kk第六章平面直角坐标系教案[本站推荐]

时间:2019-05-15 07:32:42下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《kk第六章平面直角坐标系教案[本站推荐]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《kk第六章平面直角坐标系教案[本站推荐]》。

第一篇:kk第六章平面直角坐标系教案[本站推荐]

kk第六章平面直角坐标系教案

第六章

平面直角坐标系

6.1.1有序数对

【教学目标】

1、通过丰富的实例认识有序数对,感受它在确定点的位置中的作用;

2、了解有序数对的概念,学会用有序数对表示点的位置;

3、通过用有序数对来表示实际问题的情境,经历建立数学模型解决实际问题的过程;

4、体验有序数对在现实生活中应用的广泛性. 【重点难点】

重点:理解有序数对的意义和作用 难点:用有序数对表示点的位置

教学过程

一、创设问题情境,引入新课

展示书P38画图,并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?

原来,广场上有许多同学,每个人都根据图案设计要求,按排序列上在一个确定的位置,随着指挥员的信号,他们举起不同颜色的花束(如第10排第三产业5列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。

二、师生共同参于教学活动 由学生回答以下问题:

(1)(影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。

(2)根据这个错误在书上所处的“几行”和“几列”来确定它的位置。对于下面这个根据教师平面图写的通知,你明白它的意思吗? “今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。”

76543211243纵排56

横排学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置.思考:(1)怎样确定学生的位置?(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。(3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。

让学生讨论、交流后得到以下共识:

(1)可用排数和列数两个不同的数来确定位置。(2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。

(3)让学生到黑板贴出的表格上指出讨论同学的位置。

教师指出:上面的问题都是通过像“9排7号”第1列第5排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

活动:举出用有序数对来表示一个位置的实例,加深对有序数对的理解。例如:人们常用经纬度来表示地球上的地点。

鼓励学生多举例,同时强调有序数对来表示位置是“有序”的。

三、巩固练习

练习1:如下图所示是甲乙两位同学五子棋的对弈图,现轮到黑棋下。黑棋在哪个位置上落子,才能在最短时间内获胜?请4位同学上台表演,2位对对弈,但只需说出落子的位置,另2位分别为这2个同学走棋。87 3 2 1

0123456789

练习2.“怪兽吃豆豆”是一种计算机游戏,图(1)中标志表示“怪兽”先后经过的几个位置,如果用(1,2)表示“兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示来图中“怪兽”经过的其他几个位置吗?

******2图(1)

练习3.如图(2),该图是用黑白两种颜色的若干棋子在方格纸上摆出的两幅图案,如果用(0,0)表示A点位置,用(2,1)表示B点的位置,那么图中五枚黑棋的位置如何表示?

BA

四、联系生活,建立概念

用两个数来确定某个点的位置,这种办法在我们的生活中是常用的.

1、教师用教材第39页找印刷错误的例子来说明,然后提出要求:你能举出一些这样的实际例子吗?

(还可以举:学校要开家长会,你如何让家长准确地找到你的座位?)

2、在学生充分举例的基础上,教师提出“有序数对”的概念,并记作(a,b).

有序:是指(a, b)与(b, a)是两个不同的数对;

数对:是指必须由两个数才能确定.

图(2)

再让学生举例说明(a,b)与(b, a)的不同含义

设计意图:概念是建立在现实生活情境中,并不是枯燥的,无味的.这样的教学设计体现新的教学理念.让学生自己联系实际来理解“有序”的含义.

五、归纳小结

1、在现实生活中,为了确定点的位置,常常要用两个数来表示.

2、有序数对的含义,特别要注意“有序”两字.

3、用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.阅读教材第47页的“用经纬度表示地理位置”一文.

4、你有没有见过用其他的方式来表示位置的?

如有的电影院分楼上楼下两层,这时就要在电影票上写明是楼上几排几号了;又如在一些大型会场,往往把场地分为A、B、C等区,这时就要在座位票上写明是哪个区、几排几号了.

设计意图:教材上的《阅读与思考》也可以根据不同的情况放在课外解决.用其他的方式来表示点的位置更应根据学生的情况进行处理,这里只是提供一种参考.

六、布置作业

6.1.2平面直角坐标系

【教学目标】

1、认识平面直角坐标系,了解点与坐标的对应关系;

2、在给定的直角坐标系中,能由点的位置写出点的坐标(坐标都为整数);

3、渗透数形结合的思想;

4、通过介绍数学家的故事,渗透理想和情感的教育. 【重点难点】

重点:认识平面直角坐标系。

难点:根据点的位置写出点的坐标。【教学准备】

教师:收集有关法国数学家笛卡儿的有关资料(也可以将有关的直角坐标系制作成课件)。【教学过程】

一、情境导入

1、在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置如图1所示,你能根据图示确切地描述他们三个人的位置关系吗?

在学生进行叙述后,教师可以抓住以什么为“基准”,并借助于数轴来处理这个问题,从而进入课题. 设计意图:学生可以以其中的一人为基准进行描述,其目的是为数轴上的点的坐标的确定做准备。

2、如果我们画一条数轴,取小红的位置为原点,取向右的方向为正方向,取两盏路灯间的距离为一个单位长度,那么小华的位置(A)就可以用-3来表示,小明的位置(B)就可以用6来表示(如图2).此时,我们说点A在数轴上的坐标是-3,点B在数轴上的坐标是6.这样数轴上的点的位置与坐标之间就建立了对应关系.

