第一篇:圆和圆教案
课题:圆和圆的位置关系
山西省平定县娘子关中学冯向科
教学目标:
了解圆与圆的五种位置关系的定义; 掌握两圆的相切位置与两圆的半径、圆心距的数量之间的关系,相切两圆的连心线的性质。
1.培养学生的分类和数形结合数学思想;培养学生用运动变化的观点来分析和发现问题的能力.
2.促使学生勤于思考、乐于探究的习惯、增强学习自信心。
教学重点:
两圆的相切位置与两圆的半径、圆心距的数量之间的关系.
教学难点:
两圆相切时分类讨论 教具:圆规、圆片 教学步骤:
(一)复习、引出问题
1.复习:直线和圆有几种位置关系?各是怎样定义的?
(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的 2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?
(二)观察、分类,得出概念
1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:
(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))
(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))
(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))
(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))
(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例.(图(6))
2、归纳:
(1)两圆外离与内含时,两圆都无公共点.
(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一
(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).
教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?
结论:在同一平面内任意两圆只存在以上五种位置关系.
(三)分析、研究
1、相切两圆的性质.
让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:
如果两个圆相切,那么切点一定在连心线上.
这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明
2、两圆位置关系的数量特征.
设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)
两圆外切
两圆内切 d=R+r; d=R-r(R>r);
说明:注重“数形结合”思想的教学.
(四)应用、练习
例1: 如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米。求:以P为圆心作⊙P与⊙O相切,圆⊙P的半径是多少?
解:(1)设⊙P与⊙O外切与点A,则PA=PO-OA ∴PA=3cm.
(2)设⊙P与⊙O内切与点B,则 PB=PO+OB ∴PB=1 3cm. 综上所述,圆⊙P的半径是3cm或1 3cm。
练习
1、⊙O的半径为5厘米,OP=1厘米,以P为圆心作⊙P与⊙O相切,圆⊙P的半径是多少?
2、⊙O的半径为5厘米,⊙P的半径为3厘米,以P为圆心作⊙P与⊙O相切,PO是多少?
3、⊙O的半径为5厘米,⊙P的半径为3厘米,⊙P与⊙O外切,半径为7厘米的圆和两圆相切,这样的圆能做几个?半径为5厘米呢?半径为8厘米呢?
4、⊙O的半径为15厘米,⊙P的半径为20厘米,⊙P与⊙O相交与A、B两点,AB=24。(1)求PO的长?(2)求∠PAO的度数?(3)求四边形PAOB的面积?
(五)小结
这节课你学到了什么?是怎样学到的?
(六)作业
《圆和圆的位置关系》示范课教学反思
-------用数学眼光开生活
山西省平定县娘子关中学冯向科
我在教学能手示范课中讲授了《圆和圆的位置关系》一课。感受到学生在数学和生活的联系方面有欠缺,缺乏学一致用。下面谈谈在示范课后我的一些实践的心得体会。
在生活中挖掘数学,让数学服务于生活,让学生学习有用的数学,以人为本,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。这是数学新课程标准的宗旨,它通过加强过程性,体验性目标,以及对教材、教学、评价等方面的指导,引导学生主动参与、亲身实践、独立思考、合作探究、获取新知识的能力,分析和解决问题的能力,以及交流与合作的能力,并且采用多种评价方式,促进学生发展,体现着改革与创新精神,数学新课程标准为未来的数学教学指明了方向。
一 培养学生把生活经验和数学知识相联系的能力
数学来源于生活,生活中处处有数学。我们的日常生活就是学习数学的大课堂,是探索问题的广阔天地,把所学的知识运用到生活实践中,是数学学习的最终目的。很多数学规律、数学思想方法都可以在生活中找到它们的原型,在平时生活中,学生很难从现实中寻找数学题材,把要学的数学知识与学生的生活实际有机结合,如举出生活中两圆不同位置关系的实例,学生难以描述。
二、创设情景、贴近生活、激发兴趣
结合学生身边的实例导入新课,不但可提高学生的学习兴趣,激发求知的内驱力,而且可使所要学习的数学问题具体化,形象化。在新知的教学时,如果能结合学生的日常生活,创设学生熟悉与感兴趣的具体生活活动情况,就能引导学生通过联想、类比,沟通从具体的感性实践到抽象概括的道路,加深对新知的理解。因此在教学中如何使学生“领悟”出数学知识源于生活,又服务于生活,能用数学眼光观察生活实际,培养解决实际问题的能力,是每位数学教师重视的问题。教师选取贴近学生生活实际的题材,以唤起学生的学习兴趣,使学生能凭借生活经验,积极参与尝试探究。因此当学生掌握了某项数学知识后,可以有意识地创设一些把所学知识运用到生活实际的环境。
如在导入《直线和圆的位置关系》时,这样问学生:小朋友,你们看过日出
吗?太阳和地平线在开始时候是怎样的位置关系?后来怎么变化的呢?
