第一篇:圆——教案
圆的定义
目标:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别
1、想想生活中的圆:摩天轮、呼啦圈、自行车、圆月、硬币、瓶盖、钟面、圆桌、钮扣、圆形饼干、铁饼
2、动手画圆:在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.
3、第一定义:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;
圆心:固定的端点O叫作圆心;
半径:线段OA的长度叫作这个圆的半径.
圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.
第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.
4、弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径;
弧:圆上任意两点间的部分叫作圆弧,简称弧;
弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.
优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC; 劣弧:小于半圆的弧叫作劣弧,如图3中的BC.
5、思考:车轮为什么做成圆形?如果做成正方形会有什么结果?
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.
6、如何在操场上画一个半径是5 m的圆?
7、从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?
垂直于弦的直径
目标:探索圆的对称性,进而得到垂直于弦的直径所具有的性质; 能够利用垂直于弦的直径的性质解决相关实际问题.
1、动手活动:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?
沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.
2、动手活动:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;
第二步,得到一条折痕CD;
第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足; 第四步,将纸打开,新的折痕与圆交于另一点B垂直于弦的直径的性质:
(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;
(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
例1:AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径.
弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.
例2:已知AB,请你利用尺规作图的方法作出AB的中点,说出你的作法.
3、某条河上有一座圆弧形拱桥ACB,桥下面水面宽度AB为7.2米,桥的最高处点C离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由.
GCFMAHEDOB
连接AO、GO、CO,由于弧的最高点C是弧AB的中点,所以得到 OC⊥AB,OC⊥GF,根据勾股定理容易计算 OE=1.5米,OM=3.6米.
所以ME=2.1米,因此可以通过这座拱桥.
4、银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道?
连接OA,过O作OE⊥AB,垂足为E,交圆于F,1则AE=2AB = 30 cm.令⊙O的半径为R,则OA=R,OE=OF-EF=R-10.
在Rt△AEO中,OA=AE+OE,即R=30+(R-10). 解得R =50 cm.
修理人员应准备内径为100 cm的管道.
222
弧、弦、圆心角
目标:(1)圆的旋转不变性;
(2)圆心角、弧、弦之间相等关系定理;
动手活动:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.
注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.
(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合. 在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.
ABAC,∠ACB=60°,求证∠AOB=∠AOC=∠BOC. 例
1、在⊙O中,AOBC
例
2、AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.
思考:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?
圆周角
目标:1.了解圆周角与圆心角的关系.
2.探索圆周角的性质和直径所对圆周角的特征. 3.能运用圆周角的性质解决问题.
问题1:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB和ACB)有什么关系?
问题2:如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB和AEB)和同学乙的视角相同吗?
同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半. 问题3:半圆(或直径)所对的圆周角是多少度?90°的圆周角所对的弦是什么? 例:如图,⊙O的直径 AB 为10 cm,弦 AC 为6 cm,∠ACB 的平分线交⊙O于 D,求BC、AD、BD的长.
AD=BD
ACOBD
(一)圆的有关概念
1、圆(两种定义)、圆心、半径;
2、圆的确定条件:
①圆心确定圆的位置,半径确定圆的大小; ②不在同一直线上的三个点确定一个圆。
3、弦、直径;
4、圆弧(弧)、半圆、优弧、劣弧;
5、等圆、等弧,同心圆;
6、圆心角、圆周角;
(二)圆的基本性质
1、圆的对称性
①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。*②圆是中心对称图形,圆心是对称中心。
2、圆的弦、弧、直径的关系
①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
* [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况)
3、弧、弦、圆心角的关系
①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。
4、圆周角的性质
①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。
③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
第二篇:圆 教案
圆教案
一、本章知识框架
二、本章重点
1.圆的定义:
(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.
