四年级数学第九单元倍数和因数教案5篇

时间:2019-05-15 07:53:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《四年级数学第九单元倍数和因数教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《四年级数学第九单元倍数和因数教案》。

第一篇:四年级数学第九单元倍数和因数教案

四年级数学第九单元倍数和因数教案

本资料为woRD文档,请点击下载地址下载全文下载地址

件www.xiexiebang.com 九:倍数和因数

第一课时:(倍数和因数)

上课时间:5/5

累计课时:42

教学内容:四年级下册第70~72页的内容。

教学目标:

.使学生结合乘法运算初步认识倍数和因数的含义;

2.初步学会探求一个数的倍数或因数的方法;

3.使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考水平。

教学重点:1.正确理解倍数和因数的含义;2.探求一个数的倍数或因数的方法。

教学准备:多媒体。

教学过程:

一、创设情境,引入新课、人与人之间存在着许多种关系,比如,你和你的爸爸(妈妈)的关系是……?我和你的关系是……?(2个学生回答)

2、对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的倍数与因数关系。(板书课题:倍数与因数)

二、动手操作,理解倍数和因数的关系、谈话:老师这儿有12个同样大小的正方形,你能用12个这样大的正方形拼成一个长方形吗?想一想可以怎样摆?每排摆几个?摆了几排?用一道乘法算式把自己的摆法表示出来,同桌之间交流一下。(3——6个学生)

2、指名交流,根据学生的汇报板书:

×12=12

2×6=12

3×4=12

3、:3×4=12

谈话:以“3×4=12”为例,3乘4等于12,我们可以说:

板书:

:12是3的倍数,12也是4的倍数

3和4都是12的因数

生齐读。

谈话:闭起眼睛,再把这句话在心里说一遍,谁愿意来不看不屏幕说一遍。

谈话:闭上眼睛,再把这句话在心里说一遍。谁愿意不看大屏幕来说一遍?

讲述:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。

4、提出要求:根据另外两道乘法算式,你能说说谁是谁的倍数?谁是谁的因数吗?(3个学生)

:2×6=12

×12=12

2是2的倍数,12也是6的倍数

2是1的倍数,12也是12的倍数

2和6都是12的因数

和12都是12的因数

强调:12是12的倍数,12是12的因数。

讲述:一个数的本身既是它的倍数,也是它的因数。

5、自己说算式

谈话:像刚才这样,自己说一个算式,然后说一说谁是谁的倍数,谁是谁的因数。谁愿意?(3个学生)

谈话:刚才几位学生说得真好,看来你们对倍数和因数有了一定地认识。老师这还有一个算式,出示:72÷8=9。这个算式里谁是谁的倍数,谁是谁的因数呢?你是怎么想的呢?(1个学生)

教师评价:对啊!通过想8×9=72,我们就可以知道72是8的倍数,72也是9的倍数,8和9都是72的因数。

谈话:看来不仅乘法算式中有倍数和因数的关系,我们的除法算式中也有倍数和因数的关系。

6、判断

出示。下面几个题目请你来判断一下是对还是错。追问:你是怎么想的呢?

7、选数字说一说

出示:3、4、6、18、36

谈话:老师这有几个数字,请你任选其中两个数,说一说谁是谁的倍数,谁是谁的因数。追问:你想的是哪一个算式?

谈话:刚才我们找到了3的倍数有6,18,36。那么除了这三个数以外还有哪些数字也是3的倍数呢?

三、探求一个数的倍数

、3的倍数

谈话:拿出老师事先发的这张纸,写出3的倍数。

学生独立完成,教师巡视。

评价反馈学生的作业。

师板书:3,6,9,12,15,18,21,24,27,30,33,36,39

谈话:老师手写酸了,还让我写下去?那3的倍数还有吗?那怎么办?

板书……(擦除部分,谈话:我们一般只要写五六个就可以用省略号)刚才做错的改正一下。

谈话:回忆一下怎么找3的倍数,算得时候要注意什么?

(引导说出3乘1、3乘2、3乘3……)

2、拓展:那用刚才的小窍门来找找2的倍数,好吗?

学生练习(:2的倍数)

指名交流,板书:2的倍数

2,4,6,8,10,12……

3、练习:找出7的倍数()

谈话:找完了2的倍数,有信心找7的倍数吗?自己独立完成。

生独立完成。

回顾一下:刚才我们通过自己的努力,找到了3,2,7的倍数。如果给你任何一个自然数,你怎么找到它的倍数呢?用什么方法比较方便?

提问:仔细观察这三个数的倍数,你有什么发现?

一个数的最小倍数是?最大倍数?倍数的个数怎么样?

板书:最小:本身

最大:没有

个数:无限

四、探求一个数的因数、:用自己的方法找出36的因数。

谈话:一个数的倍数我们会找了,因数你会找吗?用自己的方法找出36的因数,看看自己能找出多少个?

学生独立练习。

提问:怎样写就不会重复和遗漏了呢?通过想什么算式呢?

提问板书:36÷1=36

36÷2=18

36÷3=12

36÷4=9

36÷6=6要不要往下写了呢?

谈话:由一个除法算式可以得到几个36的因数呢?比如36÷1=36可以得到?……

黑板上板书:1,36,2,18,3,12,4,9,6。

提问:找一个数的因数,到什么时候就不用找了?(重复了就可以不找了)那36的因数一共有几个?

刚才我们是一对一对地找(板书1、36 2、18……)在板书时我们一对一对地写,为了更加有序,我们可以这样写:

板书:1,2,3,4,6,9,12,18,36。

谈话:36的因数到这里是不是都找完了,找完了没有了我们就用句号表示结束。

4、练习:找出16的因数()

学生独立完成,指名交流,说说怎样找的 板书:1,2、8,4,16。

5、找15的因数

回顾一下:刚才我们通过自己的努力,找到了36,16,15的因数。如果给你任何一个自然数,你怎么找到它的因数呢?用什么方法比较方便?

6、引思:刚才我们找了36、16和15的因数,那一个数的因数有什么特点呢?能不能从刚才研究倍数的特点这方面来考虑呢?(手指个数、最小、最大)

同桌商量(板书:最小:1

最大:本身

个数:有限)

五、练习巩固

、想想做做2

出示,生填表

谈话:学习了倍数和因数,我们来解决一些实际问题。大开书本第72页,完成数上想想做做第2题。

口答交流,提问:这些应付的元数是怎样算出来的呢?那应付的元数其实都是?(4的倍数)你还能举出一些4的倍数来吗?写的完吗?那我们可以用?(省略号)

2、想想做做3

实物投影展示学生答案(指出:这里24的因数都是一组一组排列的)

提问:排数都是24的因数吗?每排的人数呢?

六、课堂小结,巩固深化

.谈话:回顾一下,今天这节课你学到了什么数学知识呢?

2.我们一起来做游戏:

谈话:上到现在我们也有点累了,我们休息一下吧!做个小游戏好吗?每个同学手中都有一张卡片,如果你的数字符合老师说的要求,那么请你站起来,好吗?1的因数

8的倍数

8的因数

的因数

3.猜糖果

谈话:老师这儿有一包糖,你想得到吗?那你要猜出是多少?听清楚要求了,这个数是40的因数,想一想他有可能是几?这包糖果是5的倍数,想一想有可能是几呢?如果这个数,既是40的因数,又是5的倍数。这个数可能是几?

板书:

倍数和因数

最小

最大

个数

36的因数有:1,2,3,4,6,9,12,18,36。

因数

本身

有限

5的因数有:1,3,5,15。

6的因数有:1,2,4,8,16。

3的倍数有:3,6,3,12,15……

倍数

本身

没有

无限

2的倍数有:2,4,6,8,10……

5的倍数有:5,10,15,20,25……

第二课时:(倍数和因数)

上课时间:5/9

累计课时:43

教学内容:教科书P73

教学目标:、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索出找一个数的倍数或因数的方法。

2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步培养学生的探究能力,对发现的规律进行归纳概括的能力。

3、通过在探索倍数和因数的过程中,使学生进一步体会数学知识之间的内在联系,提高数学思考的水平。

教学重点、难点:

重点:认识倍数和因数的含义,探索找一个数的倍数或因数的方法。

难点:探索找一个数的倍数或因数的方法。

教具准备:多媒体。

教学过程:

一、复习导入

谈话:上一节数学课,我们学习了有关倍数和因数的有关知识,如果给你任意一个自然数(0除外),怎样找这个数的倍数呢?那怎样找一个数的因数呢?