三、引导实践、总结规律、寓教育乐
数学源于实践,又服务于实践。为此在数学教学中,我们要创设运用数学知识的条件给学生以实际活动的机会,让学生亲自参与实践,摸一摸,摆一摆,拼一拼,移一移,看一看,想一想,形成丰富的感性材料,再经过大脑加工,由表及里,由浅入深,去伪存真地辩证分析,教学效果事半功倍。如这节课通过让学生动手实践,圆和圆的位置关系、两圆相切是圆心距和两圆半径的关系等结论,学生很快发现其中的奥秘,总结出规律。如果教师不让学生动手实践,而是一味滔滔不绝地讲解分析,学生只能是“知其然而不知其所以然”,听得索然寡味。数学知识是抽象的,教学不得法,会挫伤学生的学习积极性,会扼杀学生的实践力,会抑制学生的聪明才智。
四、引导学生发现问题、提出问题、解决问题
新课程标准很重视在教学过程中,学生的主动参与,学生能独立思考并能一起合作探究,能提出有价值的问题,并能通过个人的或大家的智慧解决问题。老师教给学生的是一种能力而不是问题的答案。教学中教师的作用重在于“导”,具体应体现在启发、点拨、设疑和解惑上。能让学生先说的尽可能让学生说,能让学生操作的尽可能让学生操作,能让学生讨论的尽可能让学生讨论,力求为学生的主动学习创设情境、营造氛围。让学生有机会成为“问”的主体,成为“信息源”,那么,学生学习的积极性和主动性将会被大大激发。如做完练习
3、⊙O的半径为5厘米,⊙P的半径为3厘米,⊙P与⊙O外切,半径为7厘米的圆和两圆相切,这样的圆能做几个?半径为9厘米呢?半径为8厘米呢?后。有学生问⊙O的半径为a厘米,⊙P的半径为b厘米,⊙P与⊙O外切,半径>(a+b)厘米的圆和⊙O、⊙P两圆相切,这样的圆能做几个?半径<(a+b)厘米呢?半径为(a+b)厘米呢?
数学知识源于生活而最终服务于生活。在今后教学中,我还要经常从现实中寻找数学题材,把要学的数学知识与学生的生活实际有机结合,注意引导学生动手实践,亲身体验,理解、巩固、运用数学知识,解决数学问题。
第二篇:圆 教案
圆教案
一、本章知识框架
二、本章重点
1.圆的定义:
(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.
