解法)

④ 发展学生对乘法公式与因式分解的应用能力,提高学生因式分解的基本运用技能并能熟悉掌握。

⑤ 在探究因式分解的方法时,让同学们敢于发表自己的观点,并尊重他人的见解,能从交流中获益。

⑥ 通过探究因式分解的的概念,让学生获得成功的体验,锻炼克服困难的意志,建立自信心。

⑦ 注重学生对因式分解的理解,发展学生分析问题能力和推理能力。

⑧ 通过本节课,提高学生的观察、分析问题的能力,培养学生的开放意识;

教学重点:

① 学会用乘法公式中延展出来的公式解题。② 学会运用因式分解不同方法来解题。

③ 理解整式乘法与因式分解之间的互逆关系,锻炼逆向思维。④ 让学生对本节内容进行回顾和思考,旨在把学生头脑中零散的知识点用一条线有机的组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺瓜摸藤地找到对应及相关知识,同时能把这些知识灵活运用。

教学过程分析

本节课设计了环节:

回顾(乘法公式)------因式分解-----十字相乘----分组分解---------练一练------课堂总结-------反馈练习

第一环节:回顾

活动内容:初中我们学了什么乘法公式,从而引出在高中更多我们需要掌握的乘法公式,便于我们在高中的学习。

初中学习的(1)平方差公式

(2)完全平方公式

延展出来的(1)完全立方公式(ab)3

(ab)3

333(ab)(aabb)(2)

(ab)(a3abb3)(abc)(3)三项完全平方公式

接下来提出一道例题,来巩固以上所讲的完全立方公式,并强调大家学会理解乘法公式的结构特征来解题。化简:(x1)(x1)

第二环节:因式分解

活动内容:提问什么是因式分解,讲出因式分解的概念,意义以及运用方法。1.让同学们思考因式分解与整式的乘法之间有怎样的联系。

2.回忆初中时所学习运用的因式分解的方法(提取公因式法和平方差乘法公式)而用例题引出我们高中要学因式分解的方法(十字相乘法和分组分解法)

活动目的:

学生通过回顾和思考,对因式分解的两种方法有了更深层次的认识,加深了对因式分解与整式乘法互逆关系的认识和理解,发展学生的逆向思维能力。

写出几道练习给大家个巩固(1)x3x(2)x2x2(3)x25x4(4)2x23x2

第三环节:十字相乘法

通过习题来介绍十字相乘法:X²+5X+4=(X+1)(X+4)

2X²-3X-2=(2X+1)(X-2)

讲出十字相乘法的关键是交叉相乘再相加。

得出(X+P)(X+q)=X²+(P+q)X+Pq 并且这个过程是互逆的。继而再做两道练习题巩固一下。

(1)x27x6(2)(2)x213x3x

第四环节:介绍分组分解法

十字相乘法主要是应用于二次三项式,但是我们遇到的式子总是多种多样的,继而介绍分组分解法(即将多项式分解因式的方法)通过练习

(1)x3x2x1(2)x24(xy1)4y2

第五环节:练一练

巩固并牢记今日所新介绍的两种因式分解方法,做几道练习题

(1)x23x4(3)3x22x1

(2)x3y3x2yxy2

变式一:3x²+2ax-a²=(x+a)(3x-a)变式二:3(x³+2x+1)[3(x³+2x)-1]

这里把x²+2x看作一个整体来解题。

第六环节:课堂总结

① 深层介绍数学思想,转换思想和整体代换思想,由我们不熟悉转换成我们所熟悉所能掌握的,任何一件事情都不是一蹴而就的,我们能做的的便是着手自己眼前的力所能及的,继而毅然向前,会发现慢慢的路途也会变得明朗起来,我们也到了终点站。

② 让学生对本节内容进行回顾和思考,旨在把学生头脑中零散的知识点用一条线有机的组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺瓜摸藤地找到对应及相关知识,同时能把这些知识灵活运用。