二、练习巩固

、想想做做第4题

写出下面各数的倍数和因数。

学生独立完成,全班一起校对。

倍数

因数

5,10,15,20,25,5

7,14,21,28,35,7

9,18,27,36,45,3,9

0

0,20,30,40,50,2,5,10

2、想想做做第5题

在圆圈内填上合适的数。

7的倍数:7,14,21,35,42……

40以内6的倍数:6,12,18,24,30,36

30的因数:1,2,3,5,6,10,15,30。

3、想想做做第6题

下面哪些数十4的倍数?哪些数是6的倍数?哪些数既是4的倍数又是6的倍数?

学生独立完成,全班交流。

4、想想做做第7题

下面哪些数是12的因数?哪些数十18的因数?哪些数既是12的因数,又是18的因数?

学生独立完成,全班交流。

5、想想做做第8题

学生独立完成,全班交流反馈。

6、思考题

知道学生有序思考。可以先写出40的因数,然后根据40的因数再来确定哪些数字既是40的因数又是5的倍数。

课堂作业:完成补充习题一页。

第三课时:(2、5的倍数的特征)

上课时间:5/10

累计课时:44

教学内容:教科书p.74、75

教学目标:、让学生经历2和5的倍数的特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。

2、在学习活动中培养学生的探索意识、概括能力、合情推理能力,加深对自然数特征的特征的认识,感受教学的奇妙,增强学习数学的积极情感。

教学重点:掌握2、5倍数的特点。

教学过程:

一、认识“偶数”、“奇数”:、前面我们认识了有关倍数和因数的知识,现在老师要请你们写出2的倍数(板书:2的倍数)

想一想,2的倍数写得完吗?一般怎么处理?(写不完,一般只要从小到大写5个,然后用“……”

那如果老师要你写的是“100以内的2的倍数”,写得完吗?(板书:100以内)

请你把100以内2的倍数写在自备本上,写的时候考虑怎么写才能看上去更有规律?有什么规律?

学生写,老师巡视。

2、交流:老师发现同学们都很节约本子,一行一行写得很满。但也有个别同学写得很清楚。

板书:2、4、6、8、10,接下来该怎么写才更好呢?(换行再写,老师继续板书到最后:92、94、96、98、100)指出:“100以内”,包括100。)

看板书,你能说说2的倍数有哪些特点吗?

(1)都是双数;(2)个位上是2、4、6、8、0;(3)间隔排列……

指出:这些数,我们以前把它们叫做“双数”,其实还有一个名字叫“偶数”,是2的倍数的数叫做偶数。

不是2的倍数的数叫做奇数。注意读“ji”。

奇数和偶数是间隔排列的,1~100,这100个数里有50个偶数和50个奇数。

3、想一想自己的学号,是偶数的起立。然后从小到大报一报再坐下。

全班50个学号中,有25个是偶数。

4、如果有一个多位数,ABc□,这个个位上可以填写哪些数字,它就是偶数?填哪些数字,它就是奇数?

二、学习5的倍数:

在这些数中(指板书问),有没有5的倍数?

(随学生回答,把其他的擦去,留下整十数那列。)

观察这些数,有什么特点?(都是偶数,都是整十数,个位上都是0。)

这些数既是2的倍数,也是5的倍数。

5的倍数只有这些吗?有补充吗?

继续板书:5、15、25……95

谁来完整地说一说5的倍数有什么特点?(个位上是5或0)

三、完成想想做做:、下面的数,哪些是2的倍数?哪些不是5的倍数?哪些既是2的倍数,又是5的倍数?

读题后审题,看清楚有3个要求。分别用不同的标记标出2的倍数和5的倍数。指名说说自己的判断理由。再说说既是2的倍数又是5的倍数的特点。

2、填一填:

问:会不会有哪个数既是偶数又是奇数?会不会既不是偶数也不是奇数呢?

(通过提问,让学生明白:自然数要么是偶数要么是奇数。所以7个数都要分别填进圈里。)

3、选出两张数字卡片,按要求组成一个数。

(1)组成的数是偶数

(2)组成的数是5的倍数www.xiexiebang.com

(3)组成的数既是2的倍数,又是5的倍数

做一题交流一题,分别指名说说思考的方法,注意引导学生有序的思考,尽量找完全。

4、用0、2、5三个数字组成一个三位数。

(1)组成的数是2的倍数

(2)组成的数是5的倍数

提醒学生有序地思考,排出所有符合要求的三位数。

5、把下表中4的倍数涂上颜色。

学生独立涂色。交流。

可能会有的错误:4、14、24、34……

讨论找4的倍数的方法,找出错误的数。

算一算,40以内4的倍数的个数:40÷4=10(个)

问:4的倍数都是2的倍数吗?

2的倍数都是4的倍数吗?你能举例说明吗?

四、全课总结:

说说你今天学会了哪些知识?

板书设计:

2、5的倍数的特征

2的倍数(偶数),个位上是0、2、4、6、8

(奇数)不是2的倍数

5的倍数,个位上是0、5

既是2的倍数,又是5的倍数,个位上是0

新课标第一网

第四课时:(3的倍数的特征)

上课时间:5/11

累计课时:45

教学内容:教科书p.76、77

教学目标:、让学生通过观察、操作、猜想、验证等活动,认识3的倍数的特征,会判断一个数是不不是3的倍数。

2、通过教学活动培养学生动手实践和观察、分析、抽象、概括的能力。

3、在探索3的倍数的特征的过程中,提高学生合作交流的能力,感受数学学习的乐趣,体悟数学思维的严谨。

教学重点:掌握3的倍数的特征

教学过程:

一、复习:

说说关于2的倍数、5的倍数的知识,老师随学生回答板书成:

2的倍数(偶数),个位上是0、2、4、6、8

(奇数)

5的倍数,个位上是0、5

既是2的倍数,又是5的倍数,个位上是0

二、学习3的倍数:、学生在自备本上写出50以内3的倍数

检查写的个数:50÷3=16……2,应该有16个3的倍数

具体交流并板书:3、6、9、12、15、18、21、24、27、30、33、36、39、42、45、48

问:你是用什么方法得到这些3的倍数的?(依次加3,或是乘法)

2、观察特点:3的倍数有什么特点吗?

可能有的学生还是从个位角度去说,那可引导学生分别找到个位上是0、1、2、3、4、5、6、7、8、9的3的倍数,发现这个思考方向是错误的。

可能有的学生知道要把各位上的数加起来再比较。

老师板书:各位

问:各位是什么意思?(如果是一位数,那就这个一位;如果是两位数,那就要分别把个位和十位加起来;如果是三位数,那就要把三个位上的数加起来……)

举例加一加:一位数3、6、9不用加,而且很熟悉,一看就知道是3的倍数

两位数:12、15、18加得的也是3、6、9,是3的倍数……

问:如果是三位数47□,你说□中可以填哪些数?你是怎么想的?

如果是四位数647□呢?你有什么更好的方法?

3、小结:xkb1.com

3的倍数,它各位上数的和一定是3的倍数。

三、试一试:

如果一个数不是3的倍数,这个数各位上的数的和会是3的倍数吗?

找几个这样的数算一算,并将研究结果交流。(选几个同学说一说)

四、完成想想做做、下面的数,哪些是3的倍数?29、45、51、67、84、96

学生独立完成后交流

2、不计算,你能很快说出哪几题的结果有余数吗?

48÷3、57÷3、342÷3、567÷3、802÷3

问:这道题的要求还可以怎么理解?(被除数是否是3的倍数)

学生完成后交流

3、在每个数的□里填上一个数字,使这个数是3的倍数

7□,20□,□12,3□5

先以第一题为例:想7加2等于9,是3的倍数;再2加3得5得到第2个答案;再加3得8,得到第3的答案。

指出:这种题的答案不唯一,我们一般可以先填写其中最小的一个数,再依次加3。

学生完成剩下的题。

4、把下表中9的倍数涂上颜色。

涂完后问:9的倍数都是3的倍数吗?