(2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d (1)圆心角:顶点在圆心的角叫圆心角. 圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质: ①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. (3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质: (1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论: (1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧. (4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等. 5.三角形的内心、外心、重心、垂心 (1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示. (2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点. 6.切线的判定、性质:(1)切线的判定: ①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质: ①圆的切线垂直于过切点的半径. ②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心. (3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长. (4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形 (1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角. (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等. 8.直线和圆的位置关系: 设⊙O 半径为R,点O到直线l的距离为d. (1)直线和圆没有公共点直线和圆相离d>R. (2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d . (1)外离(2)含(3)外切(4)d 内有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部d=R+r. 的每个点都在内部有唯一公共点,除这个点外,内切d=R-r. 相交(5)有两个公共点R-r 10.两圆的性质: (1)两个圆是一个轴对称图形,对称轴是两圆连心线. (2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 11.圆中有关计算: 圆的面积公式:,周长C=2πR. 圆心角为n°、半径为R的弧长. 圆心角为n°,半径为R,弧长为l的扇形的面积弓形的面积要转化为扇形和三角形的面积和、差来计算. . 圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为面积为2πRl,全面积为 .,侧圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl,全面积为【经典例题精讲】 例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?,母线长、圆锥高、底面圆的半径之间有 . 分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律. 解: 连结OP,P点为中点. 小结:此题运用垂径定理进行推断. 例2 下列命题正确的是()A.相等的圆周角对的弧相等 B.等弧所对的弦相等 C.三点确定一个圆 D.平分弦的直径垂直于弦. 解: A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确. B.等弧就是在同圆或等圆中能重合的弧,因此B正确. C.三个点只有不在同一直线上才能确定一个圆. D.平分弦(不是直径)的直径垂直于此弦. 故选B. 例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D. 分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等. 解: 设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x. x+2x+3x+2x=360°,x=45°. ∴∠D=90°. 小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长. 例4 0 分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解. 解: . 小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型. 例5 已知 相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距. 解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设 与AB交于C,连结又∵AB=16 ∴AC=8. 在在故(2)若,则垂直平分AB,∴ . 中,中,. . . 位于AB的同侧(如图23-9),设 . 的延长线与AB交于C,连结∵垂直平分AB,∴. 又∵AB=16,∴AC=8. 在在故中,中,. . . 注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题. 三、相关定理: 1.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条线,各弦被这点所分成的两段的积相等) 说明:几何语言: 若弦AB、CD交于点P,则PA·PB=PC·PD(相交弦定理) 例1. 已知P为⊙O内一点,P任作一弦AB,设为。,⊙O半径为,过,则关于的函数关系式解:由相交弦定理得,即,其中 2.