第一篇:12.3.3等边三角形(一) 性质和判定 教案
等边三角形性质和判定
【学习目标】
知识与技能:1理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法
2、能够用等边三角形的知识解决相应的数学问题
过程与方法:通过独立思考,交流讨论,发展推理能力和运用数学知识解决实际问题的能力; 情感态度与价值观:极度热情,高度责任,享受学习的快乐 【学习重难点】教学重点:等边三角形判定定理的发现与证明
教学难点:等边三角形性质和判定的应用
(一)检查预习
小组互助
1、等腰三角形的性质:
(1)等腰三角形的 相等
(2)等腰三角形、、互相重合
2、等腰三角形中有一种特殊的等腰三角形是 三角形,即 叫等边三角形。
3、思考:
(1)把等腰三角形的性质(等腰三角形的两个底角相等)用到等边三角形,能得到什么结论?
(2)一个三角形满足什么条件就是等边三角形?
(3)你认为有一个角等于60°的等腰三角形是等边三角形吗?
(二)小组学习
教师视导
(1)等边三角形的性质:等边三角形的(三)【范例剖析,合作探究】
如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,求∠DBC的度数。
(2)等边三角形的判定:
ADBEC
(四)【双基自测】
课堂反馈
达标测评
1、如图,△ABC是等边三角形,DE∥BC,交AB,AC于D,E。求证:△ADE是等边三角形。
2等边三角形三条中线相交于一点。画出图形,找出图中所有的全等三角形,并证明它们全等。
3如图,△ABD,△AEC都是等边三角形,求证BE=DC
(五)【课堂小结】
本节课的学习内容有哪些?你有什么交流收获?你有什么困惑? 等边三角形的性质:
1.等边三角形的内角都相等,且都等于60 ° 2.等边三角形是轴对称图形,有三条对称轴.3.等边三角形各边上中线,高和所对角的ping 分线都三线合一.等边三角形的判定:
1.三边相等的三角形是等边三角形.2.三个内角都等于60 °的三角形是等边三角形.3.有一个内角等于60 °的等腰三角形是等边三角形
(六)【布置课后作业和预习案】
1.已知
△ABC是等边三角形,D,E,F分别是各边上的一点,且AD=BE=CF.试说明△ DEF是等边三角形.2.D,E是△ABC中BC上的两点, 且BD=DE=EC=AD=AE.求∠ B与∠ BAC的度数.(七)【课后反思】
第二篇:切线的判定和性质 教案
切线的判定和性质 教案
任课教师
何光银
一、教学目标:
1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;
2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;
3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.
二、教学重点: 切线判定的方法;
三、教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;
四、教学进程
(一)复习、发现问题 1.直线与圆的三种位置关系
在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?
2、观察、提出问题、分析发现(教师引导)
图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢? 如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.
发现:(1)直线l经过半径OC的外端点C;
(2)直线l垂直于半径0C.
这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.
(二)切线的判定定理:
1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
2、对定理的理解:
引导学生理解:①经过半径外端;②垂直于这条半径.
请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.
图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.
从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.
(三)切线的判定方法
教师组织学生归纳.切线的判定方法有三种:
①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.
(四)应用定理,强化训练' 例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB. 求证:直线AB是⊙O的切线.
分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。证明:连结0C ∵0A=0B,CA=CB,”
∴0C是等腰三角形0AB底边AB上的中线. ∴AB⊥OC.
∴直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.
已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为 半径作⊙O。
求证:⊙O与AC相切。
证明:过O作OE⊥AC于E。
∵ AO平分∠BAC,OD⊥AB
∴ OE=OD
∵ OD是⊙O的半径
∴ AC是⊙O的切线 归纳总结
1、如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直。简记为:连半径,证垂直。
2、如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线,再证垂线段长等于半径长。简记为:作垂直,证半径
五、课堂检测
1、判断下列命题是否正确.
(1)经过半径外端的直线是圆的切线.(2)垂直于半径的直线是圆的切线.
(3)过直径的外端并且垂直于这条直径的直线是圆的切线.(4)和圆有一个公共点的直线是圆的切线.
(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切. 采取学生抢答的形式进行,并要求说明理由,2、已知OA=OB=5厘米,AB=8厘米,⊙O的直径为6厘米.ACBO求证:AB与⊙O相切
六、课堂小结
七、小结与反思
1、知识:切线的判定定理和性质定理.着重分析了判定定理成立的条件,在应用定理时,注重两个条件缺一不可.
2、方法:判定一条直线是圆的切线的三种方法:
(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.(3)根据切线的判定定理来判定.