你还有什么发现?(可能会有学生说“9的倍数各位上加起来都是9的倍数”)

5、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

要求学生有序的思考并写完成10个符合条件的数。

五、游戏:

讲清楚游戏规则:从1开始报数,凡是3的倍数和带3的数都不能说,要跳过。

游戏方法:先同桌说,再优胜的前后说,再优胜的在讲台前排好后说,决出全班的冠军。

板书设计:

3的倍数的特征

3的倍数,它各位上数的和一定是3的倍数

第五课时:(素数和合数)

上课时间:5/12

累计课时:46

教学内容:教科书p.78、79

教学目标:、让学生经历探索发现素数和合数的过程,理解素数和合数的意义,掌握判断一个数是素数还是合数的方法,记住20以内的素数

2、让学生进一步体会探索数的一些特征的方法,培养分析、比较和抽象概括能力,感受数学知识的内在联系。

3、让学生进一步体会数学内容的奇妙有趣,产生对数学的好奇心。

教学难点:熟练记住50以内的素数新课标第一网

教学过程:

一、复习:

分别口答2和5的倍数,全班起立,练习“绕3游戏”。

二、学习新知:、刚才我们练习的是求一个数的倍数,现在我们来写一写一个数的因数。

在自备本上写出一位数1~9的因数。

交流并板书:

的因数:1

2的因数:

1、2

3的因数:

1、3

4的因数:1、2、4

5的因数:

1、5

6的因数:1、2、3、6

7的因数:

1、7

8的因数:1、2、4、8

9的因数:1、3、9

观察这些因数的个数,有几个数都是只有2个因数,把它们找出来。(随学生回答圈出来。)这些因数有什么特点?(1和它本身)

指出:像2、3、5、7这几个数,它们的因数只有1和本身两个,这样的数叫做素数。板书:素数(读一读)或质数(板书:质数)

剩下的数中,4、6、8、9的因数除了1和本身之外,还有别的因数,这样的数叫合数。板书:合数

请学生用自己的话来说一说怎样的数叫素数?怎样的数叫合数?(也可以从字面上来理解:“素”有少的意思,少到只有1和本身两个因数;“合”我们常说“合家欢”,一般至少有3个:父母和孩子,类似的,合数至少有3个因数。……)

想一想:1是素数吗?是合数吗?为什么?

指出:在自然数中,1是最孤单的,它既不是素数也不是合数。

2、想一想,自己的学号,是素数还是合数?

分别起立:既不是素数也不是合数(只有1)

是质数的(分别起立后,依次报出学号,然后板书整理)

是合数的(分别起立,问:怎么检查他们是合数呢?)(分别是2的倍数、3的倍数、5的倍数、7的倍数)

3、看板书总结:

50以内的素数:2、3、5、7 1、13、17、19 23、29 31、37 41、43、47

观察这些素数,你有什么好办法记住它们?

(只有一个偶数2是素数,其他的都是奇数……)

独立把这些素数写在本子上,检查自己记住了没有。

三、学生独立看书,并完成书上的练习。、记住素数和合数两个概念,能比较熟练地说出其含义。

2、知道1的特殊性

3、完成书上的想想做做1,进一步明确素数和合数的确定标准。

完成想想做做2,明确50以内的素数的确定办法。

完成想想做做3,熟练掌握50以内的素数。

四、全课总结:

用自己的话说说这节课的收获。

第六课时:(练习六)

上课时间:5/13

累计课时:47

教学内容:教科书p.80~82

教学目标:、通过整理使学生知道数按不同的标准,可以分成偶数和奇数、素数和合数。

2、能较熟练地找出2、3、5、7的倍数,判断素数。

教学过程:

一、复习整理:

、偶数和奇数:

从1开始的自然数,按是否是2的倍数,可分为偶数和奇数。

学生在本子上写一写:

偶数:2、4、6、8、10 2、14、16、18、20

……

奇数:1、3、5、7、9 1、13、15、17、19

……

说一说:个位上是2、4、6、8、0的数,是偶数;个位上是1、3、5、7、9的数是奇数。

奇数和偶数是间隔排列的。

补充:1~100,100个数里有几个奇数?几个偶数?

这50个奇数和与50个偶数和比一比?哪个大?(或者会不会是一样大?)

讨论后交流,并说明判断理由:

偶数和奇数有一一对应的关系,每一对偶数都比奇数大1,100个数就是50对,也就大50。

如果是1~50呢?1~100呢?……

2、素数和合数:

问:素数和合数是按什么标准来判断的?

分别写出20以内的素数和合数。

素数:2、3、5、7 1、13、17、19

合数:4、6、8、9、10 2、14、15、16、18、20

观察这些数,有哪些特殊的数?说说理由。

(在素数中,只有2是偶数,其他的都是奇数;2是最小的素数……

在合数中,4是最小的合数;9和15既是奇数又是合数……)

3、比较:奇数和偶数是对应的关系,它们的个数是一样多的;素数和合数没有对应关系,20以内的合数比素数要多一些。……

二、完成书上的练习六:

、在本子上写一写,如:

6×2=12或12÷2=6

2是2的倍数,12也是6的倍数

2是12的因数,6也是12的因数

选几个不同算式读一读,问:你有什么发现?

(如:6,在2×3=6中,6是2和3的倍数;而在6×2=12中,6是12的因数,所以要说清楚是谁的因数或倍数……)

2、分别说说你是怎么考虑5的倍数?2的倍数?3的倍数?再说说结果是什么。

3、“用哪种盒子能正好装完?”这个问题该如何理解?你的答案是什么?为什么?

4、在下面的□里填上一个合适的数字。

先让学生独立填写,再分别交流,说说自己是怎么想的?如果有多个答案的,也请学生有序地补充完整。

在交流的时候,要引导学生用更好的方法去思考。

5、把表中6的倍数涂上颜色。(学生独立完成,指名读一读。)

问:6的倍数都是2的倍数吗?也是3的倍数吗?

你有什么发现吗?

6、用○圈出表中所有的素数,用△圈出表中所有的偶数。

提醒:画○画△都要画清楚,不要似是而非。

指名交流。问:所有的素数都是奇数吗?比如说?

所有的偶数都是合数吗?比如说?

7、三个连续自然数的和都是3的倍数吗?你用什么方法来证明呢?

(可能会想到的方法:举例)

老师可板书几组,然后组织学生发现算的时候的秘密:可以算成3×中间数。所以这个结果肯定是3的倍数。

同样的道理,让学生自己来说一说3个连续的偶数的和、奇数的和。

8、找出每组中的素数。

学生交流完后总结:两位数的素数都是奇数,而且个位上是5的都是合数,所以只有可能个位上是1、3、7、9。

50以内个位上是1的素数:11、31、41三个

个位上是3的素数:13、23、43三个

个位上是7的素数:17、37、47三个

个位上是9的素数:

19、29两个

除了记住这些素数,也可以分别考虑该数是不是2的倍数?3的倍数?5的倍数?7的倍数?

补充91:直接能判断不是2的倍数,不是5的倍数;加一加判断出不是3的倍数;最后试是不是7的倍数:91÷7=13,说明它是合数

指出:一般就是按照这样的顺序来判断较大的数是否是素数的,如果要用7的倍数来判断,已经算是蛮难的了。

学生判断89是不是素数?