设计意图:将数轴上点的坐标的概念学习置于具体的问题情境中。

问题:(1)在上述情境中,如果小兵位于小明左侧的第二盏路灯处,你能说出小兵在数轴上对应的点的坐标吗?

(2)如果小兵站在一个长方形的操场上,你用什么方法可以确定小兵的位置?(3)如果小兵站在一个大操场上,你用什么方法可以确定小兵的位置?

设计意图:三个问题的安排有一定的层次性,为下一步引出平面直角坐标系作铺垫。

二、探究新知 方法1:(有序数对定位)

(1)分给每位学生一张座位票,其中个别学生拿到的票只有排号或序号,有两位学生的座位号是一样的;

(2)不规定班级位置中的排号或序号,让学生自己找位置,在这过程中产生问题:哪一排是第一排,哪一个位置是第一号呢?(3)让学生规定排法:

(4)然后老师选取其中一种排法,如第一种排法,给出多媒体画面,让学生根据画面上规定的排法找位置。

(5)大部分同学能找到自己的位置,但有个别同学找不到自己的位置。让找不到座位的同学自己说说原因,其他同学帮他决。号相同。(让学生体会平面上确定位置需2个数据)

(6)讨论原因:原来是票弄错,只有排号或序号;有两张票的座位(7)结合刚才寻找座位的过程,确定自己的座位需几个数据?哪两个数据?(8)如果将你的座位3排2号简记为(3, 2),那么2排3号如何表示?(5, 6)表示什么含义?(2,7)的位置在哪里?你能用这种方法表示出自己的座位吗?

(9)在座位票上,“3排2号”与“2排3号”中的“3”的含义相同吗?有什么不同?这说明了什么?(10)一对数如(5, 2)所表示的座位有几个?一个位置用几个数对来表示?这说明了什么?

方法2:

1、平面直角坐标系的引入

对于上述第(2)个问题,我们可以用图3来表示: 这时,小兵(P)的位置就可以用两个数来表示.如点P离AB边1 cm,离AD边1.5 cm,如果1 cm代表20 m,那么小兵离AB边20 m,离AD边30 m.对于上述第(3)个问题,我们是否也可以借助于这样的一些线来确定小兵的位置呢?我们在小兵所在的平面内画上一些方格线(如图4),利用上节课所学的知识,就可以解决这个问题了.(然后由学生回答这个问题的解决过程)

受上述方法的启发,为了确定平面内点的位置,我们可以画一些纵横交错的直线,便于标记每一条直线的顺序,我们又可以以其中的两条为基准(如图5).最早采用这种方法的是法国数学家笛卡儿,然后向学生简要介绍笛卡儿的有关故事.

2、平面直角坐标系的概念

教师边在黑板上画图(见教材第47页图6.1-4),边介绍平面直角坐标系、x轴(或横轴),y轴(或纵轴)、原点等的概念.

注意:在一般情况下,两条坐标轴所取的单位长度是一致的.

3、点的坐标,有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.如下图,由点A分别向x轴和y轴作垂线,垂足M在x上的坐标是3,垂足N在y轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.

注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开。尝试:请在图6中写出点B、C、D的坐标。

设计说明:这一步是教学中的难点,教师一方面应强调点的坐标的书写规范,另一方面也必须安排一定的练习时间。

1、坐标轴上点的坐标

问题:(1)在图7的平面直角坐标系中,你能分别说出点A,B,C,D的坐标是什么吗?

(2)从上面的练习中你有什么发现?原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?

在这里教师必须再次强调点的横坐标写在前面,纵坐标写在后面的坐标写法。

设计意图:先学一般点的坐标,再来探究特殊点的坐标,这样安排符合学生的学习规律,也更容易使学生理解和掌握。

三、巩固练习

1、设每位同学都表示平面内的一个点,我们让中间位置的一位同学代表坐标原点,让他横、纵向的同学分别代表横轴、纵轴,分别取向右与向前为正方向,在教室内建立平面直角坐标系。

请同学们根据老师所说的坐标特点站起来。

(1)请横、纵坐标都为0的同学站起来。(2)请横坐标为0的同学站起来。(3)请纵坐标为0的同学站起来。

(4)请横、纵坐标之一为0的同学站起来。你发现了什么?(全班交流)明晰:横轴上的点纵坐标为0,纵轴上的点横坐标为0,原点坐标为(0,0)(5)请横纵坐标均为正的同学站起来。(6)请横纵坐标均为负的同学站起来。

(7)请横坐标为负、纵坐标为正的同学站起来。(8)请横坐标为正、纵坐标为负的同学站起来。你又发现了什么?(全班交流)明晰:四个象限中点的符号特征。请横坐标为2的同学站起来。请纵坐标为3的同学站起来。请横纵坐标相等的同学站起来。请横纵坐标互为相反数的同学站起来。你得出了什么结论?(全班交流)

2、教材第43页“练习”第1题。

四、总结归纳

1、平面直角坐标系的作用;

2、平面直角坐标系的有关概念;

3、已知一个点,如何确定这个点的坐标;

五、布置作业

6.2.1 用坐标表示地理位置

[教学目标] 1.知识技能

了解用平面直角坐标系来表示地理位置的意义及主要过程;培养学生解决实际问题的能力.

2.数学思考

通过学习如何用坐标表示地理位置,发展学生的空间观念. 3.解决问题

通过学习,学生能够用坐标系来描述地理位置. 4.情感态度

通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨的做事态度. [教学重点与难点] 1.重点:利用坐标表示地理位置.

