第一篇:通用变频器基础及其应用
电工技术教案
电工技术教案
特点:在变频调速过程中,使电机供电电源电压U1与频率f1的比值保持恒定。采用恒V/f控制方式的变频电路成本较低,但控制精度较差。
I(RjX)E U111114.44KfN E1121U1E14.44K1f2N1
变频f1的同时应适当改变U1。在改变频率f1的同时保持压频比恒定也就是保持主磁通量Φ基本恒定,通常这种调速又称恒磁通调速。
1、增加f1而U1不变,主磁通Φ减小,电机欠励磁,电磁转矩T将减小,磁路利用不充分,效率低;
2、减小f1而U1不变,主磁通Φ将增大,电机过励磁,励磁电流增加且有可能畸变, 恒V/f控制存在问题。
1、在增加电源频率时,V/f控制要求电压U1也增加,可是因为电机绕组绝缘条件所限,定子电压U1不得高于额定电压U1N,所以,变频调速中当频率高于基频(即额定供电频率f1N,又称基本频率或基底频率)时,不允许恒磁通调速,也就是说不允许使用恒V/f方式。
2、当电源频率f1调至较小时,电机低速运行,感生电势E1也较小,电机定子绕组压降(R1+jX1)相对E1较大,不可以忽略,于是再保持U1/f1恒定,已不能使主磁通Φ恒定。
保持磁通恒定在实际中的意义
从电动机电磁转矩的表达式T=KTΦI2cosφ2(KT为电机结构系数;Φ为主磁通;I2
电工技术教案
E1TR2f2Kf2Rf2(2L)2 f1212222(4)转差频率控制
TKT(E14.44K2f2N2R2R2f22)22KEf112224.44K1f1N1R2(2f2L2)R2f2(2f2L2)由上式,在进行E1/f1控制的基础上,对电动机转子回路的频率f2进行控制,达到控制电机输出转矩的目的,而f2又与转差成正比,因此又叫转差频率,这就是转差频率控制的含义及出发点。
(5)矢量控制方式
矢量控制方式的基本思想是认为异步电动机和直流电动机具有相同的转矩产生机理,即电动机的转矩为磁场和与其相垂直的电流矢量的乘积。 异步电动机空载时,定子励磁电流很小,如果给异步电动机施加负载,则其定子励磁电流将会增加,而且负载所需转矩越大,励磁电流就越大。这是因为电机空载时励磁电流主要用于产生磁通,有载时励磁电流既要维持主磁通基本恒定,同时又要提供产生转矩所需的能量。
将定子电流分解为产生磁场的电流分量和产生转矩的电流分量之和。通过控制电动机定子电流的大小和相位,也就是定子电流相量,就可以分别对电动机的励磁电流和转矩电流进行控制,从而达到控制电动机转矩的目的。 矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度检测器矢量控制方式。
§12.2 通用变频器的基本结构和主要功能
变频器分为交—交型和交—直—交型两种形式。
交—交型变频器可以将工频交流电直接变换成频率、电压均可调节的交流电,又称直接式变频方式。
交—直—交变频器则是先把工频交流电通过整流器变成直流电,然后再经过逆变电路把直流电变换成频率、电压均可调节的交流电,又称为间接式
电工技术教案
控制回路端子(远程控制端子)的接线方式
§12.4 VF0变频器变频控制示例
示例1 初次使用的变频器,其功能设置均为初始出厂设置,使用操作板控制实现:正转运行,25Hz输出频率;一段时间后,再变为反转运行,输出频率为50Hz。
示例2 变频器“选择运行指令”功能代码P08的参数设置为“1”,其他功能代码保持出厂设置,频率设定旋钮已处于“MAX”位置。由操作板控制:反转运行,25Hz输出频率;一段时间后变为正转运行,输出频率25Hz。 示例3 采用数字式设定方式设定输出频率,代码P09=1,用操作板进行运行/停止控制,旋转方向设定模式代码P08=0时,控制变频系统先按50Hz正转起动运行,一段时间之后不停机直接变为50Hz反转运行。 示例4 利用操作板在“功能设定模式”下改变功能代码的参数,将变频器最大输出频率设定为60Hz。
示例5 将VF0变频器与可编程序控制器结合,用来模拟一个平面运动小车变频调速的基本控制过程。
第二篇:变频器基础原理知识
变频器基础原理知识
本帖被 mym 执行置顶操作(2008-08-21)
1.变频器基础
1: VVVF 是 Variable Voltage and Variable Frequency 的缩写,意为改变电压和改变频率,也就是人们所说的变压变频。
2: CVCF 是 Constant Voltage and Constant Frequency 的缩写,意为恒电压、恒频率,也就是人们所说的恒压恒频。
我们使用的电源分为交流电源和直流电源,一般的直流电源大多是由交流电源通过变压器变压,整流滤波后得到的。交流电源在人们使用电源中占总使用电源的95%左右。
无论是用于家庭还是用于工厂,单相交流电源和三相交流电源,其电压和频率均按各国的规定有一定的标准,如我国大陆规定,直接用户单相交流电为220V,三相交流电线电压为380V,频率为50Hz,其它国家的电源电压和频率可能于我国的电压和频率不同,如有单相100V/60Hz,三相200V/60Hz等等,标准的电压和频率的交流供电电源叫工频交流电。
通常,把电压和频率固定不变的工频交流电变换为电压或频率可变的交流电的装置称作“变频器”。