9、哪几个班可以平均分成人数相同的小组?哪几个班不可以?说说你的想法。

0、介绍“你知道吗?”完成第10题。

学生独立完成后交流。如:8=()+(),如果有人说1+7,要请学生分析理由。如果有多种答案也要一一交流。

第八九十单元测试

上课时间:5/16

累计课时:48

件www.xiexiebang.com

第二篇:四年级数学倍数和因数教学设计

四年级数学下册倍数和因数教学设计

沙集镇白庙小学王为聪

教案背景:

1.概念揭示变“逻辑演绎”为“活动建构”。因数和倍数,传统教材是按数学知识的逻辑系统(除法整除约数和倍数)来安排的,这种概念的揭示,从抽象到抽象,没有学生亲身经历的过程,也无须学生借助原有经验的自主建构,学生获得的概念是刻板、冰冷的。如果能借助学生的操作和想象活动,唤起学生的“因倍意识”,自主建构起“因数和倍数”的意义,那么学生获得的概念必然是生动的、有意义的。

2.解决问题变“关注结果”为“对话生成”。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉学生,迫切地寻求结果,还是给学生充分的探究时间,让他们通过独立思考、交流讨论,从而发现问题、解决问题呢?很多成功的教学表明,在教学中为学生营造出一个“对话场”,在生生、师生多角度、多层面的对话中,能让师生彼此分享经验、沟通思考,生成新的看法。

3.教学宗旨变“关注知识”为”启迪智慧”。“知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。”从知识课堂走向智慧课堂,为学生的智慧成长而教,应成为我们数学教学的倾心追求。怎样通过对“因数和倍数”内涵的深度挖掘,在教给学生数学知识的同时,更教会他们数学思考的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计“因数和倍数”这堂课的宗旨所在。

教学课题:

苏教版(义教课标数学)四下第70-71的例题以及72页“想想做做”的1-3页

教材分析:

在学生已经掌握了许多自然数的知识之后,系统地教学分数的意义和性质之前,可以使学生进一步丰富自然数的知识,了解自然数之间存在的倍数与因数关系,体会自然数都有因数,而且不同自然数的因数个数是不同的。这些内容还能为以后教学分数知识作必要的准备。研究倍数与因数一般在非零自然数范围内进行,可以减少不必要的麻烦。

教学目标:

1、通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。感受数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心。

3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系。教学重点:理解倍数和因数的意义。

教学难点:探索求一个数的倍数和因数的方法。

教学准备:每桌准各12个一样大小的正方形,每人准备一张自己学号的卡片。

教学方法:

这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数。教材通过用12个同样大小的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,直观感知倍数和因数的关系。在此基础上再依据算式具体说明倍数和因数的含义,利用已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。或通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣;学生通过独立思考、合作文流进行自主探索;教师引导学生掌握数学思考的方法。

教学过程:

一、智力开发 导入新课

1、让学生进行“智力竞猜”——春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(部分学生能猜出三个人分别是孙子、爸爸、和爷爷)

2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请学生以韩有才为中心介绍—下三个人的关系。学生可能会说出“韩有才.是爸爸”,“韩有才是儿子”的语句,这时引导学生说出“谁是谁的爸爸”“谁是准的儿子”。

3、上述“父子关系”是一种互相依存的关系,在表述时一定要完整。并向学生说明自然数中某两个数之间也有这种类似的依存关系——倍数和因数。

设计说明:“智力竞猜”走学生喜欢的形式,因为每个学生都有争强好胜之心,“竞猜”有两个作用,一是激发学生的学习兴趣,二是以此引出“相互依存”的关系,为理解倍数和因数的相互依存关系作铺垫。

二、操作发现

理解概念

1请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着哪些不同的乘除法算式。”

2、请学生汇报不同的摆法,以及相应的乘除法算式

设计说明;让学生写出蕴涵的乘除法算式符合学生的知识基础,学生有的可能用乘法表示,也有的可能用除法表示;让学生将旋转后相同的去掉,这是一次简化,很多学生并不知道,需要指导,这样可以使学生认识到事物的本质。

3、让学生一起看乘法算式4×3=12,向学生指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。

4、先请一个学生站起来说一说.然后同桌的同学再互相说一说。

5、让学生仿照说出6×2=12和12×1=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。

6、学生相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。学生可能会出现0×()=0的情况,借此向学生说明我们研究因敷和倍数一般指不是0的自然数。

设计说明:倍数和因数是全新的概念,需要教师的“传授、讲解”,需要学生的适当“记忆”——重复、仿照。当然,要使学生真正理解还必须举一反三,通过互相举例可以逐步完善学生对倍数和因数的认识,同时使学生明确倍数和因数的研究范围。

7、以4×3=12与12÷3=4为例,向学生说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让学生试一试其他几个除法算式中的关系。

8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数

5×4=20

35÷7=5

3+4=7

(1)学生回答后引发学生思考:能不能说20是倍数,4是因数。使学生进一步理解倍数是两个数之间的一种相互依存的关系,必须说哪个是哪个的倍数,因数也同样如此。

(2)通过3+4=7使学生进一步理解倍数和因数都是建立在乘法或除法的基础之上的。

设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。

三、自主探索

寻找方法

1、找一个数的因数。

(1)联系板书的乘除法算式观察思考12的因数有哪些,井想办法找出15的所有因数。

(2)学生独立思考,明白根据一个乘法(除法)算式可以找出15的两个因数,在学生充分交流的基础上引导学生有条理的“一对一对”说出15的因数。

(3)用“一对一对”的方法找出36的所有因数。可能有的学生根据乘法算式找的,也有的学生是根据除法算式找的,都应该给予肯定。

(4)引导学生观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它本身。

设计说明:先安排学生“找一个数的因数”可以使学生利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。学生交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导学生“一对一对”的找是必要的,它可以培养学生的有序思考。最后引导学生观察。使学生自主发现、归纳出一个数的因数的某些特征。

2、找一个数的倍数。

(1)让学生找3的倍数,比一比谁找得多。

(2)学生汇报后,引导学生有序思考,并得出3的倍数可以用3乘连续的自然数1、2、3„„,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。

(3)找出2的倍数和5的倍数,并引导学生观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

设计说明:让学生比一比谁找的倍数多,可以使学生产生认知冲突,认识到一个数的倍数个数是无限的,在学生汇报后同样需要引导学生的有序思考,需要引导学生自主发现、归纳一个数倍数的特征。

四、巩固深化

师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自己掌握得如何?

1、谁是谁非。(正确的在括号里画“√”,错误的在括号里画“×”。)

(1)4×5=20,4是因数,20是倍数。

(2)18最大的因数和最小的倍数,都是它本身。

(3)1的因数只有一个。

(4)8所有的因数是2、4、8。

2、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

11×4=44

12×5=60

9×8=72 3.接着出示“□4”,哪些是它的因数呢?说说你的想法? 4.要使这个数一定有因数2,那么个位上还可以是哪些数字?

5.出示“□0”。你知道除了1和2外,还有哪些数也是它的因数?

6.最后出示“□□”。这一次,十位和个位上的数字都看不清了,你还能找到答案吗?

7、游戏(找朋友)

(1)找8的因数朋友;找24的因数朋友找;15的因数朋友

(2)5的倍数;9的倍数;1的倍数

五、知识梳理

拓展延伸

1、通过这节课的学习你有什么收获?向你的同伴介绍一下。

2、生活中许多现象与我们学习的“倍数和因数”的知识有关,课后同学们可以利用今天所学的知识探索一下“1小时等于60分”的好处。通过探索使学生明白由于60的因数是两位数中最多的,可以方便计算

六、教学反思:《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教学有效性,既检验了学生学习的效果,又营造了一种轻松、愉悦的气氛。正所谓“课已毕,趣犹在。

第三篇:四年级数学倍数和因数教学设计

四年级上册数学

倍数和因数教学设计

1课时

教案背景:

1.概念揭示变“逻辑演绎”为“活动建构”。因数和倍数,传统教材是按数学知识的逻辑系统(除法整除约数和倍数)来安排的,这种概念的揭示,从抽象到抽象,没有学生亲身经历的过程,也无须学生借助原有经验的自主建构,学生获得的概念是刻板、冰冷的。如果能借助学生的操作和想象活动,唤起学生的“因倍意识”,自主建构起“因数和倍数”的意义,那么学生获得的概念必然是生动的、有意义的。

2.解决问题变“关注结果”为“对话生成”。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉学生,迫切地寻求结果,还是给学生充分的探究时间,让他们通过独立思考、交流讨论,从而发现问题、解决问题呢?很多成功的教学表明,在教学中为学生营造出一个“对话场”,在生生、师生多角度、多层面的对话中,能让师生彼此分享经验、沟通思考,生成新的看法。

3.教学宗旨变“关注知识”为”启迪智慧”。“知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。”从知识课堂走向智慧课堂,为学生的智慧成长而教,应成为我们数学教学的倾心追求。怎样通过对“因数和倍数”内涵的深度挖掘,在教给学生数学知识的同时,更教会他们数学思考的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计“因数和倍数”这堂课的宗旨所在。

教学课题:因数和倍数 教材分析:

在学生已经掌握了许多自然数的知识之后,系统地教学分数的意义和性质之前,可以使学生进一步丰富自然数的知识,了解自然数之间存在的倍数与因数关系,体会自然数都有因数,而且不同自然数的因数个数是不同的。这些内容还能为以后教学分数知识作必要的准备。研究倍数与因数一般在非零自然数范围内进行,可以减少不必要的麻烦。

