小学数学案例分析一

时间:2019-05-15 08:29:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学数学案例分析一》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学数学案例分析一》。

第一篇:小学数学案例分析一

小学数学案例分析《让数学走进生活》

[ 教学片断 ]

(教师出示两张照片:本班的小朋友在打电话)。

师 :这两位同学在做什么呢?

生 :“她们在打电话。”

师 :“你们会打电话吗?你能说说怎样才能打电话给别人吗?”

生 :“先拿起电话,然后拨数字。”

师 :“拨的数字就是什么?”

生 :“是电话号码。”

师: “我们班的小朋友真聪明,还会打电话。那你们知道自己家里的电话号码吗?请你们小组合作,用学具盒中的数字,摆出家里的电话号码。”

生 :“摆好了。”

师 :“请你们数一数,你们家里的电话号码由几个数字组成?”

生 :“ 8 个。”

师 :“我们广州市的家庭电话号码都是 8 个数字,所以,你们打电话的时候,这 8 个数字一个也不能遗漏。你们想知道别的小朋友家里的电话号码吗?”

生 :“想。”

师 :“好!老师给你们一点时间,你们可以自由下位去记你们好朋友家的电话号码,记住带上纸和笔!”

(伴着欢快的音乐,同学们兴高采烈地去记电话号码。)

师 :“同学们刚才都记得很认真,你们想知道老师家的电话号码吗?”

生 :“想。”

(教师写出电话号码,学生记。)师:“ 如果学习遇到什么困难,就打电话给老师吧,老师帮你解决!”

生: “谢谢老师。” 案例分析:

《新课程标准》中指出: 数学来源于生活,我们的日常生活中有处处有数学。有感于此,教师设计了《生活中的数》这一节活动课,让学生走进生活,寻找生活中的数。

一、教学内容的选择和教学目标的定位都有新的突破。

本节课将“生活中的数”专门作为一节实践活动来进行教学,是教师对教材进行了创造性的重组。本节课的目标定位在“紧密联系生活实际,让学生感到生活中处处有数,数就在我们身边”,以及“用所学到的数去表示生活中事物的数量和顺序,体会用数学的乐趣”,教学目标较以往发生了质的变化,是一次大胆的尝试。

二、紧紧围绕“数与生活”设计教学环节。

这节课,通过录像演示,创设生活情境,在现实世界中寻找生活素材,将学生的视野拓宽到他们熟悉的生活空间。然后通过说一说、摆一摆、猜一猜、算一算等实践活动,让学生感到数学就在他们身边,看得见、摸得着。学生自始至终地参与观察、操作、猜测、验证、思考等多种实践活动,积极性非常高。

三、将学生的合作学习与交流落到了实处。

例如:教师请学生用学具盒里的数字卡片摆一摆家里的电话号码,学生活动时,因为学具盒里的数字只有 1 ~ 9,所以如果出现重复数字不够摆,学生自然而然地想到了同桌合作、小组合作,在不知不觉中与他人合作解决问题,分享成功的喜悦。因此,教师再让学生自由下位去找好朋友家的电话号码时,同学们都迫不及待地下位交流。还有小组猜小红和小刚分别住哪一层等活动,使合作学习和交流的仪式渗透到教学环节中去,潜移默化地培养了学生良好的与他人合作、交流和沟通的能力。

第二篇:小学数学课堂教学案例分析篇一

《角的认识》教学案例分析

思南县第二小学:赵彩霞

课堂提问是课堂教学普遍运用的一种教学形式。它的主要功能有:促进学生思考,激发求知欲望,发展思维,及时反馈教学信息,提高信息交流效益,调节课堂气氛,培养口头表达能力。课堂提问是一种最直接的师生双边活动,也是教学中使用频率最高的教学手段,更是教学成功的基础。

教师的课堂提问行为却存在很多不足,如提问方式单

一、内容简单、只针对少数学生,课堂中我们经常听到的是教师简单、随意、重复的提问,学生则是不敢或不愿回答问题,或不能、不善于回答问题。有些教师的提问得不到学生的配合,学生要么答非所问,要么答者寥寥,造成课堂教学的冷场,达不到预期的效果。

【案例】某教师教学《认识角》为了让学生感知数学与生活的联系,配合教师设计的“我们去旅游”的情景线索,出示了一系列与交通标志相关的实物:出示指示牌(长方形),转弯指示牌(三角形)和限速警示牌(圆形),手巾(正方形)等,让学生比较它们的不同(长方形、正方形、三角形都有角,而圆形没有角)。

师:这些是什么?

生:交通标志

师:它们有什么不同?

生1:有些是圆的,有些是方的 师:还有吗?

生2:它们表示的意义不同

师:什么不同?

生:转弯指示牌表示„„, 限速警示牌表示„„,生2:我不同意„..接着学生争论起来。

在这种“满堂问”的课堂里,教学气氛是活跃了,甚至显得有些热闹,但学生受益不多。我们老师总是想让学生体会数学与生活的联系,千方百计创设情景,再引出问题;在这些情景的渲染下,教师有意无意地会抛出一些无关的问题,并且认为完全尊重学生的所有问题和兴趣才体现了学生的主体作用。当生1已经讲到要害时,教师的那句“还有吗?”,本是想让更多的学生来叙述,提高课堂的参与度。不想教师的随意发问是画蛇添足。可见,教师的设问如果没有明确的目的,随意发问,就不能发挥相应的价值和作用。教师的问要适可而止,把握好度,当学生偏离基本的思维方向的时候,教师来一点“武断”的纠正也是必要的。

《三角形的面积》教学案例分析

思南县第二小学:赵彩霞

《三角形的面积》是小学五年级数学教材上学期第五单元“多边形的面积”的内容,这部分教材是在学生初步认识了长方形、正方形及平行四边形的面积的基础上,尤其是平行四边形面积公式的推导基础上开展的教学活动。结合本班学生的实际和学生已有知识设计教学活动,使他们有更多的操作机会,从猜想、操作、验证到得出结论,再到运用所学知识解决生活中的实际问题,感受数学与现实生活的密切联系,提高学生运用数学知识解决实际问题的能力,从而提高学生的综合素质。

【案例描述】

1、假设猜想:展示长方形、正方形、平行四边形、三角形的图片。说出前三种图形的面积的求法,观察猜测三角形的面积会怎样求。该怎样转化推导。

2、操作验证:根据你的猜想,动手操作验证一下吧,教师巡视指导。

反馈:谁愿意说一说,你是怎样操作的,得到什么样的结论。

根据学生描述得出结论:把一张三角形纸片的三个角向内对折,变成一个小长方形,得到长方形的长是原来三角形底的一半,宽就是三角形的高的一半,为此,三角形的面积等于小长方形面积的2倍。2倍与其中的一个“一半”抵消,还剩一个“一半”为此,三角形的面积等于底乘高除以2

3、继续引导:这个办法怎么样?谁还有不同想法,做法?

生:将三角形的顶角向底边平行对折,再沿折痕剪开,把得到的小三角形沿中间对折再剪开,分别补在剩下图形的两侧,变成一个长方形。三角形的底没变,高缩小了一半,为此,三角形的面积等于底乘高除以2

师:这个办法怎么样?

生:也很合理。(表扬,祝贺)

师:你还有其他做法吗?

生:选两个同样的三角形,将两个三角形颠倒相拼,拼出一个平行四边形,拼得的平行四边形的底是原来三角形底的2 倍,高不变,所以,三角形的面积等于底乘高除以2。

师:这个办法怎么样?看来同学们在探究三角形面积的推导想出的办法还真不少,那么,你感觉哪种办法最好?最有创意?

师:无论哪一种,我们都得出了同样的结论,就是:三角形的面积等于底乘高除以2。

4、共同把这个结论用公式的形式表示出来。

师:谁愿意到黑板面前写一下?

生:书写。集体订正。

如果用S表示三角形的面积,用a表示三角形的底,用h表示三角形的高,那么,你会用字母表示三角形的面积公式吗?

生:在练习本上书写,师巡视指导反馈,自由到板前书写。集体订正。

5、公式的运用:要想计算一个三角形的面积,需要知道哪些条件?

生:三角形的底和高。

师:那么,我们应用三角形的面积公式计算一些题好吗?

生:独立完成课本中做一做题目

6、小结:其实,生活中,有很多问题可以运用三角形的面积公式来求出,让我们共同走进生活解决一些生活中的问题。

师:(课件展示题目)

生:独立或与同伴合作研究完成。

总结:通过这节课的学习,你有什么收获? “三角形的面积”是一节常规性的课,关于这节课的教案不少,课我也听了不少,如何体现“观念更新,基础要实,思维要活”,我觉得以往老师们对教材的把握与处理,对课堂的设计以及处理都很不错,而这节课让我感触很深:

1、突破传统教学模式,思路独特新颖。

传统教学的种种封闭压抑了学生个性的发展,学生迫切需要一种展现自我,发展个性的体验式学习。以前的教学改革,大多停留在数学学科层面上,往往比较注重将教科书上的知识教给学生。在教学中。往往是教师清楚要教什么,为什么这样教和怎样教,学生却不知道自己要学什么、为什么学和怎样学。学生的学习缺少方向,缺少动力,缺少方法,他们学习的主动性、创造性很难得到发挥。因此,当前教育改革的重点应是以教师教学方式的转变来促进学生学习方式的转变,从而更好地促进学生的主体性发展。教师把整个学习过程放给学生,让学生小组合作,全员参与,共同探究,由感性认识上升到理性认识,让学生参与知识获得的全过程。