为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。
把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。
一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。对于逆变为频率可调、电压可调的逆变器我们称为变频器。
变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。
对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。一般变频电源是变频器价格的15--20倍。
由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。
变频器也可用于家电产品。使用变频器的家电产品中,不仅有电机(例如空调等),还有荧光灯等产品。
用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。
变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。
2.电机的旋转速度为什么能够自由地改变?
n = 60f/p(1-s)n: 电机的转速 f: 电源频率 p: 电机磁极对数 s:电机的转差率
电机的转速 = 60(秒)*频率(Hz)/电机的磁极对数-电机的转差率
电机旋转速度单位:每分钟旋转次数,rpm/min也可表示为rpm
电机的旋转速度同频率成比例 同步电机的转差矩为0,同步电机的转速 = 60(秒)*频率(Hz)/电机的磁极对数
异步的转速比同步电机的转速低。
例如:4极三相步电机 60Hz时 低于 1,800 [r/min] 4极三相异步电机 50Hz时低于 1,500 [r/min] 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。
感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极对数和频率。
由电机的工作原理决定电机的磁极对数是固定不变的。由于电机的磁极对数1个磁极对数等于2极,电机的极数不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适和改变该值来调整电机的速度。
另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。
因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。
改变频率和电压是最优的电机控制方法
如果仅改变频率,电机将被烧坏。特别是当频率降低时,该问题就非常突出。为了防止电机烧毁事故的发生,变频器在改变频率的同时必须要同时改变电压。
例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从400V改变到约200V。
如果要正确的使用变频器, 必须认真地考虑散热的问题。变频器的故障率随温度升高而成指数的上升。使用寿命随温度升高而成指数的下降。环境温度升高10度,变频器使用寿命减半。因此,我们要重视散热问题啊!
在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响
通常,变频器安装在控制柜中。我们要了解一台变频器的发热量大概是多少.可以用以下公式估算:
发热量的近似值= 变频器容量(KW)×55 [W] 在这里, 如果变频器容量是以恒转矩负载为准的(过流能力150% * 60s)如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。电抗器安装在变频器侧面或测上方比较好。
这时可以用估算: 变频器容量(KW)×60 [W] 因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品.注意: 如果有制动电阻的话,因为制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开,如装在柜子上面或旁边等。
那么, 怎样采能降低控制柜内的发热量呢? 当变频器安装在控制机柜中时,要考虑变频器发热值的问题。
根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。
如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70%的发热量释放到控制机柜的外面。由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。
还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。这样效果也很好。
变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的!