教学目标:

1、通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。感受数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心。

3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系。教学重点:理解倍数和因数的意义。

教学难点:探索求一个数的倍数和因数的方法。

教学准备:每桌准各12个一样大小的正方形,每人准备一张自己学号的卡片。

教学方法:

这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数。教材通过用12个同样大小的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,直观感知倍数和因数的关系。在此基础上再依据算式具体说明倍数和因数的含义,利用已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。或通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣;学生通过独立思考、合作文流进行自主探索;教师引导学生掌握数学思考的方法。

教学过程:

一、智力开发 导入新课

1、让学生进行“智力竞猜”——春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(部分学生能猜出三个人分别是孙子、爸爸、和爷爷)

2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请学生以韩有才为中心介绍—下三个人的关系。学生可能会说出“韩有才.是爸爸”,“韩有才是儿子”的语句,这时引导学生说出“谁是谁的爸爸”“谁是准的儿子”。

3、上述“父子关系”是一种互相依存的关系,在表述时一定要完整。并向学生说明自然数中某两个数之间也有这种类似的依存关系——倍数和因数。

设计说明:“智力竞猜”走学生喜欢的形式,因为每个学生都有争强好胜之心,“竞猜”有两个作用,一是激发学生的学习兴趣,二是以此引出“相互依存”的关系,为理解倍数和因数的相互依存关系作铺垫。

二、操作发现

理解概念

1请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着哪些不同的乘除法算式。”

2、请学生汇报不同的摆法,以及相应的乘除法算式

设计说明;让学生写出蕴涵的乘除法算式符合学生的知识基础,学生有的可能用乘法表示,也有的可能用除法表示;让学生将旋转后相同的去掉,这是一次简化,很多学生并不知道,需要指导,这样可以使学生认识到事物的本质。

3、让学生一起看乘法算式4×3=12,向学生指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。

4、先请一个学生站起来说一说.然后同桌的同学再互相说一说。

5、让学生仿照说出6×2=12和12×1=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。

6、学生相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。学生可能会出现0×()=0的情况,借此向学生说明我们研究因敷和倍数一般指不是0的自然数。

设计说明:倍数和因数是全新的概念,需要教师的“传授、讲解”,需要学生的适当“记忆”——重复、仿照。当然,要使学生真正理解还必须举一反三,通过互相举例可以逐步完善学生对倍数和因数的认识,同时使学生明确倍数和因数的研究范围。

7、以4×3=12与12÷3=4为例,向学生说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让学生试一试其他几个除法算式中的关系。

8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数

5×4=20

35÷7=5

3+4=7

(1)学生回答后引发学生思考:能不能说20是倍数,4是因数。使学生进一步理解倍数是两个数之间的一种相互依存的关系,必须说哪个是哪个的倍数,因数也同样如此。

(2)通过3+4=7使学生进一步理解倍数和因数都是建立在乘法或除法的基础之上的。

设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。

三、自主探索

寻找方法

1、找一个数的因数。

(1)联系板书的乘除法算式观察思考12的因数有哪些,井想办法找出15的所有因数。

(2)学生独立思考,明白根据一个乘法(除法)算式可以找出15的两个因数,在学生充分交流的基础上引导学生有条理的“一对一对”说出15的因数。

(3)用“一对一对”的方法找出36的所有因数。可能有的学生根据乘法算式找的,也有的学生是根据除法算式找的,都应该给予肯定。

(4)引导学生观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它本身。

设计说明:先安排学生“找一个数的因数”可以使学生利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。学生交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导学生“一对一对”的找是必要的,它可以培养学生的有序思考。最后引导学生观察。使学生自主发现、归纳出一个数的因数的某些特征。

2、找一个数的倍数。

(1)让学生找3的倍数,比一比谁找得多。

(2)学生汇报后,引导学生有序思考,并得出3的倍数可以用3乘连续的自然数1、2、3……,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。

(3)找出2的倍数和5的倍数,并引导学生观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

设计说明:让学生比一比谁找的倍数多,可以使学生产生认知冲突,认识到一个数的倍数个数是无限的,在学生汇报后同样需要引导学生的有序思考,需要引导学生自主发现、归纳一个数倍数的特征。

四、巩固深化

师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自己掌握得如何?

1、谁是谁非。(正确的在括号里画“√”,错误的在括号里画“×”。)

(1)4×5=20,4是因数,20是倍数。

(2)18最大的因数和最小的倍数,都是它本身。

(3)1的因数只有一个。

(4)8所有的因数是2、4、8。

2、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

11×4=44

12×5=60

9×8=72 3.接着出示“□4”,哪些是它的因数呢?说说你的想法? 4.要使这个数一定有因数2,那么个位上还可以是哪些数字?

5.出示“□0”。你知道除了1和2外,还有哪些数也是它的因数?

6.最后出示“□□”。这一次,十位和个位上的数字都看不清了,你还能找到答案吗?

7、游戏(找朋友)

(1)找8的因数朋友;找24的因数朋友找;15的因数朋友

(2)5的倍数;9的倍数;1的倍数

五、知识梳理

拓展延伸

1、通过这节课的学习你有什么收获?向你的同伴介绍一下。

2、生活中许多现象与我们学习的“倍数和因数”的知识有关,课后同学们可以利用今天所学的知识探索一下“1小时等于60分”的好处。通过探索使学生明白由于60的因数是两位数中最多的,可以方便计算

六、教学反思:《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教学有效性,既检验了学生学习的效果,又营造了一种轻松、愉悦的气氛。正所谓“课已毕,趣犹在。

四年级上册数学《倍数和因数》评课稿

《倍数和因数》,“倍数和因数”的教材编排跟老教材相比有着很多不同之处,最大的不同在于老教材是先让学生认识整除,然后在整除的基础上引出倍数和因数的定义。概念的揭示从抽象到抽象,从数学到数学,没有学生经历的过程,也无须学生借助原有经验的自主建构。新教材是从操作活动把12个小正方形摆成不同的长方形引入的,再让学生写出不同的乘法算式,从而导出倍数和因数的概念。老教材比较严谨,新教材降低了要求,更趋人性化。许老师把这节课上得朴实,而朴实中却处处彰显着深刻。

感受之一:在教学中注重新旧知识的衔接,以直观形象自然引入今天的教学,把12个小正方形摆成不同的长方形,先动一动,后说一说,使教学环节紧密衔接在一起,在操作活动中得出乘法算式,举一反三体会倍数和因数的意义,充分利用写出的三道乘法算式教学倍数和因数的意义,为学生设计了“接受、领会—模仿、理解”的学习过程:先结合算式4 × 3 = 12 介绍“12是4的倍数,12也是3的倍数,4和3都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据6 × 2 = 12、12 × 1 = 12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。

感受之二:在新知教学中,注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找24的因数”,找一个数的因数是本课的难点。应该说,找出24的几个因数并不难,难就难在找出24的所有因数。教学中,许老师先让学生在脑中用24个小正方形想象摆成不同的长方形,并写出乘法算式,这里,有些学生是有序写的,有些学生没序并且有重复或遗漏现象,这里许老师引导学生对有序和无序找的作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。

不过,这里老师对有序太过于细化,以至于在有序上花了太多的时间,影响到后面内容的教学。

评课人︰秦佑广 陈婷

苗秀丽

吴纪检

张崇敬

《因数与倍数》说课稿

一、说教材

在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。

教学目标定为以下几点:

(一)知识、技能目标:

1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

(二)情感、价值目标:

让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。

本课的教学重难点是理解因数和倍数的概念,能有序地求出一个数的因数和倍数。

二、学生学习情况分析

本班多数学生在平时的学习中缺少主动性,目的性。一部分学生怕困难,缺乏独立思考的习惯,同时,考虑问题也不够全面。在本堂课的教学中,主要调动学生的学习积极性提高学生课堂活动的参与性,体验成功的乐趣,通过学生的亲自探索和体验来达到学习知识,掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

三、教法与学法指导

当今社会、人类的发展离不开素质教育,而实施素质教育必须“以学生为本”,课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。

1、本节课理论性的知识比较多,课前让学生结合学案进行自学教师适当点拨。

2、遵循学生主体、教师主导(组织),学生操作、探究为主线的理念,首先从学生的操作入手,由浅入深,利用学生对乘法运算的已有认识,在操作中引出倍数和因数的概念。

3、小组合作讨论法。以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。

4、在教学过程的设计上,根据学生的兴趣,认知规律,自己采取用教材,而不搬教材的教学设计。

四、教学过程:

(一)激发兴趣,引入新课:让学生针对12个正方形的摆法讨论,激发学生兴趣,引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。

(二)情境体验,理解概念:分三个层次进行教学。(1)情境体验,初步感知倍数和因数的意义。让学生根据12个正方形的不同摆放方式写出算式,让学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。(2)在具体的乘法算式中,理解倍数和因意义。这样做不仅降低了难度,而且为学生的后续学习拓展了空间。根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,36是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。

明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。

(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)

接下来结合板书算式,考考大家谁是谁的倍数,谁是谁的因数?