2、让探究式学习具有一定的开放度。

探究式学习要不受任何人的约束,要有一定的开放度。在上面这一环节中,教师注重教材的开放性和思考性,让学生有自主选择的权利和广阔的思维空间,如教师提供一些具有代表性的材料,让学生通过猜想、操作、验证等一系列的活动,在相互交流的过程中,理解三角形的面积公式,学生在操作活动中展现了自我,方法多样且独特,是以往教学所没有的,实在是妙不可言。既渗透了集合的思想,有助于学生空间观念的建立,也让学生看到了数学知识与生活的联系,感悟了生活中的数学。也为计算组合图形的面积奠定基础,同时也培养学生的实践能力和合作精神。3.建立新型民主的师生关系。

教师遵循儿童学习规律的同时,创造性的处理教材。在这个教学过程中教师找准学生的认知的起点,以几个图形图片为切入口,让学生观察、猜想。动手操作,折一折,剪一剪,分一分,补一补等,在这些过程中,教师以学生为主体,让学生自主探索,教师尊重学生,发扬教学民主,学生在小组合作时积极主动地参与和探讨、质疑、创造,并逐步的完成对知识的理解和深化,充分发挥学生的主体作用,较好的体现了教师是学习的组织者,引导者,合作者和共同的研究者。使学生达到对知识的深层理解,还培养了他们敢于探索、勇于创新的精神。亲历探究发现的过程,已不是一种获取知识的手段,其本身就是教学的重要目的。教师只有创造性地教,学生才能创造性地学。

从上述案例中,我们不难发现,学生学习方式的转变关键在于教师。教师要不断更新教学观念,真正树立以学生为主体的教学理念,相信学生,给学生充分的探究思维的空间,以发挥学生学习的自主性、创造性。

《统计》教学案例分析

思南县第二小学:赵彩霞

人人学习有价值的数学,人人都能获得必须的数学。人们在学习、生活、解决问题的过程中,经常需要进行调查、收集、整理数据,对现象、事实作出全面的、规律性的描述和分析,并以此为依据,作出决策和预测。统计是课程标准规定的四个领域之一,它在日常生活、生产和科研中有着很广泛的应用。依据课程标准的要求和教材所提示的活动方式资源,我们应从儿童的兴趣和生活经验出发,灵活选取素材进行教学,使学生学会一些统计的知识。以下我将对《统计》一课的教学案例进行分析。

统计同学们喜欢吃的水果

师:过几天我们要迎来小学的第一个“六一”儿童节了,我们准备召开一个联欢会,老师想为大家买一些水果。可是班费有限,只能买2种,买什么好呢?

生1:可以用举手的方法来决定买什么水果。

生2:可以投票,大家喜欢什么水果,就买什么水果。

师:你喜欢什么水果?生纷纷举手说自己喜欢的水果。

师:大家喜欢的水果有这么多,怎么办?请小组讨论

生汇报:用统计的方法,看同学们喜欢第一、第二多的水果是哪两种,就买那两种。

师:好,就用这种方法进行统计。下面大家依次上来,用准备好的星星贴在你喜欢的水果的图片上。学生上台用星星贴在自己喜欢的水果的图片上。

师:你们看哪两种水果最多人喜欢?这下你们知道买什么水果吗?(生齐声说)

师:那我们就买这2种水果。生活中用统计的方法可以解决很多问题,刚才我们用统计的方法解决“买水果”的问题。今后你们可以运用所学的统计知识去解决生活中的一些问题。

分析:

这个案例能贴近学生生活,从学生感兴趣的事例中选取素材进行教学。案例中,教师创设良好的学习情境,让学生从熟悉有趣的“庆六一”开联欢会买水果这件生活中的小事出发。由于学生喜欢的水果很多,可是只能买2种水果,产生进行统计活动的需要,必须从同学们喜欢的水果中选取最多人喜欢的2种水果。只有通过统计才能确定买哪2种水果。让学生经历收集信息、处理信息的过程,逐步体会统计的必要性。在这样一个良好的情境中,学生积极主动地探索、合作、交流,课堂成了学生创造灵感的空间。

体会与反思:课标强调学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。教师能依据课程标准的要求,结合学生的兴趣、贴近学生生活出发,灵活选取素材。重视创设良好的学习情境,让学生从熟悉有趣的“庆六一”开联欢会买水果这件生活中的小事出发进行统计活动。让学生经历收集信息、处理信息的过程。如:先要知道哪2种水果是最多人喜欢的?根据一年级学生的年龄特点,教学时教师非常重视学生的操作活动,用“贴星星”的方法,选择自己最喜欢的水果,只有让学生在直接的操作和感知的基础上才能逐步体会统计的必要性。

教师在课堂上要给学生留有充足的时间和空间,使每一位学生都能有效地参与讨论,发表自己的看法,倾听别人的见解。课学教学要有师生平等、开放的良好学习氛围,为学生提供畅所欲言的机会,让他们的思维活起来,真正成为学习的主人。案例中,教师本着同学生商量的语气“买什么好呢?”、“怎么办?”,让学生在这种轻松、自由的氛围中交流讨论,寻求解决问题的办法。学生的学习氛围浓厚,积极地投入到学习中去。

新课标强调:学生的数学学习内容是现实的、有意义的、富有挑战性的。教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。案例中,教师提出“开联欢会,由于班费有限,只能买2种水果,买什么好呢?”这里遇到了困难,产生了分歧,有了争执。教师把握机会组织学生讨论,这个讨论是必要的,也是适时和有价值的。这里融入了小朋友的猜测、验证与交流等数学活动。给予学生充分的自由空间,学生用自己喜欢的方法、方式,大胆地进行探索、创造,寻求解决问题的方法。教师紧密联系生活实际,让学生在统计的整个过程中真心体会到统计的意义和价值。这些都充分体现了学生的数学学习是一个生动活泼、主动的和富有个性的过程。教材是教师教学的重要依据,但绝不是教师教学的唯一标准。因此,在教学中,教师要敢于创造性地使用教材,立足于学生的实际,多从学生的发展出发,让学生学有意义、有价值的数学。教师不再是知识的仲裁者,课堂的控制者,而是学生探究学习活动的组织者、引导者和合作者,是学生平等相处的伙伴。当探究进程中出现一系列问题时,教师不急于求成,而是充分信任、肯定学生,放手让学生尽情地发挥自己的聪明才智,规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决。当学生投入到自己乐于探究的活动中,非常乐于用自己的方法来自主探索知识时,就能获得成功的体验。

小学数学《计算教学》案例分析

思南县第二小学:赵彩霞

小学数学教学应结合小学生的认知发展水平和已有的知识经验展开,为学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,让课堂数学“活”起来,即让学生在课堂中“活”起来。要使小学生在数学课堂中“活”起来,不妨从以下方面做起:

一、将生活融入数学,让学生体味数学乐趣

实践表明,通过寻找与学生生活相关的实例,有目的地将生活中的数学问题提炼出来,再将数学知识回归生活,既能让学生感受生活化的数学,用数学眼光看待周围的生活,增强学生生活中的数学意识,又有利于发掘每个学生自主学习的潜能,这无疑是提高学生学习数学积极性的“活力源泉”。因此在教学中教师应该倍加注意:

1、把生活实例融入数学教学。从学生已有的生活经验和知识背景出发创设问题情境,开放小教室,把生活中的鲜活题材引入数学学习的大课堂。既要让学生感受到所面临的问题是熟悉的、常见的,同时又是新奇的、富有挑战性的。一方面使学生有可能去进行思考和探索,另一方面又要使其感受到自身已有的局限性,从而处于一种想知而不得、欲罢而不能的心理状态,引起强烈的探索欲望。因此,教师在教学中要联系生活实际,吸收并引进与现代生活、科技等密切相关的具有时代性、地方性的数学信息资料来处理教材,整合教材,重组知识。

2、把数学问题回归于现实生活。要创设运用数学知识的条件给学生以实际活动的机会,使学生在实践活动中加深对新学知识的巩固理解。如:在教学完“相遇应用题”例题后,可问:“现实生活中,只有例题这一种行走的情况吗?”在教师的引导启发下,学生列举出了现实生活中其它的一些合情合理的实际情况后,教师可让学生将提出的问题重新编成应用题,自己探究解决。只有真正运用数学知识解决生活实际问题,才能激发学生的学习热情,使学生切实感到数学就在自己的身边,体会到数学学习的趣味性和实用性。又如:教学“最小公倍数”时,可让学生报数,并请所报数是2的倍数和3的倍数的同学分别站起来。

问:你们发现了什么?

生:我发现有同学两次都站起来了。

教师请两次都站起来的同学,说出他们自己报的数:6、12、18„„发现它们既是2的倍数,又是3的倍数。

师:像这样的数还有18、24、30„„

由此引出课题:公倍数。让学生列出一些2和3的公倍数6、12、18、24、30„„

师:请找一个最大的?最小的是几?