切割线定理 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB 例2. 已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。 解:设TD=,BP=,由相交弦定理得:即由切割线定理,理,∴ ∴,(舍)由勾股定∴ 四、辅助线总结 1.圆中常见的辅助线 1).作半径,利用同圆或等圆的半径相等. 2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明. 3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算. 4).作弦构造同弧或等弧所对的圆周角. 5).作弦、直径等构造直径所对的圆周角——直角. 6).遇到切线,作过切点的弦,构造弦切角. 7).遇到切线,作过切点的半径,构造直角. 8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径. 9).遇到三角形的外心常连结外心和三角形的各顶点. 10).遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点. 11).遇相交两圆,常作:(1)公共弦;(2)连心线. 12).遇两圆相切,常过切点作两圆的公切线. 13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边. 2、圆中较特殊的辅助线 1).过圆外一点或圆上一点作圆的切线. 2).将割线、相交弦补充完整. 3).作辅助圆. 例1如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为() A.2 B.3 C.4 D.5 分析:连结OC,由AB是⊙O的直径,弦CD⊥AB知CD=DE.设AE=x,则在Rt△CEO中,则,(舍去).,即,答案:A. 例2如图23-11,CA为⊙O的切线,切点为A,点B在⊙O上,如果∠CAB=55°,那么∠AOB等于() A.35° B.90° C.110° D.120° 分析:由弦切角与所夹弧所对的圆心角的关系可以知道∠AOB=2∠BAC=2×55°=110°.答案:C. 例3 如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于()A. B. C. D. 分析:圆柱的侧面展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长;另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高,即 .答案:B. 例4 如图23-12,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,延长CM交⊙O于E,且EM>MC,连结OE、DE,. 求:EM的长. 简析:(1)由DC是⊙O的直径,知DE⊥EC,于是.设EM=x,则AM·MB=x(7-x),即.所以 .而EM>MC,即EM=4. 例5如图23-13,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是关于x的方程 (其中m为实数)的两根. (1)求证:BE=BD;(2)若,求∠A的度数. 简析:(1)由BE、BD是关于x的方程的两根,得,则m=-2.所以,原方程为(2)由相交弦定理,得 .得,即 .故BE=BD. .而PB切⊙O于点B,AB为⊙O的直径,得∠ABP=∠ACB=90°.又易证∠BPD=∠APE,所以△PBD∽△PAE,△PDC∽△PEB,则,所以,所以 .在Rt△ACB中,故∠A=60°. 《认识圆》 一、教材说明; 九年义务教育六年制小学数学第十一册《圆的认识》 二、教学目标; 1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。 2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。 3、能正确熟练地掌握用圆规画圆的操作步骤。 4、培养学生动手操作、主动探究、自主发现、交流合作的能力。 三、教学流程; 1、导入新课 (1)学生活动(边玩边观察)。 ①球、球相碰玩具表演。②线系小球旋转玩具表演。 (2)师生对话(学生可相互讨论后回答)。 教师:日常生活中或周围的物体上哪里有圆? 学生:在钟面、圆桌、人民币硬币上……都有圆。 教师:请同学们用手摸一摸,体会一下有什么感觉? 学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。 教师:这(指圆)和我们以前学过的平面图形,有什么不同呢? 学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。 教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗? 学生讨论后回答:圆是平面上的一种曲线图形。 总结:我们生活中有这么多的圆,让我们来好好认识一下圆这个图形。 2、探索新知。(1)探究——圆心 ① 徒手画圆。 教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢? ②用工具画圆。教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。(画圆方法任学生自选) ③找圆心。 学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。 教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“O”表示。(学生在圆形纸片上点出圆心,标出字母。)(2)探究——圆的直径、半径及其关系。 让学生用刻度尺量一量圆心到圆上任意一点的距离;请学生报出测量的结果,并想一想发现了什么?(引导学生得出:圆心到圆上任意一点的距离都相等。把有关数据写在黑板上) 教师在黑板的图中连接圆心和圆上任意一点的线段,告诉学生这线段叫做半径。 让学生在自己的学具圆里用笔画出几条半径,再量一量它们的长度。问:你还发现什么?(引导学生得出:在同一个圆里,可画无数条半径,所有的半径都相等。)