若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”

学生自由发言,统一认识。

小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。

第三个环节是探索方法,发现特征:分两个层次进行,首先找一个数的因数,为了考查学生的动手有的可能是用乘法想(乘积是20的两个数是20的因数)有的可能是用除法想(除数和商都是20的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。并通过找三个数的所有因数,而找出引述的特征,从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。接下来找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,并在找因数特征的基础找到倍数的特征。

第四篇:因数和倍数教案

因数和倍数

朔州市怀仁县吴家窑寄宿制小学校

王存祥 教材内容:

《因数和倍数》是人教版小学数学五年级下册第二单元中的第一课时 教学目标:

1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数,知道因数、倍数的相互依存关系。

2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。教学重点

理解因数、倍数概念模型内涵,掌握找一个数因数的方法。教学难点

理解因数、倍数的相互依存的关系。教学过程

一、创设情境,引入新课

师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是„„?

生:父子(父母、母子、母女)关系。

师:我和你们的关系是„„?

生:师生关系。

师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

二、探究新知

(一)学习因数和倍数的概念

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12 所以12÷2=6,12÷6=2 因此2是12的因数,6也是12的因数; 12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

4、师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

现在,请同学们小组合作小结一下因数和倍数的概念。(小组合作探索,教师引导)最后让一名学生代表在黑板上写出:如果数a能被数b整除,a就是b的倍数,b就是a的因数。

(二)、学习求一个的因数或倍数的方法。

A、找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些? 学生尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=„;用乘法一对一对找,如1×18=18,2×9=18„)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

老师举错例(1,2,3,4,6,6,9,12,18,36)后提问:这样写可以吗?为什么?

指名回答(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42„„)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示。

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

B、找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗? 汇报:2、4、6、8、10、16、„„

师:为什么找不完? 你是怎么找到这些倍数的?

(生:只要用2去乘

1、乘

2、乘

3、乘

4、„)那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报

3的倍数有:3,6,9,12

改写成:3的倍数有:3,6,9,12,„„

你是怎么找的?(用3分别乘以1,2,3,„„倍)

5的倍数有:5,10,15,20,„„

师:通过上面的学习,我们知道一个数的因数的个数是有限的,那么一个数的倍数的个数是怎么样的呢?同学们能回答吗?

生答:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

投影出示:

1、说一说谁是谁的因数,谁是谁的倍数。

36和9

28和4

7和49

5和40

72和8

10和4

2、判断。

(1)3是因数,9是倍数。()

(2)8是16的因数。()

(3)4.2是0.6的倍数。()

(4)15的因数有3和5两个。()

(5)13的因数只有1和13。()

(6)在1~40的数中,36是4的最大倍数。()

3、游戏。(学生拿出老师发给的学号卡片)规则:老师说一个数,同学们看自己卡片上的数是否符合下面的条件,符合的请举起自己的卡片,其他同学互相评判。①老师:4,谁是我的倍数?我是你们的什么数?

②老师:18,我找我的因数。③老师:请1~8号的学生举起卡片,让6号同学指出自己的因数。④1,我是谁的因数?

三、课堂小结

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

板书设计:

因数与倍数

如果数a能被数b整除,a就是b的倍数,b就是a的因数。

一个数因数的个数是有限的,最小的因数是1最大的因数是它本身。

一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

教学反思:

1、教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。

2、采用小组合作的学习模式,激发了学生主动学习和参与的兴趣,引导学生感悟到生活中处处有数学,数学就在身边。

3、在利用乘法算式说明因数和倍数含义的基础上,让学生体会了倍数与因数的相互依存关系,并逐步让学生领会到了一个数的倍数的个数是无限的。

第五篇:因数和倍数教案

吴正宪《整除复习课》课堂实录

师:同学们今天这一节课我们要做一节有关数的整除的综合复习课,大家看到课前我在黑板上零零散散的贴出了这么多卡片,那么这些卡片上写的都是有关数的整除中的一些有关数的概念,那么我不知道当我们把这些知识学完以后,今天的复习第一件事我们能不能根据这些有关数的概念它的意义和他们之间的联系,把这些零零散散的概念做一次梳理,你认为哪个概念最重要你可以举例说明也可以呢根据他内在的联系和你认为他的数学概念把它整理一个比较系统的知识网络图,这事原来干过吗?没干过。今天我们一起来试一试好不好!我不知道你们怎么分组,四人以小组还是怎么样分你们自己结合好不好?你认为哪个概念最重要它的概念下面又可以派生出哪些新的概念,那我们把这些做一个整理,好吗?把时间先给同学们,下面就自愿结合按照你们的老规矩,开始。学生分组整理 小组汇报

生1:我们小组觉得整除是最重要的。

师:整除最重要是吗?那么整除最重要的你要把它先第一个出来是吗?那这样我就先把它放在最重要的位置。生1:整除它还可以分为奇数和偶数。

师:整除还可以分为奇数和偶数?奇数和偶数是从整除这个角度去分的吗?同学们摇头呢!有意见呢!你选一位同学。生1:赵俊艺

师:赵俊艺有不同看法。生2:我觉得整除它可以分为因数和倍数。师:你为什么在整除下面分得出因数和倍数?

生2:因为整除一个数,因数然后乘以倍数等于一个数,那么这个数可以除以因数等于倍数。

师:那么我的问题是,假如说数a能够被数b整除的话,那么想一想数a和数b一定有一个什么样的关系?你同意吗? 生2:同意

师:谁是谁的倍数? 生2:a是b的倍数 师:接着

生2:b是a的因数 师:你们同意这意见吗? 生:同意

师:她的意见说在整除的前提下一定会产生一种概念,什么? 师生齐声:因数和倍数

师:你为什么不同意她的意见呢?她说把奇数和偶数分出来就行了,你们可以有些讨论吗?

生2:我觉得偶数和奇数应该不算在整除里面,它应该是数的名称。师:偶数和奇数是在什么前提下产生的?它跟谁有关系?跟整除有关系没错,在具体点,我们怎么确定这个概念呢?是跟整除有关系,能在具体点吗?在什么情况下我就认定它是偶数了? 生2:能被2整除的 师:接下来,说完整,老说一半 生2:能被2整除的那些自然数都是偶数 生2:不能被2整除的那么就是奇数

师:那你的意思偶数和奇数一定和一个重要的数有关系,是吗? 师:和谁? 生2:2 师:同意吗? 生:同意

师:她说能被2整除的就是? 生:偶数

师:不能被2整除的就是? 生:奇数

师:那好,这样啊,你既然提出来了这个问题我把这2先补充到这里好不好,我先假如说补充到这里,那么跟它有关系的赶快拿啊,偶数和奇数 学生拿卡片

师:你认为他们有关系,是这个意思吗?能被2整数和不能被2整除的,对吗?他们的关系你们同意吗? 生:同意

师:他们认为在整除的前提下一定有一对非常重要的概念,是什么?一起说

生:倍数和因数 师:你们认可不认可这样的观点? 生1:认可

师:那赶快找出来 学生找卡片

师:这样啊,既然跟它有关系我帮你们放在上面好不好 粘贴卡片因数、倍数

师:你们的意思就是说当数a能被数b整除的时候,数a就是数b的倍数,那么数b就是数a的因数,是这意思吗? 生:是

师:接下来继续说,因数还能接着往下说吗? 生:有公因数和公倍数,那么赶快跳出来啊 学生找卡片

师:又在下面的前提下产生了公因数和公倍数,你认为应该贴在哪里就贴下来,不同意见的赶快上来啊 学生贴卡片

师:贴在着跟他有关系是不是啊,你认为倍数和公倍数有关系,是吗? 师:他认为因数公因数有关系,是吗?还有吗? 生:还有最大公因数和最小公倍数

师:那么你们的意思就是说因数可以引出公因数这个概念,对吗? 生:对

师:那请问什么叫公因数?