2.难点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题. [教学过程]

一、创设问题情境

观察:教材第49页图6.2-1.

今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题.

二、师生互动,探究用坐标表示地理位置的方法

活动1:

根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置. 小刚家:出校门向东走150米,再向北走200米.

小强家:出校门向西走200米,再向北走350米,最后再向东走50米. 小敏家:出校门向南走100米,再向东走300米,最后向南走75米.

问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?

小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:10000(即图中1cm相当于实际中10000cm,即100米).

由学生画出平面直角坐标系,标出学校的位置,即(0,0). 引导学生一同完成示意图.

问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?

可以很容易地写出三位同学家的位置.

活动2:归纳利用平面直角绘制区域内一些地点分布情况平面图的过程. 经过学生讨论、交流,教师适当引导后得出结论:

(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称. 应注意的问题:

用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.

有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.(举例)

活动3:进一步理解如何用坐标表示地理位置. 展示问题:(教材第57页,公园平面图)

春天到了,初一(4)班组织同学到人民公园春游,张明、王丽、李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置.

张明:“我这里的坐标是(300,300)”. 王丽:“我这里的坐标是(200,300)”. 李华:“我在你们东北方向约420米处”.

实际上,他们所说的位置都是正确的.你知道张明和王丽同学是如何在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约420米处”吗?

用他们的方法,你能描述公园内其他景点的位置吗? 让学生分别画出直角坐标系,标出其他景点的位置.

三、小结

让学生归纳说出如何利用坐标表示地理位置.

四、课后作业

6.2.2 用坐标表示平移

[教学目标] 1.知识技能

掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程. 2.数学思考

发展学生的形象思维能力,和数形结合的意识. 3.解决问题

用坐标表示平移体现了平面直角坐标系在数学中的应用. 4.情感态度

培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化. [教学重点与难点] 1.重点:掌握坐标变化与图形平移的关系.

2.难点:利用坐标变化与图形平移的关系解决实际问题. [教学过程]

一、引言

上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.

二、新课

展示问题:教材第51页图.

(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?

(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?

(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化? 规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).

教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

例 如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?

(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?

引导学生动手操作,按要求画出图形后,解答此例题.

解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.

思考题:

由学生动手画图并解答. 归纳:

三、练习

教材第53页练习;习题6.2中第1、2、4题.

四、作业

第二篇:平面直角坐标系教案

平面直角坐标系

学习目标:

(1)理解平面直角坐标系的相关概念.(2)在给定的平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置. 学习重难点:

平面直角坐标系及相关概念.

一、复习引入

问题1

回顾已学内容,回答下列问题:

(1)什么是数轴?请画出一条数轴.

(2)如图,A,B,C三点所表示的数分别是什么?在数轴上描出“-3”表示的点.

问题2

在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对应点的位置.那么数轴上的点与坐标有怎样的关系?

二、设疑自探一:

类似于利用数轴确定直线上点的位置,结合上节课学习的有序数对,回答问题:如图,你能找到一种办法来确定平面内点B的位置吗?

(1)在图中,点B记为(1,2),类比点B,你能分别写出点A、C、D分别记为什么吗?(2)了解法国数学家笛卡儿 解疑合探一:

学生展示,其他同学补充,教师总结。

三、设疑自探二:

学生自学课本本节课内容后,回答下列问题:

⑴平面直角坐标系 在平面内画两条互相__、原点重合的数轴,组成____________.水平的数轴称为_____或_____,习惯上取______为正方向;竖直的数轴称为______或_____,取______为正方向;两坐标轴的交点为平面直角坐标系的_____.(2)如图写出点的坐标:A____;B____;C____;D____ 1

(3)坐标平面被两条坐标轴分成了哪几个部分,分别对应什么象限?(在上图中标注出象限)

注意:坐标轴上的点不属于_____.(4)如图甲,在平面直角坐标系中,点B,C,D的坐标分别是什么?

甲 乙

(5)如图乙,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原点的坐标是什么?

解疑合探二:

1、学生展示,其他同学补充,教师总结。

2、教师出示例题,学生展示:

例:画平面直角坐标系并描出下列各点: A(4,5),B(-2,3),C(-4,-1),D(3,0),K(0,-4).

四、质疑再探:

数轴上点与其坐标是什么关系?想一想平面上的点与坐标又是什么关系?

五、运用拓展:

一、选择题:

1.如图1所示,点A的坐标是()A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)2.如图1所示,横坐标和纵坐标都是负数的点是()A.A点 B.B点 C.C点 D.D点 3.如图1所示,坐标是(-2,2)的点是()A.点A B.点B C.点C D.点D 4.若点M的坐标是(a,b),且a>0,b<0,则点M在()A.第一象限;B.第二象限;C.第三象限;D.第四象限

二、填空题: 1.点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C(3, 2)在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F(2, 0)在______轴上.2.已知点M(a,b),当a>0,b>0时,M在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M在第四象限;当a<0,b<0时,M在第______象限.三、提高训练:: 1.如果点A的坐标为(a+1,-1-b),那么点A在第几象限?为什么? 2.已知点P(a,b)在第四象限,则点Q(b-1,-a)在第 象限。

第三篇:平面直角坐标系教案

以下是查字典数学网为您推荐的平面直角坐标系教案,希望本篇文章对您学习有所帮助。平面直角坐标系第一课时 6.1-1 有序数对

1、理解有序数对的概念,了解平面内的点与有序数对的关系。

2、利用有序数对确定物体的位置。重点:有序数对 难点:用有序数对表示具体位置

一、阅读教材P39~P40的内容,回答下面问题:

二、独立思考:(1)确定直线上某一点的位置一般需要_________个数据,确定平面内某一点的位置一般需要_________个数据。(2)某宾馆第四楼第1个房间的门牌为4-1,那么第五楼第10个房间门牌号应为_____。(3)七年级3班座位有7排8列,王燕同学的座位是第3排第4列,简记作(3,4),张波同学的座位简记作(5,2),则张波坐在第______排第______列。(4)如果影剧院的座位10排2号用(10,2)表示,那么(8,3)表示_______________。例1:怪兽吃豆豆是一种计算机游戏,如图所示的标志 表示怪兽先后经过的几个位置,如果用(1,2)表示怪兽按图中箭头所指的路线经过的第三个位置,那么请你用同样的方法表示图中怪兽经过的其他几个位置。例2:蚂蚁从A点出发,经过通道线爬回蚁巢B点,若用(0,0)(1,0)(1,1)(2,1)(2,2)表示它的一种爬法,请列出其他所有不同的爬法(必须是最短的线路)。例3:如图,是某校七年级(1)班的学生座位的平面图。(1)请说出小明和小丽的位置;(2)若用(3,2)表示第3排第2列的位置,那么(4,5)表示什么位置?小明和小丽的位置可以怎样表示?(3)(3,4)与(4,3)表示的位置是否相同?

一、课堂练习

1、课本P40练习题

二、作业布置:

1、课本P44习题6.1第1题。

2、北京位于东经116.4、北纬39.9,我们用有序数对(116.4,39.9)表示。某地的位置用有序数对(108,19.1)表示,则地理位置位于东经____度,北纬_____度。

3、如图(3)所示,如果点A的位置为(3,2),那么点B的位置为______, 点C 的位置为______,点D和点E的位置分别为______,_______.4、中心五楼第一个房间的门牌号是0501,那么六楼第10个房间的门牌号应为_________.三、自我测评(一)选择题

1、下列数据不能确定物体位置的是()A、4楼8号 B、北偏东30C、希望路25号 D、东经118、北纬402、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B 的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)

3、如图所示,B左侧第二个人的位置是()A.(2,5)B.(5,2)C.(2,2)D.(5,5)

4、如图所示,如果队伍向西前进,那么A北侧第二个人的位置是()A.(4,1)B.(1,4)C.(1,3)D.(3,1)

5、如图所示,(4,3)表示的位置是()A.A B.B C.C D.D(二)填空题

6、如图所示,是小刚画的一张脸,他对妹妹说:如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可表示成___________。

7、如图,是象棋盘的一部分,一匹马在点B的位置,规定列数在前,排数在后,则点B可用有序数对表示为___________,当马从点B跃到点C时,点C的位置可表示为______________;如果按照象棋的规则,马还能跃到哪些位置,怎样表示:_______________________________________(三)解答题

8、如图是某教室学生座位平面图。(1)请说出王明和张强的座位位置;(2)若用(3,2)表示第3排第2列的位置,那么(4,5)表示什么位置?王明和张强的座位位置可以怎样表示?(3)请说出(3,3)和(4,8)表示哪两位同学的座位位置;(4)(3,4)和(4,3)的位置相同吗?一般地,若,()与()表示的位置相同吗?

9、如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一条路径,那么你能用同样的方式写出由A到B的其他几条路径吗?

10、如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?第二课时 6.1-2平面直角坐标系(一)

1、认识平面直角坐标系,并会画平面直角坐标系

2、能在平面直角坐标系中,根据点的坐标描点的位置,会由点的位置写出点的坐标。重点:平面直角坐标系和点的坐标。难点:平面直角坐标系和点的坐标

一、阅读教材P40-P41。

二、独立思考:

1、_____________________________________叫平面直角坐标系,水平的数轴叫x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

2、教材P44习题6.1第1题。在如图所示的平面直角坐标系中描出A(-1,0),B(5,0),C(2,1),D(0,1)四点,并用线段将A、B、C、D四点依次连接起来,得到一个什么图形?你能求出它的面积吗?如图,写出其中标有字母的各点的坐标,并指出它们的横坐标和纵坐标:建立适当的平面直角坐标系,并在平面直角坐标系中描出下列各点,并将各点用线段依次连接起来;(2,1)(6,1)(6,3)(7,3)(4,6)(1,3)(2,3)

一、课堂练习:

1、教材P43练习第1、2题

二、作业布置

1、教材P45第4、5题;

2、教材P46第7题

二、自我测评(一)选择题

1、点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A、()B、()C、()D、()

2、若点P(x,y)的坐标满足 =0,则点P 的位置是()A、在x轴上 B、在y轴上 C、是坐标原点 D、在x轴上或在y轴上(二)填空题

3、在平面直角坐标系上,原点O的坐标是(),x轴上的点的坐标的特点是_______ 坐标为0;y轴上的点的坐标的特点是 坐标为0。

4、已知x轴上点P到y 轴的距离是3,则点P坐标是_________。

5、已知点M 在 轴上,则点M的坐标为 ___。

6、若点P到 轴的距离为2,到 轴的距离为3,则点P的坐标为 ___(三)解答题

7、图中标明了李明同学家附近的一些地方。(1)根据图中所建立的平面直角坐标系,写出学校,邮局的坐标。(2)某星期日早晨,李明同学从家里出发,沿着(-2,-1)、(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方。(3)连接他在(2)中经过的地点,你能得到什么图形?