其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一. 3.常用辅助线
口诀: 连半径,得垂直;作垂直,证半径
第三篇:两个平面垂直的判定和性质(一)
两个平面垂直的判定和性质(一)
一、教学目标
1、理解并掌握两个平面垂直的定义.
2.掌握两个平面垂直的判定定理的证明过程,培养学生严格的逻辑推理,增强学生分析、解决问题的能力.
3.利用转化的方法掌握和应用两个平面垂直的判定定理.
二、教学重点、难点
1.教学重点:掌握两个平面垂直的判定.
2.教学难点:掌握两个平面垂直的判定及应用.
三、课时安排
本课题安排2课时.本节课为第一课时:主要讲解两个平面垂直的判定.
四、教与学的过程设计
(一)复习近平面角的有关知识
1、是二面角的平面角?
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.
2、一般地,作二面角的平面角有哪几种方法?
三种.一是利用定义;二是利用三垂线(逆)定理;三是利用棱的垂面.
3、练习(幻灯显示).
已知:二面角α-AB-β等于45°,CD<α,D∈AB,∠CDB=45°.
求:CD与平面β所成的角.
证明:作CO⊥β交β于点O,连结DO,则∠CDO为DC与β所成的角.
过点O作OE⊥AB于E,连结CE,则CE⊥AB,∴∠CEO为二面角α-AB-β的平面角,即∠CEO=45°.
∵CO⊥OE,OC=OE,∴∠CDO=30°.
即DC与β成30°角.
点评:本题涉及到直线与平面所成角的范围[0°,90°]以及利用三垂线定理寻找二面角的平面角.事实上,利用三垂线定理作二面角的平面角是最常用,也是最有效的一种方法.
(二)两个平面垂直的定义、画法
1、两个平面垂直是两个平面相交的特殊情况,日常我们见到的墙面和地面、以及一个长方体中,相邻的两个面都是互相垂直的.那么,什么是两个平面互相垂直呢?
两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.
2、知道了两个平面互相垂直的概念.如何画它们呢?
如图1-128,把直立平面的竖边画成和水平平面的横边垂直.记作α⊥β.
3、练习:(P.45中练习1)
画互相垂直的两个平面、两两垂直的三个平面.如图1-129.
(三)两个平面垂直的判定
两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 提示:要证明两个平面互相垂直,只有根据两个平面互相垂直的定义,证明由它们组成的二面角是直二面角,因此必须作出它的一个平面角,并证明这个平面角是直角.如何作平面角呢?根据平面角的定义,可以作BE⊥CD,使∠ABE为二面角α-CD-β的平面角.让学生独自写出证明过程.
求证:α⊥β.
证明:设a∩β=CD,则B∈CD.
∴AB⊥CD.
在平面β内过点B作直线BE⊥CD,则∠ABE是二面角α-CD-β的平面角,又AB⊥BE,即二面角α-CD-β是直二面角.
∴α⊥β.
师:两个平面垂直的判定定理,不仅是判定两个平面互相垂直的依据,而且是找出垂直于一个平面的另一个平面的依据.如:建筑工人在砌墙时,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直(图见课本P.43中图1-49),实际上,就是依据这个原理.
另外,这个定理说明要证明面面垂直,实质上是转化为线面垂直来证明.下面我们来做一道练习. 练习:(P.45中练习2)
如图1-131,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了.为什么?如果不转动呢?
如果不转动,只能确定两条直线OA⊥OB,无法确定OA⊥β,从而无法确定α⊥β.
(四)练习
例:⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点. 求证:平面PAC⊥平面PBC.图1-13
3证明:在θO内.
∵AB为θO的直径,∴BC⊥AC.
又PA⊥BC,∴BC⊥平面PAC.
(五)总结
本节课我们讲解了两个平面垂直的定义、画法及判定方法.判定方法有两种,一是利用定义,二是利用判定定理.如何应用两个平面垂直的判定定理,把面面垂直的问题转化为线面垂直的问题是本节课学习的关键.
五、作业
P.46中习题六.6、7、8、10(1),∴平面PAC⊥平面PBC.
第四篇:圆的切线性质和判定教案
切线教案
【学习目标】:
使学生掌握圆的切线的判定方法和切线的性质,能够运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的判定和性质解决问题,培养学生的逻辑推理能力。
【学习过程】:
一、引入新课
同学产注意观察教师的表演,当老师高速转动这个圆盘时,圆盘边缘的线条的运动状态是怎样的?显然每根线都是成直线状态,这些直线就是⊙O的切线,线固定在圆盘边缘上的点就是直线与圆相切的切点,这些切线与经过切点的半径垂直,如右图所示。
下雨天,当你转动雨伞,你会发现雨伞上的水珠顺着伞面的边缘飞出.仔细观察一下,水珠是顺着什么样的方向飞出的?这就是我们所要研究的直线与圆相切的情况。
] GFEDOACBH
二、切线的判定和性质
A,且垂直于这条半径OA,这条直线与圆有几个交点?