(2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d (1)圆心角:顶点在圆心的角叫圆心角. 圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质: ①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. (3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质: (1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论: (1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧. (4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等. 5.三角形的内心、外心、重心、垂心 (1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示. (2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点. 6.切线的判定、性质:(1)切线的判定: ①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质: ①圆的切线垂直于过切点的半径. ②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心. (3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长. (4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形 (1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角. (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等. 8.直线和圆的位置关系: 设⊙O 半径为R,点O到直线l的距离为d. (1)直线和圆没有公共点直线和圆相离d>R. (2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d . (1)外离(2)含(3)外切(4)d 内有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部d=R+r. 的每个点都在内部有唯一公共点,除这个点外,内切d=R-r. 相交(5)有两个公共点R-r 10.两圆的性质: (1)两个圆是一个轴对称图形,对称轴是两圆连心线. (2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 11.圆中有关计算: 圆的面积公式:,周长C=2πR. 圆心角为n°、半径为R的弧长. 圆心角为n°,半径为R,弧长为l的扇形的面积弓形的面积要转化为扇形和三角形的面积和、差来计算. . 圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为面积为2πRl,全面积为 .,侧圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl,全面积为【经典例题精讲】 例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?,母线长、圆锥高、底面圆的半径之间有 . 分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律. 解: 连结OP,P点为中点. 小结:此题运用垂径定理进行推断. 例2 下列命题正确的是()A.相等的圆周角对的弧相等 B.等弧所对的弦相等 C.三点确定一个圆 D.平分弦的直径垂直于弦. 解: A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确. B.等弧就是在同圆或等圆中能重合的弧,因此B正确. C.三个点只有不在同一直线上才能确定一个圆. D.平分弦(不是直径)的直径垂直于此弦. 故选B. 例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D. 分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等. 解: 设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x. x+2x+3x+2x=360°,x=45°. ∴∠D=90°. 小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长. 例4 0 分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解. 解: . 小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型. 例5 已知 相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距. 解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设 与AB交于C,连结又∵AB=16 ∴AC=8. 在在故(2)若,则垂直平分AB,∴ . 中,中,. . . 位于AB的同侧(如图23-9),设 . 的延长线与AB交于C,连结∵垂直平分AB,∴. 又∵AB=16,∴AC=8. 在在故中,中,. . . 注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题. 三、相关定理: 1.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条线,各弦被这点所分成的两段的积相等) 说明:几何语言: 若弦AB、CD交于点P,则PA·PB=PC·PD(相交弦定理) 例1. 