再让学生量一量在自己的学具圆用笔画的通过圆心的线段(折痕),问:通过测量,你又发现什么?(学生得出:这些线段都相等。把有关数据写在黑板上。) 说明:我们把圆对折时,看到每条折痕都通过圆心。这些通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。 师:直径与半径之间有什么关系? ①分组探究,合作学习。 教师提出学习活动要求:先独立进行,再分组交流。通过动手“折、量、画、数、比(估)、看、议”等,总之随你用什么方法都可以,探索圆的直径、半径及其关系。分组汇报,全班交流。 ②重点请学生说明你是怎样发现的,展示发现的过程,让同学们评价。 ③操作检验,内化提升。 a.考考你的判断力。用彩色笔标出下面各圆的半径和直径。(课本58页做一做第1题)b.对答游戏(每两个学生一组):你说直径长度,我答半径长度;你说半径长度,我答直径长度。c.边体验,边说理:为什么车轮都要做成圆的,车轴应安装在哪里? d.合作操作探索。 (3)自我习作——用圆规画圆。①学生自学:用圆规画圆的方法和步骤。 ②学生操作:用圆规画圆。(自我体会,怎样才能画对、画好。) ③按要求画圆。 a.半径2厘米 b.半径2.5厘米 c.直径4厘米(比较a、c,你发现了什么?) b.通过按要求画圆并观察你发现了什么?(教师请学生画3个同心圆、3个大小不等的非同心圆。引导学生观察、讨论、比较并归纳:圆心决定圆的位置;半径决定圆的大小。) c.体育老师在操场上的圆怎样画?(学生讨论,全班交流。) 3、课堂小结。 教师启发学生自我小结本节课的学习收获:知道了什么?怎么知道的?鼓励学生质疑:你还想知道什么?…… 4、创新思维训练游戏。 教师:一个圆很美,大小不同的圆在一起组成美丽的图案更美。请大家设计由圆(或圆和其它平面图形)组成的图案,并写出创意,带到学校与同学交流。 第二十四章圆(复习)--圆、与圆有关的位置关系(1) 圆的相关概念 教学目标: 知识与技能:了解点和圆、直线和圆的位置关系。 过程与方法:通过复习点和圆、直线和圆的位置关系,进一步发展学生的推理能力。 情感态度与价值观:经历观察、猜想、证明等数学活动过程,发展合情推理和初步演绎推理能力。教学重点:掌握直线和圆的位置关系。教学难点:切线的性质及证明。课型:复习课 教学准备:多媒体 使用日期:2016年12月14日 教学过程: 1、圆的定义:到定点距离等于定长的点的集合。 2、弦,弧,等圆,同心圆,等弧,优弧,劣弧,弦心距,弓形 一、垂径定理 1.定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.2、垂径定理的逆定理 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.例⊙O的半径为10cm,弦AB∥CD,AB=16,CD=12,则AB、CD间的 距离是___.二、圆心角、弧、弦、弦心距的关系 在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两 条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等 1、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与CD之间的关系为(); A.AB=2CD B.AB<2CD C.AB>2CD D.不能确定 2、在△ABC中,∠A=70°,若O为△ABC的外心,∠BOC= ;若O为△ABC的内心,∠BOC= . 三、点和圆的位置关系 1、⊙O的半径为R,圆心到点A的距离为d,且R、d分别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是() A.点A在⊙O内部 B.点A在⊙O上 C.点A在⊙O外部 D.点A不在⊙O上 2、M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm,最短的弦长为8 cm,则OM=_____ cm. 四、直线与圆的位置关系 如图,AB是圆O的直径,圆O过AC的中点D,DE⊥BC于E.证明:DE是圆O的切线. 教学目的: 1 认识艺术的一个表现形式“圆”,探讨艺术各门类表现方式的特征,并进一步认识不同文化应用的特征。 创造性能力培养:探索发现、即兴、迁移、创编。3 赏析:艺术作品(绘画、音乐、戏曲、舞蹈)教学过程: ——教师黑板画一个大圆圈,问这是什么?还可表示什么? 问:生活中那些东西是圆的?——请学生画出各种“圆”(平面、,立体、球形、椭圆等),讨论画“圆”的要领。 ——出示几幅以“圆”为主题或主要表现形式的不同风格和内容的作品,并讨论。 ——站成圆圈,问:用身体的动作可以做“圆”吗?(如头、手、臂、腿、脚、腰等部位)探索与模仿。 ——加上移动位置(如转圆圈、旋转)和动作组合探索更多地“圆”的形式。 ——讨论:从绘画和动作的“圆”探讨其表现的意味和特点。相同与不同。 ——引导到用声音表现“圆”的特点(如圆滑、循环不断),用嗓音或其他声响表现与模仿。听几段音乐(如“小狗圆舞曲”肖邦曲、“金鸡”李姆斯基——科萨柯夫曲等片段),请学生边听边用手在空中或用笔画出旋律线走向,探索其中与“圆”相关的音乐特点。 ——看几段戏曲和舞蹈录像,找出其中“圆”的表现形式(如中国的跑圆场、手、头、眼动作中的圆,外国的旋转等),并带领学生做几组动作来体验。 ——联系“圆”在中国文化中的表现,如太极拳、阴阳八卦符号、语言声腔,以及文化观念、风俗人情,探讨中国各种艺术在表现形式、风格、文化内涵上的关系,并比较与其他民族文化的不同特点。 ——“圆”在艺术中的象征意义:表现那类的情感? ——分小组活动,用绘画、舞蹈及音乐来创作一个小品,要求以“圆”为主要表现形式末表现一种情绪。 教案分析: 该教案是一个综合教学的课例,不但将各艺术门类:绘画、雕塑、舞蹈、戏曲、音乐等综合进行教学,还将艺术表现的要素、形式、风格、情感融为一体,一步步引导学生升华到文化的视角。主题集中,手段丰富。教学过程可分若干学时完成。教师在教学过程中也可根据自己的专长将其中的某些环节缩减或扩张,触类旁通。整个教学中,教师是个引导者,主要是设置环境,让学生去探索。对不同年龄段学生,可以以侧重体验(操作),或增加艺术作品深度、评析内容来调整教学内容程度。第三篇:认识圆教案
第四篇:圆复习教案
第五篇:奥尔夫教案:圆