生:找不出最大的,不可能有一个最大的,最小的是6。

师:说得真好。2和3的公倍数中6最小,我们称它是2和3的最小公倍数。(接上面板书前填写“最小”)2和3的公倍数很多,而且不可能有一个最大的公倍数,所以研究两个数的公倍数的问题一般只研究最小公倍数。今天,我们就学习有关两个数的最小公倍数的知识。

这里,老师从学生最熟悉的报数游戏入手,把生活经验融入教学中。因为报数游戏是每个学生都经历过的,一下子调动起学生学习的积极性。让学生通过报数,并请符合条件的学生“站起来”这一动作,吸引学生的注意力。上面这些所作所为都是学生经常玩的游戏,教师把生活实际融入教学中,使课堂活跃起来。他们通过观察发现有的同学站两次,为什么会站两次?教师再引导学生展开讨论,在宽松、民主、自由的气氛中,学生把抽象的公倍数、最小公倍数的概念一下形象化了,不仅使学生理解知识,还让学生感受到数学就在身边,生活中处处有数学。

二、转变教育教学观念,把课堂还给学生

过去的课堂教学评价注重教师教的过程,现在重视学生学的过程和体验;过去多关注教师教的行为,现在更多关注学生的创造;过去是有条不紊的程式化模式,现在是注重个体的差异,突出学生的个性特点。这样,面对新课程教师必须走下“一言堂”的讲坛,多给学生机会,让他们能就所学的内容大胆发表自己的看法,互相取长补短,集思广益,使课堂成为“海阔凭鱼跃,天高任鸟飞”的学习天地。因此在教学中教师应该做到让创新与实践充满课堂。只有营造和谐、自主、有创意的课堂氛围,摒弃那种教师高压式、灌输式、一问一答式等单调乏味的教学模式,让学生在课堂上自由大胆地表现出好奇心、挑战心、想象力、动手能力等,才会使学生的思想无拘无束,创新灵感凸显。如:教学“用9的口诀求商”时,复习“9的乘法口诀”,教师让学生用“9的乘法口诀”编除法算式。学生热情极高地编起算式来:

生1:9÷1

生2:18÷2

生3:45÷9

生4:3÷9

生4刚说完,其他学生都喊起来:“老师,他编错了。”这位同学难过地低下了头,羞得快要哭了。这时,教师走到那位同学身边,轻轻抚摸他的头说:“同学们,其实他很了不起,这道题他没编错,只是要等到我们上六年级的时候才会做呢!”(同学们都很诧异,过一会,教室里响起热烈的掌声,这位同学也慢慢抬起了头)

教师利用学生错误算式进行改编:谁能把“3÷9”这个算式的“3”重新换成一个数,使它成为一道我们目前能解决的除法算式?

生1:把3换成27

生2:把3换成72

(学生激情高涨,课堂气氛异常活跃)

师:如果“3”不动,怎样添上一个数,使它成为一道除法算式呢?

生1:把“3”的前面添“6”,就是63÷9 = 7

生2:在“3”的后面添“6”,就是36÷9 = 4

„„

这里,正是教师轻轻的抚摸、充满赞赏的鼓励在生4的内心激起波澜,使他重新找回了自信。“谁能把‘3÷9’这个算式的‘3’重新换成一个数,使它成为一道我们目前能解决的除法算式?”正是老师灵活的教学机智,才激起了学生后续的动力,才使课堂焕发生命的活力。课堂教学中教师应更多地关注学生、关爱学生、欣赏学生,使学生体会到学习活动对他们来说不是一种负担,而是一种享受、一种愉快的体验。在这个案例中,教师能及时捕捉孩子的闪光点,并给予积极的评价,得到每个孩子的认可。教师利用学生的错误,巧妙设计,走出教材的框框,使课堂成为学生畅所欲言、放飞思维的场所。

三、让学生在自主探究中学数学,体验做中学

课堂中应设计一些具有探究性和开放性的数学问题,把课本中的既成结论转化成学生探究的素材,使静态的知识动态化,探究的思路新颖化,解题的方式独特化,让学生边学边用,而不是学后通过单纯的复习去巩固掌握所学的知识。如:教学“圆的认识”时,可通过让学生对折圆片,动手量折痕,使学生认识到圆的一些特点:这些条折痕都通过一个中心点,沿着折痕描画下来的线段两端都在圆的边沿上。一个圆中像这样的折痕是描不完的,对折后,两个半圆完全重合在一起,大小是一样的。教师小结:大家通过动手操作,发现了圆的这么多知识,其实,大家把圆对折后,描下来的一条条线段就是圆的直径,这些直径的交点就是圆心。

在这里,教师讲得不多,而是放手让学生自己动手操作,通过对折圆片,描下折痕,仔细观察、思考、交流等活动,让学生逐步认识圆心,发现直径的本质特征。整个过程至少有以上的时间让学生主动地、创造地学习,使学生的聪明才智和学习兴趣得到了充分发挥。让学生通过亲自操作、讨论、交流等方式,把抽象、枯燥的数学概念具体形象化,符合学生的年龄特征和认知特点。

《平行四边形面积公式》推导的教学案例分析

思南县第二小学:赵彩霞

⒈布置学生独立思考的内容:我们如何把平行四边形转化为已经知道面积公式的平面图形来研究它的面积公式呢?

⒉学生合作交流不到2分钟,当教师发现有一个小组的同学“过平行四边形的一个顶点作平行四边形的高,把平行四边形分割成一个直角三角形和一个直角梯形,然后再等量拼成一个长方形,所以平行四边形的面积就是底乘高”的方法后,就立即宣布合作结束。

[案例分析] 《新课标》明确指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,获得广泛的数学活动经验。案例中教师先让学生独立思考,再让学生合作交流,这样的安排是合理的、恰当的。因为合作必须建立在学生个体需要的基础上,只有学生经过独立思考,有了交流的需要,再开展合作学习才是有价值的和有成效的。

教师在学生合作交流不到2分钟发现有一个小组得出计算方法时就立即宣布合作结束在时机上是不合适的,这样的做法是不得当的。因为在合作交流的过程中,需要有充分的交流的时间和充分从事数学活动的机会,让学生在自己的小组里交流自己的看法,形成统一的意见。只有大部分的学生或普遍学生在自己的小组里交流自己的看法,形成统一的意见后才能宣布合作结束。

《两位数乘一位数的口算》的教学案例分析

思南县第二小学:赵彩霞

1、出示买卖的情境图:泳圈的单价12元,篮球的单价15元。

2、引导学生提出数学问题。

3、探索算法多样化。

师:买3个球需要多少钱?算式怎样列? 生:15×3= 师:应该怎样算呢? 生1:我用加法15+15+15=30+15=45(元)生2:我用乘法10×3=30 5×3=15

30+15=45(元)生3:把15看成3个5,共有9个5,得45(元)师:你喜欢用什么方法? 生1:用加法。

师:用加法也可以。

生2:用乘法。

师:好的。

④练习13×3

70×5

24×2

13×5

31×3

34×2

24×4

师:你喜欢用什么方法就用什么方法。

学生练习时笔者观察了7位小朋友所用的方法,其中有4位是采用加法的„„

[案例分析]《数学课程标准》指出:能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。算法多样化就是鼓励学生独立思考,鼓励学生尝试用自己的方法来计算。由于学生不同的的生活经历和知识能力水平,同一道题目不同的学生常常找到不同的解题策略。在教学中,由于每个学生都有自己的计算方法,学生不再是一个依赖教师的模仿者,而是独立探索的求知者。同时算法多样化与算法优化是不矛盾的。两者可以而且应该统一于学生探究学习的过程中。应把优化的过程作为一个学生主动寻找更好的方法的过程来展开,不要追求全班算法的高度统一,应当充分尊重学生自己的选择,只要学生认为合适,自己喜欢,教师应当加以肯定与鼓励。

案例中教师鼓励学生尝试用自己的方法来计算,用不同的解题策略解决同一道题目,体现了算法多样化,为学生之间和师生之间的交流提供了很好的条件,有利于激发学生的创新意识,逐步形成创新的习惯,使得每个学生都能着手解决问题,品尝成功的喜悦。接着鼓励学生用自己喜欢的方法计算。这样的处理是恰当的。应该提倡学生用自己擅长的方法算,这样才能呵护学生的主体意识,实现不同的人在数学上得到不同的发展。

但是教师应致力于让学生用自己喜欢的方法在计算的过程中发现差距,从而选择最恰当的方法来解题,达到算法最优化。

因此,本案例中,教师还应该引导学生发现解题规律,屏弃学生自己低水平的解题策略,让学生自己来选择最恰当的方法来解题,实现算法优化,从而为以后的学习奠定基础。

《平均数》教学案例

思南县第二小学:赵彩霞

师:你们喜欢什么球类运动?

生1:我喜欢足球。

生2:篮球。

生3:乒乓球。

师:由于受到场地的限制,我们只能在这里进行一次拍球比赛,你们看怎么样?

生:好。

师:那我们以这里为界,一分为二,这边算一队,那边算一队。第一件事,先给自己的队起一个自己喜欢的名字,然后派一个代表把名字写在黑板上。第二件事,咱们得商量商量,这么多小朋友参加比赛怎么个比法,你们得出点招儿。听懂了吗?

学生七嘴八舌商量开了,一分钟后,一个同学在黑板上写了“胜利队”。另一对用了老师的名字

师 :为什么用老师的名字呢?

生:因为您的课讲得特别好,我们用您的名字,一定能赢。

师:行行行。队名产生了,那咱们怎么比呢 生:选出每个队最厉害的一位参加比赛。

师:那你们选吧,再挑一个裁判,每队再请一个小朋友纪录。

预备,开始!20秒后,老师喊停,然后统计:“吴正队”:30,“胜利队”:29。

下面我宣布,本次比赛胜利者为“吴正队”。“胜利队”服不服气?

“胜利队”:不服气!

师:为什么?

生:就一个人能代表我们吗?应该每队再选几个。

师:我建议每队再选三个人,好吗?

(每队三人继续比赛,老师把每个人的拍球数写在黑板上。)师:下面用最快的速度算出“胜利队”和“吴正队”的总数各是多少,报数。

生;118,124.师:现在胜利者是“吴正队”,可以吗?

生:不可以。

师:别急,虽然现在咱们落后,但老师决定加入“胜利队”,欢迎吗?

胜利队:欢迎!

师:现在把老师拍的22个加进来,算一算一共多少个?

生;140个。

师;下面我宣布,今天的胜利者是“胜利队”。

生:不同意!

师:为什么? 生;胜利队有5次拍球机会,我们只有4次,不公平。

师;哦,在人数不等的情况下,我们还用总数这个统计量来比较,显然不公平,那么,在人数不等的情况下,我们能不能比出两个队总体的拍球水平呢?

(学生开始思考,相互交流。)

(终于有一个声音出现了:在人数不等的情况下,可以先求平均数。)

吴:怎样求平均数呀?