第七环节:反馈练习

7.(1)化简:(a2bc)2(2)已知:a分解因式: 11a22 aa2(1)5x2x16

(2)X³-5X²+6X(3)4m2m(4)X²+X-(a²-a)

教学反思:

① 任何一件事情都不是一蹴而就的,我们能做的的便是着手自己眼前的力所能及的,继而毅然向前,会发现慢慢的路途也会变得明朗起来,我们也到了终点站。就如同解数学题一样,刚开始我们可能无从下手,但是,只要我们尽自己所能迈出第一步,接下来的问题便会迎难而解。

② 在传统教育中,人们都感觉数学并没有很大的用途,数学与生活是脱节的,在我们教学中,很难找到生活的影子,我们的学生只会用所学知识来解答课本上的一些习题,缺乏应用所学地数学知识去解决生活中的一些实际问题的主动性和能力,以至于在学生的头脑中数学与实际生活经验构成了两个互不相干的认知场,正是这种人为的将数学与生活隔离开,使得很多学生对数学产生了畏惧心理。数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学数学只是去解决一些生活中的实际问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”。作为教师,我们应该培养学生去留心观察我们周围的生活、强调将生活问题带进数学,同时也尝试让学生将数学带进生活,唯有如此,才能更好的培养学生初步的创新精神和实践能力,才能使学生在对数学的情感态度和知识素养方面得到充分发展。

第二篇:乘法公式教案

14.2.1 乘法公式--平方差公式

教学目标

1.理解平方差公式,能运用公式进行计算.

2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.

教学重、难点平方差公式 教学过程设计

一、创设情境,激发兴趣

在14.1节中,我们学习了整式的乘法,知道了多项式与多项式相乘的法则.根据所学知识,计算下列多项式的积,你能发现什么规律?

(1)

=

(2)

=

;(3)

=

二、知识应用,巩固提高

上述问题中相乘的两个多项式有什么共同点?相乘的两个多项式的各项与它们的积中的各项有什么关系?你能将发现的规律用式子表示出来吗?

你能对发现的规律进行推导吗?

(a+b)(a-b)=a前面探究所得的式子

2-b2为乘法的平方差公式,你能用文字语言表述平方差公式吗?

两个数的和与这两个数的差的积,等于这两个数的平方差.

你能根据图中图形的面积说明平方差公式吗?

例1 运用平方差公式计算:

(-x+2y)(-x-2y)(3x-2)(1)(3x+2);

(2)

从例题1和练习1中,你认为运用公式解决问题时应注意什么?

(1)在运用平方差公式之前,一定要看是否具备公式的结构特征;(2)一定要找准哪个数或式相当于公式中的a,哪个 数或式相当于公式中的b;(3)总结规律:一般地,“第一个数”a 的符号相同,“第二个数”b 的符号相反;(4)公式中的字母a ,b 可以是具体的数、单项式、多项式等;(5)不能忘记写公式中的“平方”. 例2 计算:

(-y+2)(-y-2)-(y-1)(y+5)(1);

(2)102×98.

三、应用提高、拓展创新

教科书108页练习1、2

四、归纳小结

(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么

14.2.2乘法公式--完全平方公式

教学目标

1.理解完全平方公式,能用公式进行计算.

2.经历探索完全平方公式的过程,进而感受特殊到一般、数形结合思想,发展符号意识和几何直观观念.

教学重、难点 完全平方公式.

教学过程设计

一、创设情境,激发兴趣 问题1 计算下列各式:

22(p+1)=______;(m+2)=______;(1)22(p-1)=______;(m-2)=______.(2)

你能发现什么规律?

二、知识应用,巩固提高

问题2 你能用式子表示发现的规律吗? 完全平方公式:

问题3 你能用文字语言表述完全平方公式吗?

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 公式特点:(1)积为二次三项式;

(2)积中两项为两数的平方和;

(3)另一项是两数积的2倍,且与乘式中间的符号相同;(4)公式中的字母a,b 可以表示数,单项式和多项式.问题4 能根据图1和图2中的面积说明完全平方公式吗?