8、王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示。可是她忘记了在图中标出原点和x轴、y轴。只知道游乐园D的坐标为(2,-2),你能帮她求出其他各景点的坐标?

10、如图,在直角坐标系中,第一次将 变换成,第二次将 变成,第三次将 变成,已知。(1)、观察每次变换前后的三角形有何变化,找出规律,按此规律再将 变换成,则 的坐标是__,的坐标是__。(2)若按第(1)题找到的规律将 进行了n次变换,得到,比较每次变换中三角形顶点坐标有何变化,找出规律,推测 的坐标是__,的坐标是__。

11、如图,建立平面直角坐标系,使点B、C的坐标分别为(0,0)和(4,0),写出点A、D、E、F、G的坐标。

12、如图:左右两幅图案关于轴对称,左图案中左右眼睛的坐标分别是,嘴角左右端点的坐标分别是,⑴试确定右图案的左右眼睛和嘴角左右端点的坐标⑵你是怎样得到的?与同伴交流。第三课时 6.1-2平面直角坐标系(二)

1、认识坐标平面并能判断各象限内点的符号。

2、能根据象限内点的符号特点做相关练习重点:认识坐标平面难点:坐标平面

一、阅读教材P42-P43的内容

二、独立思考

1、点A(3,2)在第________象限,点B(1,-2)在第_______象限,点C(-3,-4)在第________象限,点D(-4,1)在第______ 象限。

2、点(0,3),(4,0),(2,2),(-1,0)在y轴上的点有_____________________;在第二象限的点是_______.3、点N在第三象限,它到x轴的距离是4,到y轴的距离是3,则N的坐标是________.4、已知点P(),若点P在x轴上,则x=_________,若点P在y轴上,则x=_________。

5、已知点P(x,y)在第二象限,且|x|=6,|y|=5,则点P的坐标是_____________。在平面直角坐标系中描出下列各点,并指出各点所在的象限:A(4,5),B(-2,-3),C(-4,-1),D(2.5,-2),E(0,-4)写出如图中三角形ABC各顶点的坐标,并说明点A、B、C所在的象限,且求出此三角形的面积。已知A(),B(),根据以下要求确定x,y的值。(1)直线AB//x轴;(2)直线AB//y轴;(3)A,B关于x轴对称;(4)A、B两点分别在一、二象限的角平分线上。

一、课堂练习

1、如图,正方形边长为2,写出下各坐标系中正方形的顶点的坐标。

二、作业布置教材P44第2题教材P45第6题

三、自我检测(一)选择题

1、在平面直角坐标系中,点P(-5,8)在()A、第一象限 B、第二象限 C、第三象限 D、第四象限

2、已知点P(a,-2)在二、四象限的角平分线上,则a的值是()A、2 B、-2 C、D、3、若x轴上的点P到y轴的距离是3,则点P的坐标为()A、(3,0)B、(3,0或-3,0)C、(0,3)D、(0,3或0,-3)

4、平面直角坐标系中,点(n,1-n)一定不在第____象限()A、一 B、二 C、三 D、四

5、在平面直角坐标系中,点P(-3,4)到x轴的距离是()A、3 B、-3 C、4 D、-4(二)填空题

6、已知点P(-3,2),则P在第_______象限内,点P到x轴的距离是______,到y轴的距离是________。

7、已知点P(x,y)满足xy0,则点P在______象限内。

8、如果p(a+b,ab)在第二象限,那么点Q(a,-b)在第 象限.9、如果点M(a,b)第二象限,那么点N(b,a)在第 象限。

10、已知线段 MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为。(三)解答题

11、若P(x,y)的坐标满足方程(x+3)2+|y+4|=0,求点P的坐标,并回答点P在第几象限?

12、在平面直角坐标系中,点(-1,m2+1)一定在第几象限?

13、在平面直角坐标系中,点E(3k-9,1-k)在第三象限内,且点的坐标都为整数,求点E的坐标。

14、已知点B(3a+5,-6a-2)在第二、四象限的平分线上,求a2009-a的值。

15、在平面直角坐标系中分别描出下列点的坐标,看看这些点在什么位置上?由此你有什么发现?(1)(2,3),(2,-1),(2,5),(2,0),(2,-5),(2,-4).(2)(3,2),(-1,2),(5,2),(0,2),(-5,2),(-4,2)

16、如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来ABCD各个顶点纵坐标保持不变,横、纵坐标都增加2,所得的四边形面积又是多少?

17、已知四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0);(1)请建立平面直角坐标系,并画出四边形ABCD。(2)求四边形ABCD的面积。

第四篇:平面直角坐标系2 教案

平面直角坐标系2 一.教学目标

(一)教学知识点

1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.2.认识并能画出平面直角坐标系.3.能在给定的直角坐标系中,由点的位置写出它的坐标.(二)能力训练要求

1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识.2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力.(三)情感与价值观要求

由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.二.教学重点

1.理解平面直角坐标系的有关知识.2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标.3.由点的坐标观察,横坐标相同的点或纵坐标相同的点的连线与坐标轴的关系.说明坐标轴上的点的坐标有什么特点.三.教学难点

1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究.2.坐标轴上点的坐标有什么特点的总结.四.教学方法

讨论式学习法.五.教具准备

方格纸若干张.投影片四张: 第一张:例题(记作§5.2.1 A);第二张:例题(记作§5.2.1 B);第三张:做一做(记作§5.2.1 C);第四张:练习(记作§5.2.1 D).六.教学过程