关于冷却风扇
一般功率稍微大一点的变频器,都带有冷却风扇。同时,也建议在控制柜上出风口安装冷却风扇。进风口要加滤网以防止灰尘进入控制柜。注意控制柜和变频器上的风扇都是要的,不能谁替代谁。其他关于散热的问题
1、在海拔高于1000m的地方,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。理论上变频器也应考虑降容,1000m每-5%。但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大,所以也要看具体应用。比方说在1500m的地方,但是周期性负载,如电梯,就不必要降容。
2、开关频率:变频器的发热主要来自于IGBT,IGBT的发热有集中在开和关的瞬间。因此开关频率高时自然变频器的发热量就变大了。有的厂家宣称降低开关频率可以扩容,就是这个道理。
矢量控制是怎样使电机具有大的转矩的?
1: 转矩提升
此功能增加变频器的输出电压,以使电机的输出转矩和电压的平方成正比的关系增加,从而改善电机的输出转矩。 改善电机低速输出转矩不足的技术
使用“矢量控制”,可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。
对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做“转矩提升”。
转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。
矢量控制“”把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。 矢量控制""可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。
变频器制动的情况
1: 制动的概念
指电能从电机侧流到变频器侧(或供电电源侧),这时电机的转速高于同步转速。
负载的能量分为动能和势能.动能(由速度和重量确定其大小)随着物体的运动而累积。当动能减为零时,该事物就处在停止状态。
机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。
对于变频器,如果输出频率降低,电机转速将跟随频率同样降低。这时会产生制动过程.由制动产生的功率将返回到变频器侧。这些功率可以用电阻发热消耗。
在用于提升类负载,在下降时, 能量(势能)也要返回到变频器(或电源)侧,进行制动。 这种操作方法被称作“再生制动”,而该方法可应用于变频器制动。
在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧的方法叫做“功率返回再生方法”。在实际中,这种应用需要“能量回馈单元”选件。
2:怎样提高制动能力?
为了用散热来消耗再生功率,需要在变频器侧安装制动电阻。
为了改善制动能力,不能期望靠增加变频器的容量来解决问题。请选用“制动电阻”、“制动单元”或“功率再生变换器”等选件来改善变频器的制动容量。
3.当电机的旋转速度改变时,其输出转矩会怎样?
变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动时的起动转矩和最大转矩。
我们经常听到下面的说法:“电机在工频电源供电时,电机的起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些”。如果用大的电压和频率起动电机,例如使用工频电网直接供电,就会产生一个大的起动冲击(大的起动电流)。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机产生的转矩要小于工频电网供电的转矩值。所以变频器驱动的电机起动电流要小些。
通常,电机产生的转矩要随频率的减小(速度降低)而减些减小的实际数据在有的变频器手册中会给出说明。
通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。
当变频器调速到大于额定频率20%时,电机的输出转矩将降低