生:公因数就2个数共有的因数叫做公因数 师:共有的因数对不对? 生:对

师:那什么叫最大公因数啊? 生:就是2个数最大的公因数

师:几个数公有的因数,其中最大的一个是它的什么? 生:最大公因数

师:那你们能接着把这段概念总结完吗?

生:2个数公共倍数就做公倍数,其中最小的一个就叫做最小公倍数 师:同意吗? 生:同意

师:你们这么一说还挺有道理,的确,从因数当中我们可以引出公因数的概念,还可以引出最大公因数的概念,是这样吧?那么,从倍数当中我们可以引出公倍数的概念,那么其中最小的一个是最小公倍数,有没有意见? 生:没有

师:接下来还有这么多的概念那,你有不同意见,那你可以上来啊。谁有的说前面来,你们现在都在动脑筋想啊。生:合数

师:和数怎么啦?

生:我觉得合数也可以贴几个上来

师:你认为贴在哪里?把它拿出来。你们自己来不讲也可以,把它自己贴上去,谁愿意来?合数贴在哪? 生:合数的下面找到了,合数不知道贴在哪里

师:合数的家找不到了,合数是从哪出来的啊?我们怎么判断它是合数啊?别着急,它的合数找不到了,它的下面能找到是吗? 生:是的

师:那你别着急,那你等着找下面。现在合数的上家谁能找到? 生:偶数除了2都是合数

师:偶数里面除了2都是合数,有问题吗? 生:没问题

师:你想把它贴在偶数旁边是吗?有没有意见? 生:

9、25也是合数

师:那些奇数当中也有合数啊,那么请问合数的概念是怎么产生的?你是根据什么判断它是合数的?这个合数旁边一定还有它的朋友呢?你把朋友找过来也可以啊

生:我觉得它合数的话,就是说它除了自己本身以外还有其它的因数。师:这个同学他发现这个合数是跟那个谁有关系? 生:跟因数有关

师:跟因数什么关系?你们仔细听啊

生:这个合数除了它本身和1以外还有其它的因数

师:你的意思就是说合数会跟因数有关系,是这意思吗?那它除了1和它本身这两个因数以外还有? 生:其它的因数。

师:那你认为合数贴在哪里比较合适呢? 生:我觉得贴在因数这比较好

师:她说把合数贴在因数这比较合适,跟它有关系对不对?那么跟因数有关系的只有合数吗?它跟谁有关系? 生:还有它跟质数有关系 师:质数跟谁有关系? 生:质数也跟因数有关系

师:既然有关系放在这行不行?有什么关系?上级现在明白了,这2个数都与自然数因数的个数有关系,对吗? 生:对

师:有什么关系啊?这个数就2个因数,叫什么? 生:质数

师:除了1和它本身还有别的因数那叫什么数? 生:合数

师:看来这个小姑娘找的这个位置你们赞同吗? 生:赞同

师:是有关系啊,只有1和它本身两个因数的数叫质数,除了1和它本身还有别的因数的数叫做什么? 生:合数

师:那么自然数作为一个大的集合圈我们说过整除这个单元是在非0的自然数里面研究的,对吧? 生:对

师:那么把自然数作为一个大的集合圈,从因数的个数来分我们就说有质数有合数两大类,赞同我的意见请把手举起来,谢谢同学们的支持,反对的请举手,同学们都支持老师,你们都还在反对,听听他们的意见好吗?你们作为支持的代表谁愿意跟他们对话,站起来,不同意的站一边,你们对话。

生1:那请问一下1只有1这个因数,那请问它是质数吗? 生2:不是质数

生1:既然你说了它不是质数那么它是合数吗? 生2:不是

生1:既然它既不是质数也不是合数,那请问他因该是什么数呢? 师:请问它是什么数呢?你不想问个什么问题吗?两个问题问得好啊,第三个问题它既然不是质数也不是合数,那么自然数这样一个集合圈,你就分成两类

生3:自然数当中分成质数和合数,那1分给哪一类? 生4:整数

师:我们今天研究这个整数,我们讲的是自然数非0的情况下对不对,那么把它作为一个集合圈有质数有合数两类就够了吗? 师:请人家想一想 生4:3类

师:终于从牙缝里蹦出个数3类。几类? 生:3类

师:不2类了,那看来这1还是挺重要的对不对,那这1也不能放在质数里也不能放在合数里,它应该放在哪里? 师:单独一个,那好同学们自然数从因数的个数分分成几类? 生:3类

师:只有一个因数的是谁? 生:1

师:只有1和它本身两个因数的是? 生:质数

师:除了1和它本身还有别的因数的是? 生:合数

师:那么你们认为这三个分类和因数有关对不对? 生:对

师:你还有下阶吗?你下阶是什么? 生5:我的下阶是分解质因数 师:为啥贴在那,讲道理 学生贴卡片 师:贴在哪里

生5:合数下面,如果把合数拆开的话就变成质因数 师:有道理没有?

师:他说把合数拆开,拆开的意思是什么意思? 生5:就是把它分解了

师:这词更准确,那么你们来看吴老师在做什么?别着急,这是一个? 板书12=2×2×3 生:合数 师:我把它? 生5:分解了

师:分解了,对不对啊? 生:对

师:那么这个过程叫什么? 生5:分解质因数 师:有没有意见? 生:没有

师:所以你把它? 生5:贴在合数下面

师:那么他把它贴在合数的下面,任何一个合数都能写成几个这样的形式吗? 生6:能

师:你说能。你们又能想起? 生7:质因数

师:什么叫质因数?

生8:就是分解以后它只剩下质数没有合数 师:你的意思是说分完了没有合数 生8:就称为质因数

师:就以这题为例谁是谁的质因数? 生8:2和3是12的质因数

师:看来在分解质因数的过程当中我们又发现了这样的几个质数是这个合数的什么? 生:质因数

师:质因数在哪里?赶快贴过去,贴到这好不好,同意吗? 生:同意

师:这个分解的过程,而这个过程当中的几个质数就是这个合数的什么? 生:质因数

师:有没有意见?你的下阶找完了吗? 生5:还有互质数

师:互质数想不起来了,没关系,你问,有人能想起来它放哪? 生5:有人能想起来吗?谁能想起来这个互质数帖哪? 点一名学生上来帖 师:我们看她贴哪里

生9:互质数就是2个数除了1以外没有别的公因数 师:你把它放在谁的旁边? 生9:公因数

师:你放在这里的意思你在解释一下什么叫互质数? 生9:互质数就是2个数除了1以外没有别的公因数 师:这2个数就是? 生9:互质数

师:所以你认为互质数跟公因数? 生9:有关系 师:你就放在它的? 生9:下面 师:有道理吗? 生:有

师:当两个数的公因数只有1的时候这两个数就成为了互质数,同意吗? 生:同意

师:到这了,不着急,刚才你们说能被2整除的数叫什么数? 生:偶数

师:不能被2整除的数叫做? 生:奇数

师:那看来这还有点关系,对不对?偶数和奇数是对2而言的,对吗? 生:对

师:那我请问,当我把自然数作为一个集合圈的话,我说除了偶数就是奇数赞同的请举手,反对的请举手 学生举手

师:赞同我的意见,我认为自然数除了奇数就是偶数,有支持我的吗?来过来,就我们2和他们对势就行了,提问题,谁提谁问? 生1:请问0是什么数? 生2:是偶数

生1:它不能被2整除

生2:0除以任何数都是等于偶的,所以它是偶数 生3:那负数呢?