Ⅰ.导入新课

[师]随着改革开放的逐步深化,我们中国发生了翻天覆地的变化,人民的生活水平在不断提高,消费水平也相应提高,旅游业空前高涨.假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图.根据示意图回答以下问题.(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条相互垂直的数轴、分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢? 在上一节课我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式.在这个问题中大家看用哪种方法比较适合? [生]用反映直角坐标思想的定位方式.[师]在上一节课中我们已经做过这方面的练习,现在应怎样表示呢?这就是本节课的任务.Ⅱ.讲授新课

1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义.[师]大家通过预习肯定对这部分内容已经掌握,下面请一位同学加以叙述.[生]在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置、取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,两条数轴的交点O称为直角坐标系的原点.对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序实数对(a,b)叫做点P的坐标.[师]好,在了解了有关直角坐标系的知识后,我们再返回到刚才讨论的问题中,请大家思考后回答.[生](2)“大成殿”在“中心广场”南两格,西两格.“碑林”在“中心广场”北一格,东三格.(3)如果以“中心广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,则“碑林”的位置是(3,1).[师]很好,在(3)的条件下,你能把其他景点的位置表示出来吗? [生]能,钟楼的位置是(-2,1);雁塔的位置是(0,3);大成殿的位置是(-2,-2);影月湖的位置是(0,-5);科技大学的位置是(-5,-7).2.例题讲解

投影片(§5.2.1 A)[例1]写出图中的多边形ABCDEF各个顶点的坐标.[生]解:各个顶点的坐标分别为: A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).[师]上图中各顶点的坐标是否永远不变? [生甲]是.[生乙]不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.[师]你能举个例子吗? [生]可以,若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,则六个顶点的坐标分别为: A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).[师]那大家再思考这位同学的结论是否是永恒的呢? [生]不是.还能再改变坐标轴的位置,得出不同的坐标.[师]请大家在课后继续进行坐标轴的变换,总结一下共有多少种.投影片(§5.2.1 B)在下图中,确定A、B、C、D、E、F、G的坐标.[生]A(-4,4),B(-3,0),C(-2,-2),D(1,-4),E(1,-1),F(3,0),G(2,3).3.想一想

在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE的位置有什么特点?(3)坐标轴上点的坐标有什么特点? [师]由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B、C两点到x轴的距离相等,所以线段BC平行于横轴(即x轴),垂直于纵轴(即y轴).请大家讨论第(2)题.[生]由C(3,-3),E(3,3)可知,它们的横坐标相同,即C、E两点到y轴的距离相等,所以线段CE平行于纵轴(即y轴),垂直于横轴(即x轴).[师]请大家先找出坐标轴上的点.[生]B(0,-3),A(-2,0),D(4,0),F(0,3)[师]这些点的坐标中有什么特点呢? [生]坐标中都有一个数字是0.[师]从刚才的分析中可知,在坐标中只要有一个数字为0,则这个点一定在坐标轴上.当两个数字都为0时,这个点是否在坐标轴上? [生]当两个数字都为0时,就是坐标原点(0,0),原点既在x轴上,又在y轴上.[师]那如何确定在哪个坐标轴上呢? [生]A(-2,0),D(4,0)在x轴上,可以看出这两个点的纵坐标为0,横坐标不为0;B(0,-3),F(0,3)在y轴上,可知它们的横坐标为0,纵坐标不为0.[师]经过大家的共同探讨,我们可以总结出:坐标轴上的点的坐标中至少有一个是0:横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.4.做一做

投影片(§5.2.1 C)(1)写出下图中的平行四边形各个顶点的坐标,这种表示惟一吗?(2)在图中,A与D,B与C的纵坐标相同吗?为什么?A与B,C与D的横坐标相同吗?为什么? [师]请大家先独立思考,然后再进行交流.[生甲]A(-5,3),B(-5,-3),C(7,-3),D(7,3).[生乙]不对.A、B、C、D四点的横坐标不对,应该是这四点向x轴作垂线,垂足对应的数字即为横坐标,从方格纸上可以看出竖直方向的线都垂直于x轴,过A点的竖线对应x轴上的数字-4,过B点的竖线对应x轴上的数字-6,同理可知过C、D两点的竖线对应x轴上的数字6,8,所以A、B、C、D四点的坐标分别为A(-4,3),B(-6,-3),C(6,-3),D(8,3).[师]这位同学分析得非常透彻,并指出了常见的错误,应引起大家的高度重视,避免发生类似的错误.若以BC所在的直线为x轴,BC的中点为原点建立直角坐标系,请大家在这样的坐标系下写出A、B、C、D四点的坐标,下面大家拿出准备好的方格纸,按要求画图并建立直角坐标系.[师]先互相对照图画的是否正确,然后口述四点的坐标.[生]A(-4,6),B(-6,0),C(6,0),D(8,6).[师]由此看来表示方法不惟一,请同学们看书上建立的直角坐标系写出四点的坐标.[生]A(-3,4),B(-6,-2),C(6,-2),D(9,4).[师]下面做第(2)题.[生]A与D两点的纵坐标,B与C两点的纵坐标相同,因为AD、BC分别平行于横轴,A与B,C与D的横坐标不同,因为AB与CD是与x轴斜交,它们向横轴作垂线,垂足不同.Ⅲ.课堂练习

投影片(§5.2.1 D)如下图,求出A、B、C、D、E、F、O点的坐标.[生]A(-2,0),B(2,0),C(1,2),D(0,4),E(-1,2),F(0,2).Ⅳ.课时小结