通常的电机是按照额定频率电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速.(T=Te, P<=Pe)变频器输出频率大于额定频率时(如我国的电机大于50Hz),电机产生的转矩要以和频率成反比的线性关系下降。
当电机以大于额定频率20%速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。
举例,额定频率为50Hz的电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。因此在额定频率之上的调速称为恒功率调速.(P=Ue*Ie)
第三篇:学习变频器应用教程心得体会
学习变频器应用教程心得体会
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动,变频调速,提高运转精度,改变功率因数,过流、过压、过载保护等功能。
变频器的主电路大体上可分为两类:电压型和电流型。电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路
变频器主要有以下特点。
功率因数补偿节能。无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,使用变频调速装置后,由于变频器内部滤波电容的作用,从而减少了无功损耗,增加了电网的有功功率。
变频节能。变频器节能主要表现在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。
电动机使用变频器的作用就是为了调速,并降低启动电流。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。把直流电(DC)变换为交流电(AC)的过程叫逆变,装置为逆变器。一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。对于逆变为频率可调、电压可调的逆变器我们称为变频器。变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。
变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯。变频器在工频下运行,具有节电功能。但是他的前提条件是:
第一、大功率并且为风机/泵类负载;
第二、装置本身具有节电功能(软件支持);第三、长期连续运行。
这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。如果不加前提条件的说变频器工频运行节能,就是夸大或是商业炒作。
软启动节能。电机硬启动对电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。
从理论上讲,变频器可以用在所有带有电动机的机械设备中,电动机在启动时,电流会比额定高5-6倍的,不但会影响电机的使用寿命而且消耗较多的电量.系统在设计时在电机选型上会留有一定的余量,电机的速度是固定不变,但在实际使用过程中,有时要以较低或者较高的速度运行,因此进行变频改造是非常有必要的。变频器可实现电机软启动、补偿功率因素、通过改变设备输入电压频率达到节能调速的目的,而且能给设备提供过流、过压、过载等保护功能。
随着变频高速技术的发展与综合利用,使变频器行业在煤炭、钢铁、水泥、电力等现代化以及医学、通讯、交通、运输、电力、电子、环保等领域得到空前的发展和应用,几乎国民经济各行各业都与变频器密不可分。如今节能减排是各行各业发展的关键,此时各种节能环保产品的应用更加广泛,前景更加明朗。受益于节能减排、绿色环保等战略的拉动,变频器作为变频调速领域内的重要设备,其市场潜力非常巨大
第四篇:变频器在提升机上的应用
河南远航工控设备有限公司 竭诚为您服务 矿井提升机的变频调速改造
一、概况