已知P为⊙O内一点,P任作一弦AB,设为。,⊙O半径为,过,则关于的函数关系式解:由相交弦定理得,即,其中 2.切割线定理 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB 例2. 已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。 解:设TD=,BP=,由相交弦定理得:即由切割线定理,理,∴ ∴,(舍)由勾股定∴ 四、辅助线总结 1.圆中常见的辅助线 1).作半径,利用同圆或等圆的半径相等. 2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明. 3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算. 4).作弦构造同弧或等弧所对的圆周角. 5).作弦、直径等构造直径所对的圆周角——直角. 6).遇到切线,作过切点的弦,构造弦切角. 7).遇到切线,作过切点的半径,构造直角. 8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径. 9).遇到三角形的外心常连结外心和三角形的各顶点. 10).遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点. 11).遇相交两圆,常作:(1)公共弦;(2)连心线. 12).遇两圆相切,常过切点作两圆的公切线. 13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边. 2、圆中较特殊的辅助线 1).过圆外一点或圆上一点作圆的切线. 2).将割线、相交弦补充完整. 3).作辅助圆. 例1如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为() A.2 B.3 C.4 D.5 分析:连结OC,由AB是⊙O的直径,弦CD⊥AB知CD=DE.设AE=x,则在Rt△CEO中,则,(舍去).,即,答案:A. 例2如图23-11,CA为⊙O的切线,切点为A,点B在⊙O上,如果∠CAB=55°,那么∠AOB等于() A.35° B.90° C.110° D.120° 分析:由弦切角与所夹弧所对的圆心角的关系可以知道∠AOB=2∠BAC=2×55°=110°.答案:C. 例3 如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于()A. B. C. D. 分析:圆柱的侧面展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长;另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高,即 .答案:B. 例4 如图23-12,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,延长CM交⊙O于E,且EM>MC,连结OE、DE,. 求:EM的长. 简析:(1)由DC是⊙O的直径,知DE⊥EC,于是.设EM=x,则AM·MB=x(7-x),即.所以 .而EM>MC,即EM=4. 例5如图23-13,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是关于x的方程 (其中m为实数)的两根. (1)求证:BE=BD;(2)若,求∠A的度数. 简析:(1)由BE、BD是关于x的方程的两根,得,则m=-2.所以,原方程为(2)由相交弦定理,得 .得,即 .故BE=BD. .而PB切⊙O于点B,AB为⊙O的直径,得∠ABP=∠ACB=90°.又易证∠BPD=∠APE,所以△PBD∽△PAE,△PDC∽△PEB,则,所以,所以 .在Rt△ACB中,故∠A=60°. 圆的定义 目标:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别 1、想想生活中的圆:摩天轮、呼啦圈、自行车、圆月、硬币、瓶盖、钟面、圆桌、钮扣、圆形饼干、铁饼 2、动手画圆:在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆. 3、第一定义:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆; 圆心:固定的端点O叫作圆心; 半径:线段OA的长度叫作这个圆的半径. 圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上. 第二定义:所有到定点的距离等于定长的点组成的图形叫作圆. 4、弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径; 弧:圆上任意两点间的部分叫作圆弧,简称弧; 弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”; 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆. 优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC; 劣弧:小于半圆的弧叫作劣弧,如图3中的BC. 5、思考:车轮为什么做成圆形?如果做成正方形会有什么结果? 把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定. 6、如何在操场上画一个半径是5 m的圆? 7、从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少? 垂直于弦的直径 目标:探索圆的对称性,进而得到垂直于弦的直径所具有的性质; 能够利用垂直于弦的直径的性质解决相关实际问题. 