生;就是用拍球的总数,除以拍球的人数。

点评:排球是孩子喜欢的游戏,老师把游戏引进课堂的时候,在许多环节上都进行了改造:让学生自拟队名、自定比赛规则,是要培养学生的参与意识,是为了激发学生内在的学习动力;教师选择加入,是为了加深学生对平均数意义的体会,从而激发学生对平均数知识学习的需要。实际上,几乎每个环节都自然的指向对平均数的理解。一个原生态的生活情境,是难以有如此明显而丰富的教学意义的。

《 二 分 之 一》教学案例

思南县第二小学:赵彩霞

“把一个圆分成两份,每一份一定是它的1/2吗?”在学习1/2时,这个问题搅起了课堂的波澜。每个同学经过独立思考都纷纷发表了自己的意见,有的同意,有的不同意,无形之中就形成了两大阵营。正方、反方分别选出两名代表站在台前,一场唇枪舌战即将开始。

吴老师顺手递给一边一张圆纸片,宣布:“同意不同意都要提出问题,如果能问得对方心服口服,同意了你的观点,就是胜利者。这张纸可以折,可以撕。下面的同学两人一组,先讨论一下。”

讨论过后,同学们把目光集中到讲台前,吴老师对座位上的学生说:“我们请正方和反方的代表发表自己的意见,可以吗?我们静静的听,然后还可以发表自己的意见,看那位同学最会倾听别人的发言。”辩论开始。正方同学把圆从中间对折,问:“这一半不是1/2?既然你们都承认,为什么不给老师画勾?”大有先声夺人之势。反方同学把圆随意撕了一小块下来,问:“这圆是不是两部分?”

正方:“是。”

反方:“这两半都是圆的1/2吗?”

正方:“不是。”

反方:“既然不是,为什么你们还认定把一个圆分成两份,每一份都一定是1/2呢?”好一个咄咄逼人的反问。正方仍然不服气:“我们怎么就得到1/2呢?”坐着的同学开始按捺不住了,举手发言。一个说:“这个圆可以折成1/2,也可以不折成1/2。”真是一语中的。另一个说:“如果一个圆平均分成两份,每份是1/2,但这里说分成两份,怎么分都行。”他在“分成两份”上特别加重了语气。理越辩越明,几个回合下来,大家就达成了共识:这句话错就错在“一定”上,如果一定是1/2的话,前面应该加上“平均”这个词。这是对分数本质意义的认识。

点评:数学是其他自然学科的皇后,良好的数学素养离不开周密、严谨的思维。当然,这种严谨的思维习惯,不是靠教师的严厉逼出来的,而是要让学生在切身的体验中、在解决问题的活动中慢慢养成。教师所能做的职能是引导。

圆的周长教学案例分析

思南县第二小学:赵彩霞

课上,学生四人一组围桌而坐。桌面上摆放着水杯、可乐瓶、圆形纸片、刻度尺、绳子和剪刀。吴老师说:“龙潭湖公园有一个圆形花坛,为了保护花草,准备沿花坛围一圈篱笆,需要多长的篱笆呢?你们能帮助解决这个问题吗?请用手中的工具,小组合作探索周长的计算方法。”话音一落,学生们就忙开了。他们兴致勃勃的设想着各种方法,全身心投入到问题的探索之中。

过了一会儿,小组代表开始发言。A组抢先说:“我们小组是把圆形纸片立起来放在刻度尺上滚动一圈,就测出了它的长度。”

吴老师肯定了他们积极动手、动脑参与学习,但同时提出:“如果有一个很大的圆形水池,要求它的周长,能用你们小组的方法把水池立起来在刻度尺上滚动一圈吗?”

“是啊,行吗?”A组的同学陷入了沉思。

接着,B组代表有几分得意地向大家推荐自己小组的做法:“我们研究了一个好方法,先用绳子在水池周围绕一圈,再量一量绳子的长度,不就是水池的长度了吗?”

“好!好!这的确是个不错的方法。”吴老师称赞道。这话在B组同学的脸上洒下了一片灿烂。

停顿片刻,吴老师拿出了一端系有小球的线绳,在空中旋转了一圈,又旋转了一圈,问:“小球走过的地方形成了一个圆,要想求这个圆的周长,还能用你们的方法吗?”同学们摇摇头,再次陷入沉思。“我们又发现了一种求圆周长的方法。”一个兴奋的声音从教室里掠过,C组的同学发言了:“将这张圆形的纸对折三次,这样圆形的周长就被平均分成8段,我们测量出每条线断的长度是2厘米,8段是16厘米,也就是圆的周长。”

很有创意,吴老师竖起大拇指,“你们用折纸的方法求出这个圆的周长,很了不起。但是用滚动的方法、绳绕的方法、折纸的方法只能求出某些圆的周长,都有局限性。我们能不能找到一条球圆周长的普遍规律呢?

学生的思维又活跃起来,把对圆周长的探索推向了一个新的高潮。

经过一番思考,学生们提出了这样一个问题:“是什么决定了圆周长的长短?圆的周长到底与什么有关系?”观察、操作、实验,同学们终于发现圆的周长是它的直径的三倍多一些。规律找到了,同学们沉浸在成功的喜悦之中┄┄

点评:老师善于创造绚丽的思维波澜景观,总是恰到好处地打破学生的思维平衡,使学生原有的认识、经验受到挑战,形成适当的失衡,从而促使学生去探索、去创造,以寻找新的答案。如此循环往复,就使得学生的思维一步步深化,一步步逼近真理,一次比一次飞溅起更高的浪花。

分数的初步认识教学案例

思南县第二小学:赵彩霞

在“分数的初步认识”这一课上,我请部分同学到黑板上用画图的方式表示自己心目中的一半。学生按照自己的想象,划出了不同的1/2图。

“同学们,你们知道有一种非常科学简单的表示方法吗?”在学生们七嘴八舌的猜测中,自然而然的引出了1/2的概念,然后问:“那你们看1/2能不能代表你们画的这些图的意思呢?”“如果你认为它可以,就把你画的图擦掉,如果你认为1/2没有你画的图漂亮或不能代表,可以不擦掉。”多数同学都擦了,只有几位同学没有擦。没关系,吴老师等待着,让他们慢慢去体会。

在临下课前,我安排了一个环节,请两个同学到黑板前用画图的方法来表示5/100。画着画着,一个男孩对老师说;“画不了了,太麻烦了。”我问:“那你说是画图好还是分数好?”“分数好。”看来他是真的体会到分数的价值了。另一位女同学还在埋头画她的5/100,我又在分母上加了一个“0”,变成了5/1000。微笑着对同学们说:“她愿意画就画吧。”5/1000该怎么用画图表示呢?就让女孩继续想吧,最终她会感悟到用分数表示这个关系是又准确又简单的。

点评:这种等待在课堂上是经常需要的。这是一份源自博爱的宽容。宽容让学生敢于展示真实的自我,勇于正视自己的不足,宽容让学生的智慧充分涌流。一个教师之所以博大,就在于它告别了强迫学生认同的习惯,学会了等待,学会了宽容。

《平行四边形面积》的教学案例分析

思南县第二小学:赵彩霞

出示一平行四边形,引导学生求面积。出示:平行四边形纸片,给出底和高的数据。

师:谁来说说你是怎么求的?

生:我把平行四边形象这样剪开。(拿着一平行四边形纸片,并演示)拼过来就是长方形了,这个长方形面积就是它的面积。

师:小组讨论一下,平行四边形的底与高和长方形的长与宽有什么关系?面积呢?

生:(讨论、汇报略)

师:所以平行四边形的面积就等于?

生:底乘以高。

出示:平行四边形纸片,没有给出数据

师:谁说说你是怎样求的?

生:(汇报同A过程,加了一些进行测量的话,略)

师:好!你们都会求了!那再试试桌子上的第二块平行四边形纸片,它的面积是多少呢?看谁最快。

生继续剪拼、测量

师:谁再说说面积是多少?你是怎样做的?

生:(汇报略)。

师:咱们再比赛,看谁最快地求出第三块平行四边形纸片的面积。(生继续剪拼、测量,有个别同学开始不剪,直接测量了。)师:这位同学最快,你能说说你为什么会这么快?

(生回答,意思是不要剪,直接想象出长方形。略)

师:你在脑海中完成了拼剪的动作。好!再来一次,求出第四块的面积,看谁最快。

大部分学生不再去剪拼,而是直接测量了。)

师:好!大家都快起来了!你们是怎样做的?(生汇报略)

师:那也就是,只要测量出这个平行四边形的什么,就可以求出它的面积?

生:底和高。

师:为什么呢?

同样是推导平行四边形的面积公式,一个是在教师的引导下,通过观察得出的,另一个是在情急的状态下,急中生智,由学生自己想出来的,由于需要而主动地进行了比较,发现了规律。引导学生经历数学过程,就要多一些这些“迫切需要”的情景!

《长方体的认识》教学案例分析

思南县第二小学:赵彩霞

教学:先认识生活中的长方体

师:拿出你的长方体,观察一下它有几个面?面又有什么特征呢?(生观察,并汇报)

师:再看看,它的棱又有何特征呢?(生继续观察汇报)

师:长方体还有几个顶点?

生:8个。

师:谁来完整地说说长方体的特征? 教学:先认识生活中的长方体

师:好!同学们都认识了长方体,那你能用橡皮泥做出一个长方体吗?

(生动手做,并展示、汇报和交流)

师:大家的长方体作品真漂亮。(出示一长方体框架)这是一长方体框架,你们有本事,也能把它给做出来吗?

(生动手做,并展示、交流。)

师:老师想请教一下,你们刚才用了几根小棒,用这些小棒有什么特别的要求吗?另外用橡皮泥捏了几个点呢?

(生汇报交流,师板书棱的有关特征。)

师:冬天到了,你能象老师这样,给框架穿上衣服吗?(出示一个用纸做面,包好了的长方体)想想看,应用剪刀剪出怎样的纸片?(生操作、汇报、交流)

师:刚才剪出的纸片又有什么特点呢?