矿井提升机是煤矿,有色金属矿生产过程中的重要设备。提升机的安全、可靠运行,直接关系到企业的生产状况和经济效益。某煤矿井下采煤,采好的煤通过斜井用提升机将煤车拖到地面上来。煤车厢与火车的运货车厢类似,只不过高度和体积小一些。在井口有一绞车提升机,由电机经减速器带动卷筒旋转,钢丝绳在卷筒上缠绕数周,其两端分别挂上一列煤车车厢,在电机的驱动下将装满煤的一列车从斜井拖上来,同时把一列空车从斜井放下去,空车起着平衡负载的作用,任何时候总有一列重车上行,不会出现空行程,电机总是处于电动状态。这种拖动系统要求电机频繁的正、反转起动,减速制动,而且电机的转速一定规律变化。斜井提升机的机械结构示意如图1所示。斜井提升机的动力由绕线式电机提供,采用转子串电阻调速。提升机的基本参数是:电机功率55kW,卷筒直径1200mm,减速器减速比24︰1,最高运行速度2.5m/s,钢丝绳长度为120m。
目前,大多数中、小型矿井采用斜井绞车提升,传统斜井提升机普遍采用交流绕线式电机串电阻调速系统,电阻的投切用继电器—交流接触器控制。这种控制系统由于调速过程中交流接触器动作频繁,设备运行的时间较长,交流接触器主触头易氧化,引发设备故障。另外,提升机在减速和爬行阶段的速度控制性能较差,经常会造成停车位置不准确。提升机频繁的起动﹑调速和制动,在转子外电路所串电阻的上产生相当大的功耗。这种交流绕线式电机串电阻调速系统属于有级调速,调速的平滑性差;低速时机械特性较软,静差率较大;电阻上消耗的转差功率大,节能较差;起动过程和调速换挡过程中电流冲击大;中高速运行震动大,安全性较差。
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务
二、改造方案
为克服传统交流绕线式电机串电阻调速系统的缺点,采用变频调速技术改造提升机,可以实现全频率(0~50Hz)范围内的恒转矩控制。对再生能量的处理,可采用价格低廉的能耗制动方案或节能更加显著的回馈制动方案。为安全性考虑,液压机械制动需要保留,并在设计过程中对液压机械制动和变频器的制动加以整合。矿井提升机变频调速方案如图2所示:
图2 矿井提升机变频调速方案
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务 考虑到绕线式电动机比鼠笼式电动机的力矩大,且过载能力强,所以仍用原来的4极160kW绕线式电机,在用变频器驱动时需将转子三根引出线短接。提升机在运行过程中,井下和井口必须用信号进行联络,信号未经确认,提升机不能运行。为显示运行时车厢的位置,使用E6C3-CS5C 40P旋转编码器,即电机旋转1圈旋转编码器产生40个脉冲,这样每两个脉冲对应车厢走过的距离为1200。则与实际距离的误差值为4-3.9=0.027mm,卷筒运行一圈误差为0.027,已知钢丝绳长度为120m,如果两个脉冲对应车厢走过的距离用近似值3.9mm计算,120m全程误差为120000。再考虑到实际检测过程中有一个脉冲的误差,则最大的误差在821mm~829mm之间,对于数十米长的车厢来说误差范围不到1米,精度足够。因此,用计数器实时统计旋转编码器发出的脉冲个数,则可计算出车厢的位置并用显示器显示。另外一个问题是计数过程中有无累计误差存在?实际检测时,在一个提升过程开始前,首先将计数器复位,第一个重车厢经过某个位置时,打开计数器计数,车厢在斜井中的位置以此点为基准计算,没有累计误差。在操作台上,用SWP-AC系列智能型交流电压/电流数字仪表显示交流电压和电机工作电流,用智能型数字仪表显示提升次数和车厢的位置。
三、方案实施
斜井提升负载是典型的摩檫性负载,即恒转矩特性负载。重车上行时,电机的电磁转矩必须克服负载阻转矩,起动时还要克服一定的静摩檫力矩,电机处于电动工作状态,且工作于第一象限。在重车减速时,虽然重车在斜井面上有一向下的分力,但重车的减速时间较短,电机仍会处于再生状态,工作于第二象限。当另一列重车上行时,电机处于反向电动状态,工作在第三象限和第四象限。另外,有占总运行时间10%的时候单独运送工具或器材到井下时,电机纯粹处于第二或第四象限,此时电机长时间处于再生发电状态,需要进行有效的制动。用能耗制动方式必将消耗大量的电能;用回馈制动方式,可节省这部分电能。但是,回馈制动单元的价格较高,考虑到单独运送工具或器材到井下仅占总运行时间的10%,为此选用价格低廉的能耗制动单元加能耗电阻的制动方案。