师:同学们首先我们上课的时候限定了今天我们讲的整除这个单元是在什么,非0的自然数这样一个范畴内研究的,对不对啊?对吗?因此,我们所说的是非0的自然数,是在这个范畴吗?那么我请问在这样的情况下除了偶数就是奇数,有没有意见,没意见的坐着,有意见的站着 学生坐着

师:是这样吗?同学们,那么我刚才问了一个问题啊,被2整除的数也就是2的倍数对吗?在这个单元里除了学过2的倍数还学过几的倍数的特征呢?3,对吗?是吗?被3整除的数有什么特征啊?记得吗?有什么特征?谁拿着话筒谁说吧

生1:能被3整除的数它各个数位相加的和也能被3整除

师:各个数位上的数相加的和能被3整除,这个数就一定能被3整除,这样说就比较完整。还学过被几整除的数啊?被几啊?被5整除有什么特征啊?你来说

生2:数的个位除了5就是0的数能被5整除

师:除了5就是0的数对吧?个位上是0和5的数能被5整除,那么被2整除的数的特征呢?记住了吗?是什么?得是0、2、4、6、8对吗,能被2、5同时整除的数,想一想有什么样的特征?什么特征? 生3:末尾是0的

师:要是同时被2、3、5整除的数呢?末尾的怎么样?你来说 生4:要是他们的,应该是0 师:末尾是0,还有别的要求吗? 生5:各个数相加起来的和都是3的倍数

师:好了,我听懂同学们的意见了,你们听懂了吗?同学们,刚才黑板上一堆零零散散的那样的有关数的概念的卡片,这么一整理怎么样,清清楚楚,谢谢你们。俗话说啊书越读越薄就是这个道理,那么多的概念经过我们集体的智慧把它整理成一个比较系统的有关数的整除的概念的这样一个网络图,那么有问题吗?你能给大家提出点问题让大家讨论吗?那我第一个发言好不好,我希望同学们学会提出问题,我的第一个问题是质数和质因数只是一字之差它们有什么相同的地方和不同的地方吗?这是我的问题,想好啦,你想回答,不急,我就找一个没举手的,说 生1:没想好

师:没想好啊,没关系的,看来同学们是碰到了困难,比如说我问的问题是质数和质因数有什么相同的地方和不同的地方,回答的时候能不能从概念出发去解释,然后再做一下比较就非常这个了,那你知道什么是质数吗?这个同学 生2:质数是,忘了

师:我来帮你们回复记忆,不是刚刚复习完吗?什么是质数啊?你来试试看

生3:除了1和它本身没有其它因数就是质数

师:记住了,你记住了小姑娘,记在心里啊,慢慢就恢复了。那么只有1和它本身没有其它因数的叫质数。什么叫质因数? 生4:质因数是由一个合数解开来的质数

师:别着急,他说的很快,他会用自己的语言来表达自己对概念的理解,他说是一个合数给解开的那个东西,我理解,就是刚才我把一个合数用几个质数相乘的形式表示出来,对吗?那么他说质因数也得只有,那么质因数首先得是什么数? 生4:质数

师:能当质数才能当质因数,对不对,他用概念解释啦,那么我在问问同学们,2是质数同意的请举手,2是质因数同意的请举手,为什么? 生5:因为2没有合数

师:说得多好啊,你叫什么名字? 生5:我叫李文怡

师:李文怡是女同学有没有意见 生:没有

师:李文怡是姐姐有没有意见? 生6:有

师:你有什么意见? 生6:她不是我姐姐

师:是啊,就好像2是质数一样,李文怡是女同放学可以独立存在,对不对,李文怡是姐姐就好像2是质因数一样它是谁的质因数啊?它是12的质因数,它是10的质因数,它能是9的质因数吗?因此,他一说质因数一定依附在谁的身上,也就是说质数可以独立存在而质因数不能独立存在,清楚了坐下来。向我这样提出问题,你能够文大家吗?还有能?你能给大家提个问题吗?你们平时没这习惯是吗?好这个男孩拿话筒说。

生7:质数和互质数有什么不同? 师:有什么不同?

生8:质数有一个就可以了,而互质数必须要有2个

师:啥意思啊?质数有1个就可以了,你的意思,他的意思你听懂了 生9:质数是单独的一个数,而互质数是相互的数

师:同意这意见吗?质数是单独的一个数,对一个数而言,对不对,而互质数对几个数而言 生:2个

师:其实有的时候啊,一字之差我们做一点思考就会发现他们有相同的地方和不同的地方,听懂了吗?这么多的数学概念我们怎么去理解应用它呢? 课件出示

在1----20的自然数中,有()个奇数,有()个偶数,有()个质数,有()个合数,奇数中的()是合数,偶数中的()是质数,既不是质数也不是合数的数是()。师:快速回答 学生回答 课件出示

把下面的数按照不同的标准分成两类,你能想到几种? 2 15 8 17 20 学生分类

生1:按照奇数和偶数分 师:还可以怎么分类?

生2:我把8、15、20分一类,2和17分一类,请大家猜猜我是怎么分的?

生3:她是按照质数和合数分的

师:你猜对了,真是质数合数分的,好啦,同学们,我迟疑了一下,但是我还是决定把这个题给你们 课件出示

两个质数的和即是11的倍数又是小于50的偶数,这两个数可能是多少?

师:马上告诉我,你现在在想什么? 生4:这两数是哪两个数

师:这两个数是哪两个数啊?你呢? 生5:跟他一样

师:这两个数究竟是几啊?有没有不这么想问题的?听听这位同学的意见

生6:这两个数的和是几?

师:他没这么想问题,两个数是几啊?这两数究竟是几啊?这两个数跟它一样到底是几啊?而这位同学说他们的和是几啊?你们觉得是向第一种想的好还是第二种好,第二种,那你们说吧,它的和是几啊?一起说吧,11的倍数有:11、22、33、44,下于50的偶数淘汰谁? 生:

11、33

师:它的和找到了吗?你想说是什么?说

生1:3和19,7和15,5和17,别着急,先坐下来,同学们结果并不重要,最重要的是思考问题的方法,我们回忆一下,三个同学站起来说这2个质数是几?茫茫大海去捞针,而这位同学,他马上想到两个数的和是多少,在茫茫大海中一下子把包围圈缩小啦,因此我们写出了1、2、3、4,你们又在喊要淘汰11和33,包围圈也就更小了,一步步缩小包围圈,然后顺藤摸瓜,这样一组组的两个数都被脱颖而出,如果这个同学她说加起来也是22啊,错在哪里啊? 生7:15不是质数

师:所以她顾了和是22却忽视了一个重要的条件15不是质数,顾此失彼,因此我们在学习数学的时候首先用缩小包围圈的方法找到题眼然后还得顾这,还得顾那,同学们下课的铃声拉响了有收获吗?有收获啊,好啦同学们感谢你们,那么今天有些同学把概念忘掉了没关系回去以后在复习复习,好不好? 生:好

师:我建议全体起立面向着我们这边的老师一起说一声老师们辛苦了 生:老师们辛苦啦

下载四年级数学第九单元倍数和因数教案5篇word格式文档
下载四年级数学第九单元倍数和因数教案5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    因数和倍数教案

    因数和倍数》的整理与复习教学设计 刘福娟 教学目标: 1、 通过整理和复习,使学生对因数与倍数的相关概念的理解更系统、牢固。 2、 进一步弄清各概念之间的联系与区别。 3、......

    因数和倍数教案

    因数和倍数 一、教学目标: 1、通过整理复习,让学生进一步掌握整除、因数、倍数、质数、合数、偶数、奇数、分解质因数、公因数、最大公因数、互质数、公倍数、最小公倍数等概......

    因数和倍数教案

    五年级数学下册第二单元第一课时因数和倍数教案 教学内容: 新人教版五年级下册p5-8 教学目标: 知识与技能 1、学生掌握找一个数的因数,倍数的方法; 2、学生能了解一个数的因数......

    倍数和因数教案

    倍数与因数教学目标: 1、理解和掌握因数和倍数的概念,认识他们之间的联系和区别。 2、学会求一个数的因数或倍数的方法,能够熟练的求出一个数的因数或倍数。 3、知道一个数的......

    倍数和因数教案

    倍数和因数 教学内容: 义务教育课程标准实验教科书(苏教版)数学四年级下册第70—72页 教学目标: 1、使学生结合整数乘、除法运算初步认识理解倍数和因数的意义,探索求一个数的倍......

    因数和倍数教案

    《因数和倍数》教学设计 教学内容:青岛版小学数学五年制三年级下册第109 页。 教学目标: 1、在具体情境中,借助乘法算式认识因数和倍数。 4.在已有知识和经验的基础上,自主探索......

    因数和倍数教案

    因数和倍数 教学目标: 1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。 2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证......

    因数和倍数

    成功之举: 创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。......