通过观察去认识与通过体验去认识,认识的深度是不一样的,参与的情感也是不一样的,留下的印象更是不一样的。

第三篇:小学数学案例分析

小学数学案例分析

1、案例描述

两位教师上《圆的认识》一课。

教师A在教学“半径和直径关系”时,组织学生动手测量、制表,然后引导学生发现“在同一圆中,圆的半径是直径的一半”。

教师B在教学这一知识点时是这样设计的:

师:通过自学,你知道半径和直径的关系吗?

生1:在同一圆里,所有的半径是直径的一半。

生2:在同一圆里,所有的直径是半径的2倍。

生3:如果用字母表示,则是d=2r。r=d/2。

师:这是同学们通过自学获得的,你们能用什么方法证明这一结论是正确的呢?

生1:我可以用尺测量一下直径和半径的长度,然后考查它们之间的关系。师:那我们一起用这一方法检测一下。……

师:还有其他方法吗?

生2:通过折纸,我能看出它们的关系。…… 思考题:

(1)、两案例的主要共同点是什么?(2)、是否真正了解学生的起点?

(3)、从线性与非线性的观点分析两教法。预测两教法的教学效果。案例分析:

两个案例都注重学生的实践操作,注重了学生的认知过程。从当堂的教学效果看,前者课堂气氛沉闷,学生是被教师牵着鼻子做;而后者课堂气氛活跃,师生关系融洽,学生操作积极投入。同样是采用了体现学生主体性的教学形式——实际操作,为何效果迥异?笔者认为其中的原因是:教师是否真正掌握了教学设计的要素,是否真正了解学生,真正找到了适合学生学习的教学方式。

对于六年级学生而言,“半径和直径关系”通过自学已经明了。而教师A无视学生的学习能力,以为学生未知,引导学生操作;面对已知结果的操作探索,学生索然无味,激不起操作的热情。教师B则充分正视学生的现实,调整教学思路,把对未知的探索变为对已知的思辨。

教师设计,是学生不断激活“内存”的过程。建构主义是非常强调个体的经验的,个体的一切学习活动都是以经验为基础展开的,让学生充分调集和展示经验,是师生高效对话的前提。我们不仅要充分承认学生不是一张白纸,还要尽可能了解学生已经有了哪些颜色。很明显,第二位老师已经为学生创设了一次成功的数学活动,我们可以预测这样的活动一定能让学生感受到了数学的无穷魅力。这种魅力,一方面是因为它承接了学生原有的认知经验,学生感受到数学很简单、很日常、很好玩,有信心,有兴趣去学习。另一方面,学生通过多感官的活动,探究这些亲切有趣的现象背后的原理,建立一定的数学模型,培养一定的数学能力,由此得到更多的发展空间和持续动力。

2、案例描述:

教学“乘数是三位数的乘法”时,原题的内容是一个粮店三月份售出面粉674袋,每袋25千克,一共售出面粉多少千克?这样一道例题让学生感觉与自己生活太远,和白己的关系又不是很密切,所以不能激发学生学习的兴趣,如果照着原例题讲,学生肯定会觉得枯燥无味。于是,我们联系学生的生活来进行延伸。上课伊始,就让学生猜测一个滴水的水龙头每天要白白流掉多少千克水?学生们一听是生活中经常能遇到的事情,兴趣盎然,有的猜测5千克,有的猜测10千克,还有的猜测20千克,有个别学生看到了课后的内容说出来是12千克。教师接着问,照这样计算,一年要流掉多少千克水?学生马上算出平年是4380千克,闰年是4392千克。随着计算结果的出现,学生觉得非常吃惊:“哇!这么多呀!”看着学生吃惊的样子,教师又提出新的要求:“你家所住的楼房一共有多少户?如果按一家一个水龙头计算,一年要白白流掉多少水?”

思考题:原题与改动后的题目比较有什么异同(包括与学生生活的联系、目标的维度、教学效果)?

案例分析:虽说都是“乘数是三位数的乘法”的应用题,但是由于学生对来源于生活的素材感兴趣,所以他们感觉不难而且有趣,同时体现了课程综合化要求,使学生受到了节约用水的教育。这样,把教材中缺少生活气息的题材改编成了学生感兴趣的、活生生的题目,使学生积极主动地投入到学习生活中,让学生发现数学就在自己身边,从而提高了学生用数学思想来看待实际问题的能力。

3、案例描述

北师大版二年级下册“派车”的教学片断:

(1)出示问题:假期里,我们班将组织25名优秀学生进行社会实践夏令营,学校安排面包车、小轿车两种车接送。其中面包车每辆限乘8人,小轿车每辆限乘3人。假如你是老师,你将如何派车?

(2)学生独立思考后并在小组内交流。(3)学生汇报:

生1:派2辆面包车和3辆小轿车,算式:2×8=16(人)3×3=9(人)。师:掌声鼓励!

生2:派4辆面包车,留7个坐位放行李。算式:8×4-7=25(人)生3:派5辆面包车。师:说说你的理由。

生3:每辆面包车坐5人,留3个坐位放行李,算式:5×5=25(人)师:也可以!

生4:派6辆面包车,其中5辆面包车每辆坐4人,一辆坐5人,空位放行李。…… 学生海阔天空的答,而教师不管学生如何回答,都一一加以肯定,以示教学的民主,体现“鼓励解决问题策略的多样化”。待过了20分钟,学生说出了11种派车方案(其中有8种方案空位超过一辆车的坐位)时,教师小结并布置了练习:同学们真能干,想出了这么多的方案,每种方案都有自己的特色。如果增加4位教师,共有29人,你又会怎样派车呢?……

案例分析(从解题策略多样化要注意的有关问题的角度分析):

解决问题策略的多样化是对几十个人去解决同一个问题而言的,并不是每一个学生都要求能用不同的方法去解决同一个数学问题。因此,对于学生个体来说,不同学习能力的学生应有不同的要求,学习能力低的学生只要求能用一种方法解决问题,学习能力高的学生要求用不同方法解决同一问题。

过于追求算法多样化,往往会造成学生对每种算法的理解不够深入,思维仅仅停留在横向的比较层面上。而现在一般强调的算法要优化,实质是为了使学生的思维能够纵向地、深入地发展,同时算法的优化也有利于更好完成一堂课的教学目标,如本课“寻求租车的多种方案”的目标。因为优化的方法往往是已经公认的、适合大多数学生掌握的、有推广和使用价值的方法,学生只有在掌握优化方法的前提下,才有可能去完成熟练的技能。

4、案例描述:

师:(呈现一个长方形和一个正方形)这两个图形分别是什么? 生:左边的是长方形,右边的是正方形。师:今天我们继续学习长方形与正方形。

师:(边比划边说)通过折一折量一量,你能发现长方形与正方形的边有什么特点,用直角三角板的直角量一量长方形与正方形的四个角,你能发现什么?

(学生以四人小组为单位根据教师提供的材料与指定的方法探索)生1:我们组发现了长方形对边相等,四个角都是直角。师:通过什么方法发现的?

生1(边比划边说):用尺子量、用折纸的方法发现了长方形的对边相等、正方形的四条边相等,用直角三角板的直角量长方形和正方形的角,发现四个角都是直角。

师:还有不同的吗?

生2:我们组是用绳子量的方法发现长方形的对边相等、正方形四条边相等的。案例分析(从问题的品质的角度分析):

一是应当明确、具体可感;二是应当具有思考价值;三是要关注多维教学目标的达成;四是问题要具有情境功能。

5、[案例描述] 平行四边形面积公式推导的教学片断:

⒈教师布置学生独立思考的内容:我们如何把平行四边形转化为已经知道面积公式的平面图形来研究它的面积公式呢?

⒉学生合作交流不到2分钟,当教师发现有一个小组的同学“过平行四边形的一个顶点作平行四边形的高,把平行四边形分割成一个直角三角形和一个直角梯形,然后再等量拼成一个长方形,所以平行四边形的面积就是底乘高”的方法后,就立即宣布合作结束。

案例分析(主要从与合作学习有关的因素的角度上加以分析)作为新课程倡导的三大学习方式之一,小组合作学习在形式上成为了有别于传统教学的一个最明显特征。它有力地挑战了教师的“一言堂”的专制,在课堂上给了学生自主、合作的机会,当前,很多教师都已经有意识地把它引入课堂,但很多时候的小组合作只是作了个形式而已。

在组织小组合作学习前,你可以先回答下列问题:(1)为什么这节课(或者这个环节)要进行小组合作学习?不用可以吗?(2)如果要用,什么时候进行?问题怎么提?大概需要多少时间?可能会出现哪些情况?教师该如何点拔、引导?(3)如何把全班教学、小组教学、个人自学三种具体的教学形式结合起来,做到优势互补?(4)学习中,哪些内容适合进行班级集体教学、哪些内容适合小组合作学习、哪些内容适合个人自学?

小组合作学习与传统的教学形式不是替代的关系,而是互补的关系。广大的教师在小组合作学习的研究和实践中要有一个科学的态度,不要从一个极端走向另一个极端,从而将传统的教学形式说得一无是处。不讲原则的过多的合作学习也可能限制学生思考的空间,对学生个人能力的发展也是不利的。

6、[案例描述]

北师大版三年级上册《需要多少钱》(两位数乘一位数的口算)的教学片断: ①出示买卖的情境图(图标有泳圈的单价12元,篮球的单价15元)。②引导学生提出数学问题。③探索算法多样化。

师:买3个球需要多少钱?算式怎样列? 生:15×3=

师:应该怎样算呢?