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务 提升机的负载特性为恒转矩位能负载,起动力矩较大,选用变频器时适当地留有余量,因此,宝米勒MC200G1850T4 185KW变频器。由于提升机电机绝大部分时间都处于电动状态,仅在少数时间有再生能量产生,变频器接入一制动单元和制动电阻,就可以满足重车下行时的再生制动,实现平稳的下行。井口还有一个液压机械制动器,类似电磁抱闸,此制动器用于重车静止时的制动,特别是重车停在斜井的斜坡上,必须有液压机械制动器制动。液压机械制动器受PLC和变频器共同控制,机械制动是否制动受变频器频率到达端口的控制,起动时当变频器的输出频率达到设定值,例如0.2Hz,变频器KB、KA端口输出信号,表示电机转矩已足够大,打开液压机械制动器,重车可上行;减速过程中,当变频器的频率下降到0.2Hz时,表示电机转矩已较小,液压机械制动器制动停车。紧急情况时,按下紧急停车按钮,变频器能耗制动和液压机械制动器同时起作用,使提升机在尽量短的时间内停车。
提升机传统的操作方式为,操作工人坐在煤矿井口操作台前,手握操纵杆控制电机正﹑反转个三挡速度。为适应操作工人这种操作方式,变频器采用多段速度设置,X1、X2设为正反转,X3、X4、X5可设挡速度。变频调速原理图如图3所示:
变频器的设置详请参见MC200T系列变频器用户手册。
四、提升机工作过程
提升机经过变频调速改造后,系统的工作过程阿盛大的变化。操纵杆控制电机无极调速。不管电机正转还是反转,都是从矿井中将煤拖到地面上来,电机工作在正转和反转电动状态,只有在满载拖车快接近井口时,需要减速并制动,提升机工作时序图如图4所示:
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务
图4 提升机工作时序图
图4中,提升机无论正转、反转其工作过程是相同的,都有起动、加速、中速运行、稳定运行、减速、低速运行、制动停车等七个阶段。每提升一次运行的时间,与系统的运行速度,加速度及斜井的深度有关,各段加速度的大小,根据工艺情况确定,运行的时间由操作工人根据现场的状况自定。图中各个阶段的工作情况说明如下:
(1)第一阶段0~t1:串车车厢在井底工作面装满煤后,发一个联络信号给井口提升机操作工人,操作工人在回复一个信号到井底,然后开机提升。重车从井底开始上行,空车同时在井口车场位置开始下行。
(2)第二阶段 t1~t2:重车起动后,加速到变频器的频率为f2速度运行,中速运行的时间较短,只是一过渡段,加速时间内设备如果没有问题,立即再加速到正常运行速度。
(3)第三阶段 t2~t3:再加速段。
(4)第四阶段 t3~t4:重车以变频器频率为f3的最大速度稳定运行,一般,这段过程最长。(5)第五阶段 t4~t5:操作工人看到重车快到井口时立即减速,如减速时间设置较短时,变频器制动单元和制动电阻起作用,不致因减速过快跳闸。
(6)第六阶段 t5~t6:重车减速到低速以变频器频率为f1速度低速爬行,便于在规定的位置停车。
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务(7)第七阶段 t6~t7:快到停车位置时,变频器立即停车,重车减速到零,操作工人发一个联络信号到井下,整个提升过程结束。
以上为人工操作程序,也可按PLC自动操作程序工作。图中加速和减速段的时间均在变频器上设置。
五、结语
绕线式电机转子串电阻调速,电阻上消耗大量的转差功率,速度越低,消耗的转差功率越大。使用变频调速,是一种不耗能的高效的调速方式。提升机绝大部分时间都处在电动状态,节能十分显著,经测算节能30%以上、取得了很好的经济效益。另外,提升机变频调速后,系统运行的稳定性和安全性得到大大的提高,减少了运行故障和停工工时,节省了人力和物力,提高了运煤能力,间接的经济效益也很可观。
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:***
第五篇:变频器DRS2000系列在糖厂的应用
德瑞斯变频器DRS2000系列在糖厂的应用
(应用行业:其他 阅读次数:8)【字体:大 中 小】
一、概况
在我国的制糖行业中,变频器已广泛地应用在风机、水泵等变转矩负载,取得了显著的节能效果。而理平机、蔗刀机、压榨机作为糖厂重要的生产设备,一直采用传统的控制方式定速运行。其实从生产工艺和节能两方面来分析对理平机、蔗刀机、压榨机进行技术改造不但行之有效而且能大幅提高企业效益。