三、应用提高、拓展创新

例1 运用完全平方公式计算:

(4m+n);

(2)(1).(y-例2 运用完全平方公式计算:

2210299(1)

;(2)

. 212)2问题5 思考:

(a+b)与(-a-b)相等吗?

(1)(a-b)与(b-a)相等吗?

(2)(a-b)与 a(3)222222-b2相等吗?为什么?

问题6 添括号法则

去括号

a+(b+c)= a+b+c;

a-(b+c)= a-b-c.

a+b+c =a+(b+c);

a-b-c = a-(b + c).

添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号.

四、归纳小结

(1)本节课学习了哪些主要内容?(2)完全平方公式结构有什么特点?

第三篇:乘法公式教案

1.教学设计学科名称

乘法公式(人教版八年级数学上册第15章)2.所在班级情况,学生特点分析

学情分析:学生已有七年级上册所学习数的运算、字母表示数、合并同类项、去括号等内容,通过类比他们会产生“式是否也有相应的运算,如果有的话该怎样进行”等问题.为此本节课关注学生对公式的探索过程,有意识的培养学生的推理能力,让学生经历“特例→归纳→猜想→符号表示”的知识发生过程,并有条理地表达自己的思考过程,培养学生的数感和符号感,真正理解公式的来源、本质和应用。3.教学内容分析

本节课关注学生对公式的探索过程,有意识的培养学生的推理能力,鼓励学生经历根据特例进行归纳、建立猜想、用符号表示,有条理地表达自己的思考过程,培养学生的数感和符号感,真正理解公式的来源、本质和应用,为今后的学习打下坚实的基础.4.教学目标

⑴.经历探索平方差公式的过程,进一步发展符号感和推理能力。⑵.会推导平方差公式,并能运用公式进行简单计算。⑶.认识平方差及其几何背景,使学生明白数形结合的思想。⑷.在合作、交流和讨论中发掘知识,并体验学习的乐趣。⑸.培养学生灵活运用知识、勇于探求科学规律的意识。5.教学重、难点分析

教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算。6.教学课时:1课时 7.教学过程

一、创设问题情境,引导学生观察、设想。

教师发给每个学生一张正方形纸片(边长15cm),并用多媒体课件与正方形纸板显示正方形。

师:在一块45cm的正方形纸板上,因为工作的需要,中间挖去一块边长为15cm的正方形(如图),请问剩下部分的面积有多少平方厘米?

师:计算剩下部分的面积可以有哪些方法? 小组讨论:

1.可以用大正方形面积减去小正方形面积得到。2.可以把剩下的部分切割成几个矩形来计算。

师:从今天的问题来看,用哪一种方法比较好?你们小组能列出算式吗?

或许有学生能迅速列出算式,得出答案是1800平方厘米。

师:为了容易理解,我现在把小正方形放在大正方形的角落(如图)。师:刚才我们说过计算面积的方法不止一种,我们现在试着用分割的方法来计算面积。请参照老师的做法,先在你们的纸上画一条虚线,然后把刚才画的小正方形剪下来(或撕去),就像要挖去这部分一样,再沿虚线把小长方形剪下来,并把小长方形拼到大长方形的一边,刚好又变成一个新的长方形(如图)。

师:若按照我们刚开始的题目要求,现在新的大长方形的长、宽各是多少?它的面积又是多少呢?

生:大长方形的长是(45+15)cm,宽是(45-15)cm。长方形的面积=(45+15)×(45-15)=60×30=1800(平方厘米)。师:还记得两种方式的列式吗? 生:第一种方法的式子是 452-152,第二种方法的式子是(45+15)×(45-15)。

师:两个式子都能求出剩下的面积,它们之间有什么关系呢? 生:相等。

二、交流对话,探求新知。看谁算得快:(1)(x+2)(x-2)(2)(1+3a)(1-3a)(3)(x+5y)(x-5y)(4)(-m+n)(-m-n)师:你们能发现什么规律?