生1:我用加法15+15+15=30+15=45(元)生2:我用乘法10×3=30 5×3=15 30+15=45(元)生3:把15看成3个5,共有9个5,得45(元)师:你喜欢用什么方法? 生1:用加法。师:用加法也可以。生2:用乘法。师:好的。

④练习13×3 70×5 24×2 13×5 31×3 34×2 24×4 师:你喜欢用什么方法就用什么方法。

学生练习时笔者观察了7位小朋友所用的方法,其中有4位是采用加法的…… 案例分析(主要从算法多样化与优化的层面上加以分析):

有的教师认为,如果对算法进行优化,那就谈不上算法多样化,似乎多样化与优化之间存在矛盾。其实不然,方法和方法之间根本不存在优劣之分,任何优越性与不足都是与一定的环境相联系的。算法优化是学生个体的学习、体验与感悟的过程,不是群体或教师的优化。对个体而言,是个体对原有的计算方法优化的过程,是个体思维发展、提高的过程。如果不对算法进行优化,那么我们的学生就没有收获,没有提高。

在优化算法的过程,教师必须注意两点:第一,优化的主体是学生,要尊重学生的想法,教师应把选择判断的主动权交给学生,优化的过程是学生自我完善的过程,产生修正自我的内需,从而“悟”出属于自己的最佳方法。教师在评价算法时,不要讲“优点”,而要讲“特点”,把优点让学生自己去感悟,这才能达到优化的目的。第二,教师要明确“优化”并不是统一一种方法,把优化的过程作为引导学生主动寻找更好方法的过程,尊重学生的选择,只要学生认为合适、自己喜欢,教师就应加以肯定和鼓励。

7、请你举一个体现以学生为主体的教学设计的片断。

教学“平行四边形的面积公式”的推导时,先回忆长方形面积公式的计算,并有意渗透转化的思想,然后教师让大家想一想谁能把平行四边形转化成长方形,导出平行四边形面积的计算公式,比一比谁的方法的最新颖、独特、有创造性。学生们在这样的情境中创新,边思考、边讨论边操作,得出了多种推导方法。

8、[案例描述]

一年级上册P34《跳绳》(8和9的加减法)的主题图上有:1幢教学楼,教学楼边上有1面五星红旗和许多树木,操场上有8个小朋友在跳绳,问题是“说一说”。下面是教师B按教材教的教学片断:

①出示挂图。②提问题。

师:看了这幅图,你发现了什么? 生1:我看见了房子? 师:你真能干。生2:我发现了红旗。生3:我发现了树木。生4:我发现了小朋友在跳绳。生5:我发现了地上有小草。……

教师不管学生如何回答,都一一加以肯定,以示教学的民主。待过了5分钟,教师急忙抛出:“谁能提出有关8的加减法?”

案例分析(主要从问题的目的性与开放性的角度分析):

我们广大教师在设计问题时,首先考虑到的是问题的开放性,在数学探究过程中,设计出了大量的开放性的,具有一定思维空间的问题。但是,这些问题同样存在了目的性不强,答案不着边际的弊端,学生在回答这类问题时,出现了这样那样的答案,老师对他们的回答只能作出一些合理性的评价,但是,学生的回答,和老师的评价使得我们的数学课堂离我们心目中的理想的数学课堂却越来越远。所以我们老师在设计问题题不仅要充分考试问题的开放性,更要考虑设计问题的目的性,你设计的问题应当明确,具体可测,大部分学生能寻求到比较正确的答案。

9、[案例描述]《带分数乘法》教学片断:

⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2 ⒉算式一出现,教师就立即组织四人小组交流算法。

其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)×(2+)②5.8×2.5 ③×,其他同学拍手叫好而告终。

请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。

教师要处理好合作学习与独立思考的关系

强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。

我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?

10、[案例描述]记得那是一节顺利而精彩的课,上课内容是“分数的意义”。在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪。令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位„ 1‟,高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾。因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴。我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾……”

下课后我找到这位同学了解情况:

问:小朋友,你知道老师为什么没让你发言吗?

答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好。

问:平时课堂上,老师都叫哪些同学发言呢? 答:差不多都是成绩较好的同学。案例反思(可以从面向全体的角度分析):

这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现。

11、案例描述

师:今天,在学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童百科全书》花了148元,还剩下53元,笑笑带了多少钱? 师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决?

淘气在书店买一本《童话故事》,花了3.2元,他又买了一本数学世界,花了11.5元。淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式:3.2+11.5=?)

师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定)

师:为了帮淘气解决付钱的问题,大家都列出了正确的算式。可我们都没有尝试过两个小数怎么相加。现在就来试一试看谁能独立发现小数加法的算法。

(1)学生独立思考,自主探索。(2)在独立思考的基础上,小组交流。

(3)看一看教材中三位小朋友是怎么计算的。其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗?

(4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?”

(5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理。

师:多位数相加时,个位数字一定要对齐。这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了。小数相加时,小数点一定要对齐也是这个道理。只要小数点对齐了,所有的数位也都对齐了。教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相同单位的数才能相加”的算理没有变。所以,只要小数点对齐了,小数加法的计算与多位数加法的计算就没有什么不同了。

问题讨论

(1).“小数加法”这一课,教材是让学生直接进行尝试的,本案例中教师引入时先安排了整数加法的内容,你对此有什么看法?直接安排学生尝试,对学生理解小数加减法是否有帮助?

(2)、教师在学生讨论完之后,安排了看书的环节,你认为有必要吗?为什么?(3)、书中三种算法的共性是什么?为什么要让学生讨论这个问题?

案例分析(围绕上述问题分析)

1.学习小数加法,先安排整数加法的内容,通过解决这个问题,激活学生已有的多位数加法的经验,帮助学生确定学习的心理趋向,找到新旧知识联系的桥梁,有利于新知的同化。但这样一来,就降低了探索的难度,也容易束缚学生的思维,问题也就没了挑战性。直接安排学生尝试,让学生经历从独立审题到列出算式的过程,确保每个人都有独立思考的时间,然后交流。先做后说,把教师的教建立在学生思考交流的基础之上,学生对小数加减法的理解会更深刻。

2、在小组交流的基础上,再解读教材,可以让写生在解读过程中进一步明晰思路,反思自己的成功与不足。对于理解不到位的,通过读书可以促进对问题的理解。

3、讨论各种算法的共性,是为了突出算理:相同单位的数量才能相加。

12、案例《9加几》前半节课的教学过程: ⒈创设9+5的情境,列出数学算式。⒉学生合作交流9+5=?

⒊比较算法多样化,得出“凑十法”。

⒋教师布置学生以四人小组的为单位,通过摆小棒计算9+6= 9+7= 9+4= 9+3=

笔者仔细观察各小组的活动情况,大多数小组同学先写出得数,再摆小

棒,有一个组的同学纯粹在玩小棒。为什么会这样呢?为了弄清原因,于是我又出了一些9加几的算式让学生口答,每人5题,抽测了十位同学,只有一人算错了1题。问他们怎样算的,多数同学回答,想出来的,在幼儿园里就会算了。位数不少的同学能把“凑十法”的过程说得头头是道、明明白白。

思考题:(1)、摆小棒计算时学生为什么先写得数再摆小棒?

(2)、我们应如何对待书中所安排的动手操作?

案例分析:上课前我们要充分了解学生的知识起点,了解学生的已有经验,竟然学生大部分都能正确口算了,为什么还要为了追求算法多样化而让学生经历摆小棒的实践操作过程呢?真的要摆一摆,可以采用让一个学生上前来板演,没必要让每个学生都亲身经历这个操作过程了(也许我们的学生在课堂之前早就经历摆小棒的学习过程了)。

我们应如何对待书中所安排的动手操作?根据学生实际情况,课堂需要,可以删除这个操作活动。

13、设计一个你认为较理想的问题情境,并加以分析。

教学“分数的基本性质”时,结合教学内容编了一个充满趣味的“猴妈妈分饼”的故事(多媒体呈现):一天,猴妈妈把三块大小一样的饼分给小猴们吃,她先把一块饼平均分成4份,给了大猴子1份。二猴子看见了,嚷着说:“1份太少了,我要2份。”于是,猴妈妈把第二块饼平均分成8份,给了二猴子2份。三猴子一看,急着说:“我最小,我要3份。”猴妈妈听了,便把第三块饼平均分成12份,给了三猴子3份。……当学生们被生动的画面和有趣的故事深深吸引时,教师设问:“小朋友,你知道哪只猴子分得多吗?猴妈妈这样分公平吗?聪明的猴妈妈是用什么办法来解决问题,满足猴子们的要求的?如果四猴子要4块,猴妈妈该怎样分呢?”由此引导学生饶有兴趣地展开操作、观察、思考、交流、验证、探索,归纳出分数的基本性质。

14、案例描述:这样的合作有效果吗? 场景1

一位教师在教学“两位数减一位数的退位减法”一课时,在学生根据情境列出16-7这样一个算式之后,马上让同学们以小组为单位,讨论应该怎样计算16-7。

场景2

某校四年级六班有56名同学,老师在教学实践活动课“秋游计划”一课时,在让学生合作制订购买秋游所需物品及所需钱数之后,又设计了一个活动——乘车与买门票。“一辆大客车可坐50人,每辆300元;一辆中型客车可坐30人,每辆200元。个人票每人10元,团体票每人8元(10人为一组)。”让学生根据教师提供的这些数据,讨论交流应该怎样租车、怎样购买门票比较合理(在第二次合作学习时,有的学生在继续计算买哪些吃的更好,有的在互相玩计算器)。

场景3 .

一位教师在教学二年级数学课“克和千克”一课时,让小组合作称自己感兴趣的东西。在小组汇报时,有一个学生说:“我称的是竖笛,它的重量是8克。”老师问道:“是8克吗?”坐在旁边的学生提醒了一下:“它的重量是85克。”这名学生终于说出了合理的答案。

思考题:场景1的合作缺少了什么?场景2在第二次合作学习时,有的学生在继续计算买哪些吃的更好,有的在互相玩计算器的主要原因是什么?场景3中为什么会出现第一次说是8克而第二次说是85克的情况呢?