1、动手活动:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么? 沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 2、动手活动:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合; 第二步,得到一条折痕CD; 第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足; 第四步,将纸打开,新的折痕与圆交于另一点B垂直于弦的直径的性质: (1)垂直于弦的直径平分弦,并且平分弦所对的两条弧; (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 例1:AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径. 弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来. 例2:已知AB,请你利用尺规作图的方法作出AB的中点,说出你的作法. 3、某条河上有一座圆弧形拱桥ACB,桥下面水面宽度AB为7.2米,桥的最高处点C离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由. GCFMAHEDOB 连接AO、GO、CO,由于弧的最高点C是弧AB的中点,所以得到 OC⊥AB,OC⊥GF,根据勾股定理容易计算 OE=1.5米,OM=3.6米. 所以ME=2.1米,因此可以通过这座拱桥. 4、银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道? 连接OA,过O作OE⊥AB,垂足为E,交圆于F,1则AE=2AB = 30 cm.令⊙O的半径为R,则OA=R,OE=OF-EF=R-10. 在Rt△AEO中,OA=AE+OE,即R=30+(R-10). 解得R =50 cm. 修理人员应准备内径为100 cm的管道. 222 弧、弦、圆心角 目标:(1)圆的旋转不变性; (2)圆心角、弧、弦之间相等关系定理; 动手活动:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定. 注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合. (3)将其中的一个圆旋转一个角度.使得OA与O′A′重合. 在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等. (1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等; (2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等. ABAC,∠ACB=60°,求证∠AOB=∠AOC=∠BOC. 例 1、在⊙O中,AOBC 例 2、AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数. 思考:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么? 圆周角 目标:1.了解圆周角与圆心角的关系. 2.探索圆周角的性质和直径所对圆周角的特征. 3.能运用圆周角的性质解决问题. 问题1:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB和ACB)有什么关系? 问题2:如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB和AEB)和同学乙的视角相同吗? 同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半. 问题3:半圆(或直径)所对的圆周角是多少度?90°的圆周角所对的弦是什么? 例:如图,⊙O的直径 AB 为10 cm,弦 AC 为6 cm,∠ACB 的平分线交⊙O于 D,求BC、AD、BD的长. AD=BD ACOBD (一)圆的有关概念 1、圆(两种定义)、圆心、半径; 2、圆的确定条件: ①圆心确定圆的位置,半径确定圆的大小; ②不在同一直线上的三个点确定一个圆。 3、弦、直径; 4、圆弧(弧)、半圆、优弧、劣弧; 5、等圆、等弧,同心圆; 6、圆心角、圆周角; (二)圆的基本性质 1、圆的对称性 ①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。*②圆是中心对称图形,圆心是对称中心。 2、圆的弦、弧、直径的关系 ①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 * [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况) 3、弧、弦、圆心角的关系 ①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 ②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。 归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。 4、圆周角的性质 ①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。 ③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。 《圆和扇形》教案 教学内容 教材P1~9页 教学目标 1、通过观察、操作,认识圆,会用圆规画圆。初步认识扇形。 2、在探索圆的特征、画圆以及设计图案的过程中,进一步发展空间观念。 3、能用有关圆的知识解决一些简单的实际问题,能表达解决问题的过程,并尝试解释所得的结果。 4、对周围环境中与圆有关的事物有好奇心,能主动参与数学活动,获得数学活动经验,感受圆及图案的美。 教学准备 多媒体课件 教学过程 一、圆的认识 1、例1。 创设了富有童趣的动物汽车设计大赛的问题情境,呈现了小鸭子、米老鼠和小猴子设计的三角形、正方形、圆等三种不同形状车轮的汽车,提出“你喜欢谁的设计”“说说你的理由”,让学生借助生活经验思考、想象并充分表达自己的意见,使学生知道圆形车轮比三角形、正方形车轮易滚动并且平稳,感受车轮设计‘成圆形的道理,初步体会圆的特征,激发学生对圆的兴趣。