二、生产工艺分析
众所周知,压榨抽出率是影响糖产量的主要因素之一。若压榨抽出率提高1%,则总收回率提高0.9%左右。影响抽出率的因素很多,主要有以下几方面原因:
1. 蔗料的破碎度及形态的好坏直接影响第一台榨机抽出的效率。甘蔗破碎度好,蔗汁易于压出,效果提高。
2. 蔗渣中的纤维成分受压后离开榨机出口时又膨胀,此时被压榨的纤维随着自身的膨胀在出口处会吸去一部分蔗汁,同时受到机器本身性能的影响,甘蔗中的糖份不可能全部榨出,这就形成了蔗渣中的糖份损失。
3.蔗渣水分的影响。
4. 保证从理平机、蔗刀机输送过来的蔗层厚度均匀是提高抽出率的重要因素。如果蔗层过厚,造成压榨不彻底,使蔗渣造成浪费,而且影响机器的运行;如果蔗层过薄,压不干蔗层,蔗渣水分过高,影响抽出率。
5.榨辊的磨损随着机器的运行越来越严重,导致榨辊间的间隙扩大,压榨不彻底,使抽出率下降。
6.电网的供电质量是生产可靠的保证,理平机、蔗刀机、压榨机的电机功率大,瞬间负载大,电网的供电质量直接影响机器的可靠性和连续性。
综上所述,由于压榨机转速固定,从理平机、蔗刀机输送过来的蔗层厚度经常会达不到要求,这样会使蔗汁的平均抽出率下降。抽出率越低说明蔗汁流失越大,从而导致产量变低。如果能对压榨机进行转速调节,当蔗层厚度不够时通过降低压榨机电动机转速的来使蔗层达到正常厚度后再进行压榨,这样压榨会比较充分,平均抽出率将可以有效提高,同时由于转速的降低,从而达到节能省电的目的。德瑞斯DRS2000变频器正是解决此问题的最佳装置。
三、控制方案
本控制方案具有手动/自动功能。
全自动控制:根据对生产工艺的分析,为了提高抽出率,保证蔗层的厚度是非常重要的,即保证电机负载的均匀;从电机的输出电信号来讲,也就是说要使电机的电流波动范围保持在一个较小的范围内。可以通过增加电流变送器检测电机的实际电流,作为变频器的反馈控制信号,变频器根据反馈信号控制电机的实时转速。如果蔗层过厚,电机的电流变大,变频器将把电机的转速按一定比例提升,使蔗层尽快被压榨;如果蔗层过薄,电机的电流变小,变频器将按一定比例把电机的转速降低,以便尽可能将蔗层压榨彻底。这样使电机电流始终在小范围内波动,从而保证蔗层厚度均匀,有助于提高抽出率。
手动控制:当用户需要手动控制时,可通过自动/手动转换开关切换,速度根据用户需要进行调节。
变频节能柜示意图
四、德瑞斯变频器节能柜的特点和优势
1.高可靠性。选自欧美日的高端器件,确保在高温高湿各种恶劣情况下万无一失。
2.本地化服务,24小时到位,各种备件齐全。
3.矢量控制,确保更加节能、控制精度更高。
4.变频器对电机实行软启动和软停止,避免了大功率电机启动时由于动电流大对电网造成的瞬时压降,同时也避免了对,的冲击,延长了电机的寿命。
5.由于变频器中间直流回路有大电容作为储能元件,可以提高网侧的功率因数,提高电网质量。
6.变频器具有完善的保护功能,包括过流、过压、欠压、缺相、过载、过热等,保证了生产的可靠性和设备的稳定运行。
7.提高了蔗汁的抽出率,亦即提高了每个榨季的产糖量,使企业的经济效益大幅提高。
8.工频/变频切换功能。德瑞斯变频柜具有完善的工频/变频切换功 能,特殊情况下,万一变频器发生故障,可以切换到工频运行,不影响正常工作。
9.节省电能,降低能耗,节约生产成本。
10.德瑞斯变频柜一旦安装调试完成,上电后它就会自动运行,变频柜的操作方式与改造前相同,操作工不必重新培训。
11.本系统具有手动/自动切换功能。
四、改造后的效益分析
改造单位:山东XX糖业有限公司
1.节电:按保守33%计算:
每榨季(100天)节电:
1300KW/H×30%×24小时×100天×0.7元=65.5万
2.抽出率提高:根据测算,平均抽出率可提高0.3%以上,现在保守估计抽出率提高0.15%,按年榨15万吨蔗,糖份12.5%,煮收86%计算:每个榨季多产糖:
15万吨 x 12.5% x 0.15% x 86%=24.2吨;0按4000元/吨糖计:
24.2吨 x 4000元/吨= 9.68万元;即产量提高使企业每个榨季多创收9.68万元。
3. 投资回报期:整套系统在一个榨季即收回成本。
德瑞斯机构将为您提供最的佳电机解决方案!