1.认识并能画出平面直角坐标系.2.在给定的直角坐标系中,由点的位置写出它的坐标.3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标.4.横(纵)坐标相同的点的连线与坐标轴的关系.连接横坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴、垂直于y轴.5.坐标轴上点的坐标有什么特点? 横坐标轴上点的纵坐标为0;纵坐标轴上点的横坐标为0.Ⅴ.课后作业

习题5.3 1.在下图中,分别写出八边形各个顶点的坐标.解:A(-5,3),B(-5,-2),C(-2,-5),D(3,-5),E(6,-2),F(6,3),G(3,6),H(-2,6)2.下图是画在方格纸上的某岛简图.(1)分别写出地点A,L,O,P,E的坐标;(2)(4,7)(5,5)(2,5)所代表的地点分别是什么? 解:(1)A(3,8),L(6,7),O′(9,5),P(9,1),E(3,5).(2)(4,7)所代表的地点是C,(5,5)所代表的地点是F,(2,5)所代表的地点是D.Ⅵ.活动与探究

如下图,已知A(0,4),B(-3,0),C(3,0).要画平行四边形ABCD,根据A、B、C三点的坐标,试写出第四个顶点D的坐标.你的答案惟一吗? 解:如上图当D点的坐标为(6,4)时,四边形ABCD是平行四边形.(2)当D点的坐标为(-6,4)时,四边形ABCD是平行四边形.(3)当D点的坐标为(0,-4)时,四边形ABCD是平行四边形.所以答案不惟一.七.板书设计

第五篇:6.1.2平面直角坐标系教案

DHTSSJ6.1.2

对话探索设计

义务教育课程标准实验教科书(人教版)七年级下册

6.1.2平面直角坐标系(1)〖教学目标〗

1.会用坐标表示坐标平面上的点;2.会根据坐标找到坐标平面上点的位置.〖对话探索设计〗 〖复习1〗

1.你还记得数轴的三要素吗? 2.请画出一条数轴,并在上面分别标出表示3和-1.5的点.3.分别写出数轴上点A、B、C、D表示的数.B D A C 2-4-3-2-1 0 1 要点:数轴上的点可以用一个数来表示,这个数叫做这个点的坐标.〖复习2〗

见P45图6.1-1,假设我们约定排数在前,列数在后,在图中分别标出(3,5)和(5,3)所在的位置.归纳:用一个有序数对可以确定平面上一个点的位置.〖探索1〗

如图,若方格的边长表示实际长度1海里,你能描述可疑船只A相对于海上缉私艇B的位置吗?

B· 北

〖阅读理解〗

P46~P47

缉私艇 A· 可疑船 要点:数轴上的点的坐标,平面直角坐标系,横轴,纵轴,原点,平面内点的坐标

〖例题学习〗

P48例 〖探索2〗

P48.探究 DHTSSJ6.1.2

对话探索设计

义务教育课程标准实验教科书(人教版)七年级下册

y 8 〖练习1〗

(1)写出右边的平面直角坐标系中各点的坐标;

(2)在右边的平面直角坐标系中描出下列各点: A(3,2),B(2,3),C(5,1),D(1,5),E(3,7),F(7,3).〖作业〗

1.分别写出右图中各点的坐标:

2.如图,如果正北的方向与y轴平行,缉私艇B的坐标为(2,6),那么可疑船只A位置如何表示?

6 5 4 3 2 1 0 A C.D.E.B..1 2 3 4 5 6 7 8 x y 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 x y · C · D · E · F y 8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 · B · A-6-5-4-3-2-1 0 1 2 3 4 5 6 x-1-2-3-4-5-6 · G · H 北 B· 缉私艇 A· 可疑船 1 2 3 4 5 6 7 8 x 2 DHTSSJ6.1.2

对话探索设计

义务教育课程标准实验教科书(人教版)七年级下册

6.1.2平面直角坐标系(2)〖教学目标〗

1.了解坐标轴上的点的坐标的规律;2.知道坐标平面中的四个象限;3.进一步体会数形结合的思想.〖对话探索设计〗 〖探索1〗

右图是某处某日气温T(℃)随时间t(时)变化的图象,利用图象回答下面问题:(1)图象上哪一点的坐标是(8,2)?把它记为点M;点(8,5)也在图象上吗?(2)图中点N的坐标是多少?横坐标是多少?纵坐标是多少?你能分别说出它们的含义吗?(3)当天0点时的气温是多少?(4)这一天中什么时间气温是0℃?

〖探索2〗

在平面直角坐标系中描出下列各点,并指出它们的位置有什么规律:(1)A(-5,0),B(-3,0),C(2,0),D(6,0);(2)E(0,-5),F(0,-3),G(0,2),(0,6).T(℃)10 9 8 7 6 5 4 3 2 1 0-1-2-3-4-5-6.N 2 4 6 8 10 12 14 16 18 20 22 24 t(时)y 6 5 4 3 2 1-6-5-4-3-2-1 0 1 2 3 4 5 6 x-1-2-3-4-5-6 3 DHTSSJ6.1.2