从图23.2.8可以看出,此时直线与圆只有一个交点,即直线l是圆的切线.
切线的判定方法:经过半径外端且垂直于这条半径的直线是圆的切线。思考:
如图1,直线AB垂直于半径OC,直线AB是⊙O的切线吗? 如图2,直线AB垂直于半径OC,直线AB是⊙O的切线吗?
如上图,如果直线CD是⊙O的切线,点A为切点,那么半径OA与CD垂直吗? 做一做:画一个圆O及半径OA,画一条CD经过⊙O的半径的外端点 图23.2.8 AO图1ACB由于CD是⊙O的切线,圆心O到直线CD的距离等于半径,所以OA是圆心O到AB的距离,因此CDAB。切线的性质:圆的切线垂直于经过切点的半径。
O图2C
三、例题与练习
如图23.2.9,已知直线AB经过⊙O上的点A,且AB=OA,∠OBA=45°,直线AB是⊙O的切线吗?为什么?
分析:要证明一条直线是圆的切线,必须符合两个条件,其一是这条直 线是否经过半径外端,其二是这条直线是否与这条半径垂直,若满足这两个 条件,就能说明这条直线是圆的切线。
解
直线AB是⊙O的切线.
因为AB=OA,且∠OBA=45°,所以∠AOB=45°,∠OAB=90°
B图23.2.9
根据经过半径的外端且垂直于这条半径的直线是圆的切线
所以直线AB是⊙O的切线
练习:
1、已知:PA、PB是⊙O的切线,切点为A、B点,点C为圆周上的一 点,求ACB的度数。
2、如图,AB是⊙O的直径,∠B=45°,AC=AB,AC是⊙O的切线吗? 为什么?
例
2、如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD
交圆于点D.,BD是⊙O的切线吗?为什么?
解:切线OD BD是⊙O的切线
(第2题)DAB 因为
AC是⊙O的直径
所以
ADC90
又因为
BAD30,OAOD 所以
DOB60 因为
B30
OC
所以
ODB90,即BDOD
所以
BD是⊙O的切线
练习:已知,如图,AB是⊙O的直径,ADCD,BCCD,垂足分别为D、C点,且ABBCAD,A那么,CD与⊙O相切吗?为什么? 由于上面的命题未涉及到这种类型的题目,在练习时,给学生提示此题辅
助线的添法以及解决问题的思路。
D
四、小结
本节课让学习了圆的切线的判定方法和切线的性质,能够运用切线的判定方法判力,并能通过作简单的辅助线去解决某些问题。
OBC断一条直线是否是圆的切线,综合运用切线的判定和性质解决问题,培养学生的逻辑推理能
五、作业
P54习题7、12
第五篇:三角形性质和判定定理
等腰三角形:
定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。性质:
1.等腰三角形的两条腰相等; 2.等腰三角形的两个底角相等; 3.4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。判定:
1.有两条边相等的三角形是等腰三角形;
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。
等边三角形:
定义:三边都相等的三角形是等边三角形,也叫正三 角形。性质:
1.的垂直平分线都是它的对称轴;
2.60°。判定:
1.三条边都相等的三角形是等边三角形; 2.有一个角是60°的等腰三角形是等边三角形; 3.有两个角是60°的三角形是等边三角形。
直角三角形:
定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。性质:
1.直角三角形的两个余角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中30°角所对的直角边等于斜边的一半;4.a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 判定:
1.有一个角是直角的三角形是直角三角形; 2..有两个角互余的三角形是直角三角形;
3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;
4.如果三角形的三边长a、b、c满足于a^2+b^2=c^2,那么这个三角形是直角三角形。
角平分线定理:在角的平分线上的点到这个角的两边的距离相等
逆定理:到一个角的两边的距离相同的点,在这个角的平分线上
中垂线定理:线段垂直平分线上的点到这条线段两个
端点的距离相等
逆定理:到一条线段两个端点距离相等的点,在这
条线段的垂直平分线上定理三角形两边的和大于第三边2 推论三角形两边的差小于第三边
5外角2三角形的一个外角大于任何一个和它不相
邻的内角三角形内角和定理三角形三个内角的和等于180° 4外角1三角形的一个外角等于和它不相邻的两个
内角的和
全等的判定:
6边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
7角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
8推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
9边边边公理(SSS)有三边对应相等的两个三角形
全等
10斜边、直角边公理(HL)有斜边和一条直角边对应
相等的两个直角三角形全等