案例分析:

《全日制义务教育数学课程标准》中明确指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”于是与其相适应的教学组织形式——小组合作学习,被越来越多地引入课堂,合作交流成了学生学习数学的重要方式。这样的学习方式充分体现了教学民主,给予了学生更多自由活动的时间和相互交流的机会。但是“合作”必须建立在学生个体“需要”的基础之上,只有学生经过独立思考,有了交流的需要,再开展合作学习才是有价值的、有成效的。

现象1中,由于学生没有独立思考的时间,也缺少合作交流的愿望,尽管教师安排让学生进行合作学习,但由于时机把握得不好,不可能达到合作学习的目的。

现象2中,学生第二次合作学习的效果不会理想,有的学生会继续计算买哪些吃的更好,有的会互相玩计数器。出现这种现象的主要原因是第二次合作学习的时机不当,大多数学生仍然沉浸在第一次合作学习的情境之中,因而降低了学习效率。

现象3中为什么会出现第一次说是8克而第二次说是85克的情况呢?因为二年级的学生无法通过常识来判断自己汇报的数据是否正确,那么他的数据的惟一来源就是测量的结果。之所以出现这样的错误,是因为小组里没有人做记录。这不仅涉及到对测量数据的严谨科学态度的养成问题,更在于小组里没有明确的分工,因而也就没有真正意义上的合作。这样一来,合作学习真正的价值就被抹杀了。

15、案例描述:《平行四边行的面积》教学片段

教师演示将平行四边形转化成长方形的过程。随着演示活动的进行,教师随即提出以下问题:

师:同学们,我们是沿着什么将平行四边形剪开的? 生:高。

师:我们把平行四边形分成了哪两个图形? 生:(直角)三角形、(直角)梯形。

教师把三角形平移到梯形的另一面(并大声强调了几遍——“平移”这个词),拼成一个长方形。师:这个拼成的长方形的面积与原来的平行四边形的面积怎么样 生:相等!师:为什么?

生:面积既没有多也没有少。

师:很好!那长方形的长、宽分别对应着原来平行四边形的什么?

生:长方形的长对应着原来平行四边形的底,长方形的高对应着原来平行四边形的高。师:现在你能说出如何求平行四边形的面积了吗?

生:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

(为了强调可以沿任意一条高剪开,老师又重复地操作了一遍,将平行四边形分成两个直角梯形,转化成长方形。由于问题的提问与前面相仿,笔者不再赘述)

教师又出示了大量变式练习进行提问与训练,学生进入习题操练过程……

问题探讨:

(1)从提问目的、层次、开放上分析上述教学你认为怎样?

(2)这样的教学是否表明学生们已经很好地掌握了相应的知识和方法?(3)这样的教学与新理念比较你认为怎样? 案例分析:

课堂上对于平行四边形的“割补”是由教师示范完成的,而并非学生的独立发现,一旦出现较复杂的情况,一部分学生就会因此而陷入困境。其实,让学生实际地去进行剪拼(“操作验证”)正是摆脱上述“困境”有效的方法。如:我认为可以这样设计:

师:(出示一张平行四边形的纸片)请同学们估算这张平行四边形妖片的面积?(学生小组讨论后汇报估计结果,教师板书)

师:谁的估计最接近真实的面积?下面请小组合作,利用手中的学具(剪刀、平行四边形纸片),借助长方形面积的计算方法,求出这张平行四边形纸片的面积。比一比,哪个小组的方法多,方法好?如果你们有困难,请告诉老师。

(学生分组合作研讨,教师巡视指导)

全班共有6种方法可以将平行四边形转化成长方形,求出平行四边形的面积。当然,我们这里所讲的活动化设计理念,并不是要求把小学数学的所有内容都变成活动的形式。但是,在新课程标准非常强调学生动手,学生操作,学生做数学的今天,教学设计的时候,尽量多一些贯穿“活动化设计理念”,对于学生动手动脑,以及手脑并用,都是非常有好处的。

16、案例《长方体和正方体的认识》的教学过程片断: ⑴为长方体和正方体的棱、顶点下定义。

⑵通过动手操作得出长方体和正方体的面、棱、顶点的个数。

师:请同学们拿出准备好的长方体的模型,闭上眼睛摸一摸,睁开眼睛看一看、数一数,长方体有几个面?几条棱?有几个顶点?

(生按要求操作并回答)。课后笔者进行了一个小调查: 调查对象:还没有学习《长方体和正方体的认识》的同一个学校、同一个年级的五(3)班学生。

调查内容:长方体有()个面,有()条棱,有()个顶点(学生填空前先学习长方体的面、棱、顶点的概念)。

调查结果:全班56人,六个面答对的有50人,12条棱答对的有37人,8个顶点答对的有51人。

案例分析:

现代心理学家认为:思维的发展都是经历直观行动思维 ?? 具体形象思维 ?? 抽象逻辑思维这样三个阶段。一二年级学生以直观行动思维为主,具体形象思维逐步上升;到三四年级,具体形象思维逐渐开始为主;到五六年级,具体形象思维与抽象逻辑思维相互补充和渗透。

上述案例中的问题情境,如果用在小学一年级“认识物体”的教学中,通过摸一摸、看一看、数一数和想一想的体验,使学生初步了解长方体、正方体的简单特点,是符合学生思维能力培养的阶段性特点的,无论是在探索知识规律方面,还是在培养学生的思维能力方面都是无可厚非的。但对五六年级的学生来说,滥用这样直观性的问题情境,将会抑制学生思维能力的提升。

在小学高年级空间与图形教学中,要逐步培养学生手中无物体,脑中想物体的良好习惯。如上例,当教师提出长方体有几个面的简单问题时,学生脑中应有一个长方体,通过对前后、左右、上下的思考得出长方体有 6 个面的结论。只有当有些学生想像受阻时,才设法引导他们看长方体的实物,通过看一看、数一数来完成。

创设的问题情境的直观性程度应依据不同阶段学生的思维特点,不同层次学生的思维水平,不同难易程度的学习材料来确定,决不能搞一刀切。创设问题情境力求做到直观性和形象思维、抽象思维活动相结合,力求保证学生的具体思维与抽象思维之间有着紧密的联系。也就是说创设的问题情境要处理好直观性与培养学生思维能力阶段性的关系。

第四篇:小学数学案例分析

小学数学案例分析

1、[案例描述]《带分数乘法》教学片断:

⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2

⒉算式一出现,教师就立即组织四人小组交流算法。

其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)×(2+)②5.8×2.5③×,其他同学拍手叫好而告终。

请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。

答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?

2、[案例描述]记得那是一节顺利而精彩的课,上课内容是“分数的意义”。在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪。令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位‘1’,高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾。因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴。我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾„„” 下课后我找到这位同学了解情况:

问:小朋友,你知道老师为什么没让你发言吗?

答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好。问:平时课堂上,老师都叫哪些同学发言呢?

答:差不多都是成绩较好的同学。

[案例反思](可以从面向全体的角度分析):

答:这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?只有最大限度地尊重个体,才有可能真正面向全体,这样的道理已经很难在传统的教学组织形式下得以落实。我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现。„

3、案例描述

师:今天,在学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童百科全书》花了148元,还剩下53元,笑笑带了多少钱?

师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决?

淘气在书店买一本《童话故事》,花了3.2元,他又买了一本数学世界,花了11.5元。淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式:3.2+11.5=?)

师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定)

师:为了帮淘气解决付钱的问题,大家都列出了正确的算式。可我们都没有尝试过两个小数怎么相加。现在就来试一试看谁能独立发现小数加法的算法。

(1)学生独立思考,自主探索。

(2)在独立思考的基础上,小组交流。

(3)看一看教材中三位小朋友是怎么计算的。其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗?

(4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?”

(5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理。

师:多位数相加时,个位数字一定要对齐。这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了。小数相加时,小数点一定要对齐也是这个道理。只要小数点对齐了,所有的数位也都对齐了。教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相同单位的数才能相加”的算理没有变。所以,只要小数点对齐了,小数加法的计算与多位数加法的计算就没有什么不同了。

问题讨论

(1).“小数加法”这一课,教材是让学生直接进行尝试的,本案例中教师引入时先安排了整数加法的内容,你对此有什么看法?直接安排学生尝试,对学生理解小数加减法是否有帮助?

(2)、教师在学生讨论完之后,安排了看书的环节,你认为有必要吗?为什么?

(3)、书中三种算法的共性是什么?为什么要让学生讨论这个问题?

案例分析(围绕上述问题分析)

4、案例《9加几》前半节课的教学过程:

⒈创设9+5的情境,列出数学算式。

⒉学生合作交流9+5=?

⒊比较算法多样化,得出“凑十法”。

⒋教师布置学生以四人小组的为单位,通过摆小棒计算9+6= 9+7=9+4=9+3=

笔者仔细观察各小组的活动情况,大多数小组同学先写出得数,再摆小棒,有一个组的同学纯粹在玩小棒。为什么会这样呢?为了弄清原因,于是我又出了一些9加几的算式让学生口答,每人5题,抽测了十位同学,只有一人算错了1题。问他们怎样算的,多数同学回答,想出来的,在幼儿园里就会算了。位数不少的同学能把“凑十法”的过程说得头头是道、明明白白。

思考题:

1、摆小棒计算时学生为什么先写得数再摆小棒?

2、我们应如何对待书中所安排的动手操作?