对话探索设计

义务教育课程标准实验教科书(人教版)七年级下册

〖探索3〗

在平面直角坐标系中,x轴和y轴上的点的坐标各有什么特点?分别写出图中坐标轴上的五个点A、B、C、D、O(原点)的坐标.〖练习1〗

P49.练习1,2 〖阅读理解〗象限的意义

P48 〖探索4〗

如图:(1)标出四个象限;

y 4 3 2 1 C A-4-3-2-1 0 1 2 3 4 x-1-2 D-3 B....-4 y x O(2)画一条直线a,使它不过第一、三象限;(3)画一条直线b,使它过第一、二、四象限;(4)任意描出一个不属于任何象限的点;(5)画一条直线c,使它过第一、三象限;(6)是否能画出一条直线,使它只过第一、三象限?为什么? 〖练习2〗

P50.习题2 想一想,你能把坐标平面内的点按所在的位置分类吗? 〖作业〗

P51.习题6,7(1)〖补充作业〗

在右边的平面直角坐标系中描出下列各点: A(-4,0),B(-2,0),C(3,0), D(5,0),E(0,-5),F(0,5).y 6 5 4 3 2 1-6-5-4-3-2-1 0 1 2 3 4 5 6 x-1-2-3-4-5-6 DHTSSJ6.1.2

对话探索设计

义务教育课程标准实验教科书(人教版)七年级下册

6.1.2平面直角坐标系(3)〖教学目标〗

1.会根据点的坐标求点到两坐标轴的距离;2.会根据点到两坐标轴的距离求点的坐标;3.进一步了解坐标轴上的点的坐标的规律;4.进一步体会数形结合的思想.〖对话探索设计〗 〖探索1〗

如图:(1)点A的坐标是多少?横坐标和纵坐标分别是多少?(2)点A到横轴的距离是多少?到纵轴的距离又是多少?(3)第四象限内的点B到横轴的距离是6,到纵轴的距离是3, 先把它在图中描出来,再求它的坐标;

〖练习1〗

P50.习题4

y 6 5 4 3 A.2 1-6-5-4-3-2-1 0 1 2 3 4 5 6 x-1-2-3-4-5-6 y 6 5 4 3 2 1-6-5-4-3-2-1 0 1 2 3 4 5 6 x-1-2-3-4-5-6 DHTSSJ6.1.2

对话探索设计

义务教育课程标准实验教科书(人教版)七年级下册

〖探索2〗

(1)某个点到横轴的距离是2,到纵轴的距离是5,这个点被唯一确定吗?描出所有满足条件的点;(2)某个点在x轴的上方,与x轴的距离是2,这个点被唯一确定吗?描出所有满足条件的点.〖探索3〗

(1)点A的坐标为(3,7),它到横轴的距离是多少?(2)坐标平面内的一个点到横轴的距离与它的横坐标是否有关?(3)坐标平面内的一个点到横轴的距离等于它的纵坐标吗?为什么?

〖练习2〗

P51.习题8

〖练习2〗

P50.习题5 〖作业〗

P51.习题7(1),9,P66习题.6

y 6 5 4 3 2 1-6-5-4-3-2-1 0 1 2 3 4 5 6 x-1-2-3-4-5-6 y 6 5 4 3 2 1-6-5-4-3-2-1 0 1 2 3 4 5 6 x-1-2-3-4-5-6 y 6 5 4 3 2 1-6-5-4-3-2-1 0 1 2 3 4 5 6 x-1-2-3-4-5-6 6

下载kk第六章平面直角坐标系教案[本站推荐]word格式文档
下载kk第六章平面直角坐标系教案[本站推荐].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    6.1.2平面直角坐标系教案

    6.1.2平面直角坐标系(20号) 教学目标: 1.认识平面直角坐标系,了解点与坐标的对应关系; 2.会用坐标表示点,能在给定的直角坐标系中由点的位置写出点的坐标; 3.初步感知对应关系.......

    初二《平面直角坐标系》教案

    《平面直角坐标系第二课时》教案 觉民中学 陈美虹 一、教材: 1、教学内容: 本章内容包括平面直角坐标系及有关概念,点的坐标等。实际生活中常用有序实数对表示位置,由此引出平面......

    《平面直角坐标系》参考教案

    7.1.2平面直角坐标系 教学目标 1.在复习数轴有关知识的基础上,使学生理解平面直角坐标系的有关概念,并会正确地画出直角坐标系. 2.使学生能在建立在平面直角坐标系中,由点的位置......

    《平面直角坐标系》说课稿

    《平面直角坐标系》说课稿 《平面直角坐标系》说课稿1 一、教材分析“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,......

    5.2平面直角坐标系3教案

    淮安市北京路中学2018-2019学年度第一学期八年级数学教案(32) 主备:阮燕 审核:杨华 5.2平面直角坐标系(3) 教学目标: 1.能建立适当的平面直角坐标系,将实际问题数学化,并会用平面直角......

    初中数学《平面直角坐标系》教案

    初中数学《平面直角坐标系》教案 一、教学目标 【知识与技能】 掌握什么是平面直角坐标系,会通过点的坐标找到位置以及通过位置写出点的坐标。 【过程与方法】 在探索平面直......

    平面直角坐标系复习教案[范文]

    平面直角坐标系 知识归纳梳理 1 题型一平面直角坐标系的概念问题 1、已知Q(2x+4,xº﹣1)在y轴上,则点Q的坐标为( )。 A、(0,4) B、(4,0) C、(0,3) D、(3,0) 2、平面直角坐标系中,若点M......

    人教版6.1.2《平面直角坐标系》教案

    《 6.1. 2 平面直角坐标系》教案 《人教版义务教育课程标准实验教科书 数学》 七年级 下册 第六章《平面直角坐标系》 第一节 第二课时 一、教学目标: 1、知识与技能:(1)认识......