接着让学生认识并举出身边的面是圆形的物品,进一步体会圆与现实生活的密切联系。 2、例2。 在认识圆的特征及各部分名称时,教材设计了三个层次的活动。活动一,用硬币或圆柱体在纸上描圆,并剪下来。活动二,将圆形纸片按不同方向多次对折并观察对折后的圆形纸片,交流自己的发现。通过交流,认识圆的轴对称性、圆有无数条对称轴以及所有折痕都相交于一点等。活动三,认识圆心、直径、半径及其字母表示O。 3、议一议。 设计了两个问题,通过讨论,使学生认识到:同一个圆里,直径、半径有无数条;直径是半径的2倍或半径是直径的一半。 二、图案设计 1、例1。 教材安排了三个活动。活动一,欣赏图案。教材呈现了四幅利用圆设计成的漂亮图案,让学生欣赏,体会图案的美。活动二,模仿画图案。教材以第一个图案为例,用四幅图清晰地介绍了用圆规和直尺设计这个图案的具体过程。教学中,教师可按照书中的步骤示范画出图案(1)并涂色。然后,让学生试画图案(2)并把试画的图案让大家欣赏,初步获得成功的体验。活动三,独立设计图案。让学生设计两个自己喜欢的图案并把最得意的作品在全班展示,感受成功的乐趣。 三、扇形 1、例题。 教材在四个同样大的圆中,按照由小到大的顺序,分别涂色呈现了四个不同的扇形,让学生观察、想象、描述这些图形的样子。通过观察、交流,使学生感受到这些图形就像一把打开的扇子,初步建立扇形的表象。在此基础上说明这些图形就是扇形。接着,通过说一说“扇形有什么特征”引导学生从数学角度继续观察,使学生知道扇形都有一个角,角的顶点在圆心,扇形是由两条半径和圆上的一段曲线围成的。从而帮助学生清晰地建立起扇形的表象,初步认识扇形的特征。 四、巩固练习 1、完成第3页的练一练。 2、完成第5页的练一练。 3、完成第9页的练一练。 五、课后总结 《认识圆》 一、教材说明; 九年义务教育六年制小学数学第十一册《圆的认识》 二、教学目标; 1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。 2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。 3、能正确熟练地掌握用圆规画圆的操作步骤。 4、培养学生动手操作、主动探究、自主发现、交流合作的能力。 三、教学流程; 1、导入新课 (1)学生活动(边玩边观察)。 ①球、球相碰玩具表演。②线系小球旋转玩具表演。 (2)师生对话(学生可相互讨论后回答)。 教师:日常生活中或周围的物体上哪里有圆? 学生:在钟面、圆桌、人民币硬币上……都有圆。 教师:请同学们用手摸一摸,体会一下有什么感觉? 学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。 教师:这(指圆)和我们以前学过的平面图形,有什么不同呢? 学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。 教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗? 学生讨论后回答:圆是平面上的一种曲线图形。 总结:我们生活中有这么多的圆,让我们来好好认识一下圆这个图形。 2、探索新知。(1)探究——圆心 ① 徒手画圆。 教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢? ②用工具画圆。教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。(画圆方法任学生自选) ③找圆心。 学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。 教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“O”表示。(学生在圆形纸片上点出圆心,标出字母。)(2)探究——圆的直径、半径及其关系。 让学生用刻度尺量一量圆心到圆上任意一点的距离;请学生报出测量的结果,并想一想发现了什么?(引导学生得出:圆心到圆上任意一点的距离都相等。把有关数据写在黑板上) 教师在黑板的图中连接圆心和圆上任意一点的线段,告诉学生这线段叫做半径。 让学生在自己的学具圆里用笔画出几条半径,再量一量它们的长度。问:你还发现什么?(引导学生得出:在同一个圆里,可画无数条半径,所有的半径都相等。)再让学生量一量在自己的学具圆用笔画的通过圆心的线段(折痕),问:通过测量,你又发现什么?(学生得出:这些线段都相等。把有关数据写在黑板上。) 说明:我们把圆对折时,看到每条折痕都通过圆心。这些通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。 师:直径与半径之间有什么关系? ①分组探究,合作学习。 教师提出学习活动要求:先独立进行,再分组交流。通过动手“折、量、画、数、比(估)、看、议”等,总之随你用什么方法都可以,探索圆的直径、半径及其关系。分组汇报,全班交流。 ②重点请学生说明你是怎样发现的,展示发现的过程,让同学们评价。 ③操作检验,内化提升。 a.考考你的判断力。用彩色笔标出下面各圆的半径和直径。(课本58页做一做第1题)b.对答游戏(每两个学生一组):你说直径长度,我答半径长度;你说半径长度,我答直径长度。c.边体验,边说理:为什么车轮都要做成圆的,车轴应安装在哪里? d.合作操作探索。 (3)自我习作——用圆规画圆。①学生自学:用圆规画圆的方法和步骤。 ②学生操作:用圆规画圆。(自我体会,怎样才能画对、画好。) ③按要求画圆。 a.半径2厘米 b.半径2.5厘米 c.直径4厘米(比较a、c,你发现了什么?) b.通过按要求画圆并观察你发现了什么?(教师请学生画3个同心圆、3个大小不等的非同心圆。引导学生观察、讨论、比较并归纳:圆心决定圆的位置;半径决定圆的大小。) c.体育老师在操场上的圆怎样画?(学生讨论,全班交流。) 3、课堂小结。 教师启发学生自我小结本节课的学习收获:知道了什么?怎么知道的?鼓励学生质疑:你还想知道什么?…… 4、创新思维训练游戏。 教师:一个圆很美,大小不同的圆在一起组成美丽的图案更美。请大家设计由圆(或圆和其它平面图形)组成的图案,并写出创意,带到学校与同学交流。第三篇:圆——教案
第四篇:《圆和扇形》教案
第五篇:认识圆教案