案例分析:

5、设计一个你认为较理想的问题情境,并加以分析。

6、、案例描述:这样的合作有效果吗

场景1

一位教师在教学“两位数减一位数的退位减法”一课时,在学生根据情境列出16-7这样一个算式之后,马上让同学们以小组为单位,讨论应该怎样计算16-7。

场景2某校四年级六班有56名同学,老师在教学实践活动课“秋游计划”一课时,在让学生合作制订购买秋游所需物品及所需钱数之后,又设计了一个活动——乘车与买门票。“一辆大客车可坐50人,每辆300元;一辆中型客车可坐30人,每辆200元。个人票每人10元,团体票每人8元(10人为一组)。”让学生根据教师提供的这些数据,讨论交流应该怎样租车、怎样购买门票比较合理(在第二次合作学习时,有的学生在继续计算买哪些吃的更好,有的在互相玩计算器)。

场景3.一位教师在教学二年级数学课“克和千克”一课时,让小组合作称自己感兴趣的东西。在小组汇报时,有一个学生说:“我称的是竖笛,它的重量是8克。”老师问道: “是8克吗?”坐在旁边的学生提醒了一下:“它的重量是85克。”这名学生终于说出了合理的答案。

思考题:场景1的合作缺少了什么?场景2在第二次合作学习时,有的学生在继续计算买哪些吃的更好,有的在互相玩计算器的主要原因是什么?场景3中为什么会出现第一次说是8克而第二次说是85克的情况呢?

“5的加法”新授课。教材是这样编写的:

教材编写的意图是:渗透算法多样化的理念,鼓励学生独立思考。那么老师又是怎样理解使用教材的呢? 师:算出一共5只,是用什么方法算?

生1:4+1=5。

生2:4和1组成5。

师:为什么用加法?

生:(无人举手)

师:昨天学习加法,把两个数合起来,用加法。现在,要把4只和1只合起来,所以该用——加法。师:算式4+1=5中的4、1、5表示什么?

生:(略)

师:5只鸟,可能用什么方法算出来?

生:(脱口而出)用加法。(教师想要的方法没出来,于是教师要求学生讨论)

师:请四人小组讨论。

生:(学生讨论)

师:谁来汇报“5只鸟,可能用什么方法算出来?”生1:用加法。生2:想组成分解。

(这时教材上列举的三种方法,学生只想到“组成”这一种。于是,教师继续引导)

师:有不同的想法吗?你是怎么想的?

生3:心里想的。

生4:5-0=5(这时,学生有点“丈二和尚摸不着头脑”)

师:请你说一说怎样想出等于5?

生5:4和1组成5。

生6:跟他一样是心里想的。(学生仍然想不出“数数”的方法,这时教师干脆直截了当地“导”)师:在心里怎样算?先数几?

生7:先数4。师:再数几?生7:再数5。

(至此,“用数数的方法来计算4+1=?”终于出来了)

【评析】为了启发学生说出数数的方法,整个教学过程用了十几分钟。在这当中学生有什么收获呢?学生为什么不会想到数数的方法?实际上城市的一年级新生几乎100%接受幼儿园教育。目前,许多幼儿园都在教学10以内加减法,而且为了更好地与小学“接轨”,他们教孩子用想组成分解的方法来计算加减法,还让学生天天练习。因此,相当一部分学生在幼儿园期间对10以内的加减法已达到了提取事实的阶段(即脱口而出的程度),早已超越用数数得到计算结果的阶段。也就是说学生经验中早就淡忘了数数的方法,所以学生想不到数数的方法也就成其自然了。

教师用这么长的时间想达到什么目的呢?为什么千方百计地非要学生说出用数数的方法计算“4+1=?”

呢?因为这种方法教材上出现了。有些教师以为教材提倡算法多样化,就必须让学生掌握教材中的每一种方法。这说明教师对数学课程标准的理念尚未理解,仍然是“以教材为本”、“以教案为本”。

学生在这十几分钟里知识无增,认知水平降低,只有失败的体验。这样的教学,无论是从教学目标的哪个维度来衡量,都不利于学生的发展,反而阻碍了学生的发展。

课改的基本理念是:教育要以人为本,教育要促进人的发展,要关注学生、关注过程、关注发展。而要体现这个基本理念,非创造性地使用教材不可。那么如何创造性地使用教材呢?根据《数学课程标准》,创造性地使用教材可在“五个字”(调、改、增、组、挖)上下功夫。调:调整认知目标,调整教学内容,调整练习题;改:改变情境(问题情境、游戏情境、活动情境„„)、改变例题、习题;增:增加让学生探索创造的活动;组:重组教学内容;挖:挖掘教材中可发展学生创新思维的因素。

像前面举的这个例子,当学生列式计算之后,教师可让学生说一说:“4+1=5,你是怎么想的?”学生能想出几种就几种,勿强求。接着教师可创设这样的问题情境:笑笑也在学习5以内的加法,可2+3=?他给忘了,你能帮他想办法算出这题的得数吗?然后可设计游戏和一些有助于发展学生思维的练习。还可以引导学生联系实际,说说生活中哪些事可以用5的加法来表示?„„如果班级学生的基础较好,可以把5以内的加减法合在一起上,甚至也可以不教学这部分内容。这样的设计,是站在学生的角度,从学生的实际出发,遵循学生的认知规律以及他们的发展需求,较好地体现教学为学生的发展服务的理念。

7.[案例描述]《带分数乘法》教学片断:

⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2

⒉算式一出现,教师就立即组织四人小组交流算法。

其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)×(2+)②5.8×2.5③×,其他同学拍手叫好而告终。

请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。

答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?

8.[案例描述]记得那是一节顺利而精彩的课,上课内容是“分数的意义”。

在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪。令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位‘1’,高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾。因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴。我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾„„”

下课后我找到这位同学了解情况:

问:小朋友,你知道老师为什么没让你发言吗?

答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好。问:平时课堂上,老师都叫哪些同学发言呢?

答:差不多都是成绩较好的同学。

[案例反思](可以从面向全体的角度分析):

答:这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?只有最大限度地尊重个体,才有可能真正面向全体,这样的道理已经很难在传统的教学组织形式下得以落实。我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现。„„

第五篇:大班数学案例分析:测量(一)

大班数学案例分析:测量

(一)幼儿园大班数学案例分析:测量

(一)今天,我利用下午区域活动的时间让孩子继续练习测量,并把昨天没有进行下去的环节或表格上没有完成的任务继续完成。虽然已经有过一次测量,单这一次孩子们还是表现得非常活跃,兴致也比较高,说明孩子们非常喜欢这一类活动。这次测量中,孩子们的技法明显熟练了起来,手、眼协调性也明显提高,有的孩子运用了多种方法去测量。特别值得称赞的是,孩子们运用到了手中的铅笔,本来铅笔是给他们做记录用的,但是有的孩子却想到了利用铅笔来画记号,达到了一物多用的功效。他们量好一段就在接口处画一个铅笔印,再从铅笔印处开始量第二段……我们班的门上、桌上、椅子上、窗户上都留下了孩子们测量的痕迹。

上次活动时最严重的问题就是记录问题。今天测量前,我把典型的几个孩子的记录板展示了出来,让孩子们来交流,看看谁的记录方法很清楚,一眼就能看出他是用什么材料量的,量的结果是怎么样的。通过比较、讨论,孩子们觉得胡陈超、赵铮等孩子的记录方法很好,从他们的记录纸上一下就能看出他们用筷子量的桌子是2根筷子多一点,用牙签量的桌子是7根牙签多一段……。在量和记的过程中,我惊喜地发现孩子们的思路越来越清晰,方法也掌握得越来越好。特别是那些用牙签、小积木量的孩子更值得鼓励,因为他们选的量具特别小、特别短,需要量很长时间,这就要考验孩子们的耐性和更好的手、眼协调能力。孩子们都很具好胜心,好多孩子都选择了那些特短、特小的量具去量,一有图有真相、cc图库图片素材youtuyouzhenxiang.net边量一边记,而且记录纸上记得也非常清楚。

经过这几次不断地测量、记录,孩子们从中不仅学到了很多测量和记录的好的方法,更培养了他们的耐性和坚持性。我想,测量活动还不应到此结束,孩子们还可用这些方法去测量教室里的其他东西,并让测量走进大自然,相信孩子们会从中悟出更多。

(分析:孩子经过不断地尝试、调整,不断地掌握着新的方法。在这个过程中,老师应给孩子尝试的时间和空间,并鼓励孩子努力克服困难,学会观察、比较、分析并分享他人的好的学习方法。)

下载小学数学案例分析一word格式文档
下载小学数学案例分析一.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学的生活化教学课堂教学案例分析(一)

    小学数学的生活化教学课堂教学案例分析(一) 《小学数学课程标准》要求“数学教学要紧密联系实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境”。在小学数学教学中,......

    小学数学教学案例分析

    小学数学教学案例分析 小学数学教学应结合小学生的认知发展水平和已有的知识经验展开,为学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌......

    小学数学教学案例分析

    小学数学教学案例分析 玉溪市华宁县宁州镇甸尾小学 李美 小学数学教学案例分析 李美 【案例背景】“三角形的面积”是人教版小学五年级数学教材上学期第六单元“多边形的......

    小学三年数学案例分析

    小学三年级数学案例分析 一、案例描述 “派车”的教学片断: (1)出示问题:老师组织了一次去外校参观的活动,我们班将组织25名学生进行进行参观,学校安排面包车、小轿车两种车接送。......

    小学数学课堂教学案例分析

    小学数学课堂教学案例分析 一、教学案例实录 教学过程 : 1、创设情境,激趣引入 (1)谈活:你们喜欢摆图吗?你最喜欢摆什么?(学生争先恐后地回答) 生1:我最喜欢摆房子。 生2:我最喜欢摆......

    小学数学教学案例分析

    小学数学教学案例分析 小学数学教学案例应该描述小学数学课堂教学情境中教师与学生典型的、生动的交往状态与外在行为,刻画他们丰富的、细腻的精神状态和内心世界。它的特征......

    小学数学典型案例分析

    小学数学典型案例分析。 南阳市三十三小 陈朋 学困生的最大特点是存在学习障碍,学习障碍的形成是影响学生学业发展的重要原因之一。学习障碍的不断积累会使学生逃避数学学习......

    小学数学课堂教学案例分析

    小学数学课堂教学案例分析 德惠市实验小学 侯晓丽 人人学习有价值的数学,人人都能获得必须的数学。人们在学习、生活、解决问题的过程中,经常需要进行调查、收集、整理数据,对......