师:再想想看,如果今天的题目换成:“在一块边长为a厘米的正方形纸板上,因为工作的需要,中间挖去一块边长为b厘米的小正方形,请问剩下的面积有多少?”我们该怎样列代数式来表示?

生:我们可以用a2-b2来表示剩下的面积。师:还有没有别的方法?

生:也可以用(a+b)(a-b)来表示剩下的面积。

师:今天我们除了要找一个比较方便的方法来求面积外,更重要的是我们能从图形中了解到(a+b)(a-b)= a2-b2这个性质。上一节课我们已经学过多项式的乘法,你能利用计算多项式乘法的方法,把(a+b)(a-b)的答案计算出来吗?

师:为了节省计算时间,我们(a+b)(a-b)= a2-b2作为公式来运用,把这个公式称为“平方差公式”。

平方差公式:(a+b)(a-b)= a2-b2

师:哪一位同学能用语言叙述一下平方差公式? 生:两数和与这两数差的积,等于它们的平方差。

三、运用新知,体验成功。1.例1 计算:(1)(a+3)(a-3)(2)(2a+3b)(2a-3b)(3)(1+2c)(1-2c)(4)

解:(1)原式=a2-32=a2-9

(2)原式=(2a)2-(3b)2=4a2-9b

2(3)原式=12-(2c)2=1-4c2

(4)原式= 2.巩固深化,拓展思维。计算:

(1)(2x+3)(2x-3)(2)(-2x+y)(2x+y)(3)(-x+2)(-x-2)(4)(y-x)(-x-y)

说明:在练习时,要特别注意公式的变式训练。讲解时要紧扣公式的特征,找出相等的“项”和符号相反的“项”,然后用公式。

3.例2 计算:1998×2002。

分析:这是一个数字计算问题,让学生分组讨论如何利用平方差公式进行计算。

在本例教学时不能仅仅着眼于应用公式的化简与计算,要让学生感受构造数学“模型”的乐趣。

4.练习,简便计算:

(1)498×502(2)999×1001 5.例3 街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2米,而东西向要缩短2米。问改造后的长方形草坪的面积是多少?

(首先要列出表示面积的代数式。)解:(a+2)(a-2)= a2-4 答:改造后的长方形草坪的面积是(a2-4)平方米。6.练习

用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域面积最大,而小亮认为不一定。你认为如何?

四、课堂小结。

1.通过本节课的学习活动,你们认识了什么?是否还有不明白的地方?

2.什么样的式子才能使用平方差公式?记住公式的特点。8.作业安排

必做:习题15.2第1题(1)、(2)、(3)选作:习题15.2第1题(4)、(5)、(6)9.自我问答

通过引导学生亲自动手参与活动﹐培养学生解决实际问题.初中生以形象思维为主,试图达到数与形的结合.动手操作又是一个手脑并用的过程,是解决数学知识抽象性与初中生思维形象性之间矛盾的一个有效方法,同时,探索过程中的丰富情感体验可让学生由“要我学”的被动性转变为“我要学”的主动性.通过实验操作,促进学生变抽象为具体,培养了学生“用数学”的意识.通过本节课的设计实现教学目标,并培养学生了学生创造、归纳、演绎、数学建模的数学素质。

第四篇:乘法公式教案

《乘法公式》练习题

(一)一、填空题

1.(a+b)(a-b)=_____,公式的条件是_____,结论是_____.2.(x-1)(x+1)=_____,(2a+b)(2a-b)=_____,(13x-y)(13x+y)=_____.3.(x+4)(-x+4)=_____,(x+3y)(_____)=9y2-x2,(-m-n)(_____)=m2-n

24.98×102=(_____)(_____)=()2-()2=_____.5.-(2x2+3y)(3y-2x2)=_____.6.(a-b)(a+b)(a2+b2)=_____.7.(_____-4b)(_____+4b)=9a2-16b2,(_____-2x)(_____-2x)=4x2-25y2

8.(xy-z)(z+xy)=_____,(56x-0.7y)(56x+0.7y)=_____.9.(14x+y2)(_____)=y4-1216x

10.观察下列各式:

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

根据前面各式的规律可得

(x-1)(xn+xn-1+…+x+1)=_____.二、选择题

11.下列多项式乘法,能用平方差公式进行计算的是()

A.(x+y)(-x-y)

B.(2x+3y)(2x-3z)

C.(-a-b)(a-b)

D.(m-n)(n-m)

12.下列计算正确的是()

A.(2x+3)(2x-3)=2x2-9

B.(x+4)(x-4)=x2-4

C.(5+x)(x-6)=x2-30

D.(-1+4b)(-1-4b)=1-16b2 13.下列多项式乘法,不能用平方差公式计算的是()

A.(-a-b)(-b+a)

B.(xy+z)(xy-z)

C.(-2a-b)(2a+b)

D.(0.5x-y)(-y-0.5x)

14.(4x2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算()

A.-4x2-5y

B.-4x2+5y

C.(4x2-5y)2

D.(4x+5y)

215.a4+(1-a)(1+a)(1+a2)的计算结果是()

A.-1

B.1

C.2a4-1

D.1-2a16.下列各式运算结果是x2-25y2的是()

A.(x+5y)(-x+5y)

B.(-x-5y)(-x+5y)

C.(x-y)(x+25y)

D.(x-5y)(5y-x)

三、解答题

17.1.03×0.97

18.(-2x2+5)(-2x2-5)

19.a(a-5)-(a+6)(a-6)

20.(2x-3y)(3y+2x)-(4y-3x)(3x+4y)21.(13x+y)(13x-y)(19x2+y2)

22.(x+y)(x-y)-x(x+y)

23.3(2x+1)(2x-1)-2(3x+2)(2-3x)

24.9982-4

25.2003×2001-20022

《乘法公式》练习题

(二)1.(ab)2a2b2--()

2.(xy)2x22xyy2---()3.(ab)2a22abb2--()4.(2x3y)22x212xy9y(2 5.(2x3y)(2x3y)4x29y2()

6(2x3y)(3xy)______________;

7.(2x5y)2_______________;

8.(2x3y)(3x2y)______________;

9.(4x6y)(2x3y)______________;)10(x2y)________________ 1222.化简求值:(2x1)(x2)(x2)2(x2)2,其中x11 211.(x3)(x3)(x29)____________;

12.(2x1)(2x1)1___________;

13。(x2)(________)x24; 14.(x1)(x2)(x3)(x3)_____________; 15.(2x1)2(x2)2____________;16.(2x______)(______y)4x2y2;

17.(1x)(1x)(1x2)(1x4)______________; 18.下列多项式乘法中不能用平方差公式计算的是()

(A)

(a3b3)(a3b3)

(B)

(a2b2)(b2a2)(C)

(2x2y1)(2x2y1)

(D)

(x22y)(2xy2)19.下列多项式乘法中可以用平方差公式计算的是()(A)(ab)(ab)

(B)(x2)(2x)(C)(1xy)(y133x)(D)(x2)(x1)20.下列计算不正确的是()

(A)

(xy)2x2y2

(B)

(x1)2x21xx2(C)

(ab)(ba)a2b2

(D)

(xy)2x22xyy2 21.化简:(ab)(ab)(bc)(bc)(ca)(ca)

23.解方程:

(13x)2(2x1)213(x1)(x1)

24.(1)已知x(x1)(x2y)2,求

x2y22xy的值;(2)如果

a2ab15,b2ab6求a2b2和a2b2的值

第五篇:整式的乘法与因式分解复习教案

《整式的乘法与因式分解》复习

(一)教案

教学目标:

知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则

过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式 情感态度与价值观:培养学生的独立思考能力和合作交流意识 教学重点:记住公式及法则

教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解 教学方法与手段:讲练结合 教学过程:

一.本章知识梳理:

幂的运算:

(1)同底数幂的乘法(2)同底数幂的除法

(3)幂的乘方(4)积的乘方

整式的乘除:(1)单项式乘单项式(2)单项式乘多项式

(3)多项式乘多项式

(4)单项式除以单项式(5)多项式除以单项式 乘法公式:

(1)平方差公式(2)完全平方公式 因式分解:

(1)提公因式法(2)公式法 二.合作探究:

(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=

三、当堂检测

1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(axb)(x2)x4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a,b=

5.已知

11a223aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()

A、x2+3x-1 B、x2+2x C、x2-1 D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()

A.–3 B.3

C.0

D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()

A、6cm B、5cm C、8cm D、7cm 9.下列各式是完全平方式的是()

2A、x2x14 B、1x2 C、xxy1

2D、x2x1

10.下列多项式中,含有因式(y1)的多项式是(y 2  2 y  1)

A.22222(y1)(y1)(y1)(y1)(y1)2(y1)1 B.C.D.三.课堂小结:

今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。四.课后作业:

21.简便方法计算(1)98×102-992(2)991981

2.矩形的周长是28cm,两边长为x、y,若x3+x2y-xy2-y3=0,求矩形的面积. 3.已知a,b,c为△ABC的三条边的长.

(1)若b2+2ab=c2+2ac,试判断△ABC的形状

222a2bc2b(ac)0,试判断三角形的形状(2)若板书设计:

第14章整式的乘法与因式分解复习

幂的运算:

(1)同底数幂的乘法(2)同底数幂的除法

(3)幂的乘方(4)积的乘方

整式的乘除:(1)单项式乘单项式(2)单项式乘多项式

(3)多项式乘多项式

(4)单项式除以单项式(5)多项式除以单项式 乘法公式:

(1)平方差公式(2)完全平方公式 因式分解:

(1)提公因式法(2)公式法 课后记载:

下载乘法公式与因式分解教案word格式文档
下载乘法公式与因式分解教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    因式分解--十字相乘法教案

    因式分解------十字相乘法 一基础知识:利用十字相乘法分解因式,实质上是逆用(axb)(cxd)竖式乘法法则.1.二次项系数为1的二次三项式:直接利(pq)xpq(xp)(xq)进行分解 特点:(1)二次项......

    9.4乘法公式教案

    淮安市北京路中学七年级下学期数学教案(21)主备:阮燕审核: 把关领导:日期:2018.3.27 9.4乘法公式(3) 【教学目标】 1.运用完全平方公式、平方差公式进行综合计算. 2.通过图形面积的......

    因式分解——公式法教案(推荐阅读)

    14.3.2因式分解——公式法(1) 一.教学内容 人教版八年级上册数学十四章因式分解——公式法第一课时 二.教材分析 分解因式与数系中分解质因数类似,是代数中一种重要的恒等变形,......

    《用公式法进行因式分解》教案

    12.5.2《用公式法分解因式》教案 教学目标: • 1. 理解整式乘法和因式分解是互逆的,培养逆向思维能力。 • 2.进一步理解因式分解的意义,掌握用平方差公式和完全平方公式分解因......

    教案因式分解之平方差公式法

    因式分解(2) 一、教学目标: (一)知识与技能: 1.使学生了解运用公式法分解因式的意义; 2.会用平方差公式进行因式分解; 3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方......

    七年级数学《用乘法公式因式分解》评课稿

    七年级数学《用乘法公式因式分解》评课稿 七年级数学《用乘法公式因式分解》评课稿 王**老师的《因式分解》这节课,他上的这节课每个环节层层递进,落实有效,教学流程自然流畅,......

    因式分解与整式乘法的关系

    因式分解与整式乘法的关系【知识点】整式乘法与因式分解一个是积化和差,另一个是和差化积,是两种互逆的变形.即:多项式整式乘积【练习题】1.下列因式分解正确的是①②③④⑤2.下......

    平方差公式法因式分解教案及练习

    第1页 总5页 9.14平方差公式法因式分解 [教学目标] 1 知识与技能:掌握使用平方差公式进行因式分解的方法,并能熟练使用平方差公式进行因式分解; 2 过程与方法:通过知识的迁移......