第一篇:东北育才数的整除奥数教案
数的整除二
一、知识点
整除得概念:a÷b=c,整数a除以整数b(b≠0),除得的商正好是整数而没有余数(或者余数为零)就叫a能被b整数,或者说b能整除a,a是b的倍数,b是a的因数。整除的性质:
(1)如果数a是b的倍数,c是整数,那么积ac也是b的倍数。
(2)如果数a、b都是c的倍数,那么(a+b)与(a-b)也是c的倍数。
(3)如果a是b的倍数,b又是c的倍数,那么a也是c的倍数。
(4)如果a同时是b、c的倍数,而且b和c是互质数,那么a一定是bc的倍数。
(5)如果数b是a的因数,或者a含有因数b,那么a就是b的倍数。特殊数的整除特征:
(1)4(或25)的倍数的特征:
如果一个自然数的末两位是4(或25)的倍数,那么这个数就是4(或25)的倍数。(2)8(或125)的倍数的特征:
如果一个自然数的末三位是8(或125)的倍数,那么这个数就是8(或125)的倍数。(3)7(或11,13)的倍数的特征
如果一个自然数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)是7(或11,13)的倍数,那么这个数就是7(或11,13)的倍数。
(4)若一个数奇数位上的数字和与偶数位上的数字和的差(以大减小)能被11整除,这个数就能被11整除。
二、例题
例1.判断3546725能否被13整除?
3546-725=2821,又2821能整除13,所以3546725能被13整除。巩固1:判断487656能否被13整除?
487-656=169,又169能整除13,所以487656能整除13.例2.一个四位数9□2□既有因数2,又是3的倍数,同时又能被5整数。这个四位数最大是多少?
既能被2整除又能被5整除的数末尾为0,这个数有能被3整除,所以应为9720.巩固1:一个四位数9□2□既有因数2,又是3的倍数,同时又能被5整数。这个四位数最小是多少?
既能被2整除又能被5整除的数末尾为0,这个数有能被3整除,所以应为9120.例3.378287这个数能否被7、11、13整除。
378-278=100,100不能被7,11,13整除,所以378287这个数不能被7、11、13整除。
巩固:ABCABC这两个数能否被7、11、13整除。
ABC-ABC=0,0能被7,11,13整除,所以ABCABC这个数能被7、11、13整除。
例4.一个六位数□6879□首尾不详,只知道这个六位数能被72整除。这个六位数是多少?
因为8乘9等于72,所以这个数既能被8整除又能被9整除,末尾为2,6+8+7+9+2=32 所以首位为4,这个数为468792。
巩固:一个六位数□6879□首尾不详,只知道这个六位数能被12整除。这个六位数最小是多少?
因为8乘3等于24,所以这个数既能被8整除又能被3整除,末尾为2,6+8+7+9+2=32所以首位为1,这个数为168792。
三、练习
(一)、基础题
1.一个整数能被13整除,这个整数的最后三位是339,那么这样的整数中最小的是多少?
2、同时被3、4、5整除的最大的四位数是多少?
3.如果四位数2□2□能被5、6、7整除,这个四位数是多少? 4.如果□2004□能被33整除,这样的六位数有几个?
5.已知一个五位数□448□能被55整除,所以符合题意的五位数是多少?
(二)、变式题
1、从1到9这九个数字中任选六个数字组成36的倍数,这样的六位数中最大的数是多少?最小的数是多少?
2、已知A是一个自然数,并且它的各数位上的数字只有0和8两种。已知这个数是6的倍数,A最小是多少?
3、在257后面补上三个数字组成一个各数位上的数字都不相同的六位数,使它能被60整除,这样的六位数中最小是多少?
4.一个四位数,首位上是最小的合数,十位上是最小的质数,这个数能被2整除,又有因数3,同时也是5的倍数。符合上述条件的所有四位数是多少?
5.一个六位数A1993B能被45整除,找出所有满足条件的六位数有几个?
(三)、提高题1、973后面补上三个数,组成一个六位数使它能分别被3、4、5整除,且使这个数值尽可能小,这个六位数是多少?
2.123连续写多少次,所组成的数能被9整除,并且这个数最小。
3、七位数□2008□□能同时被9、8、25同时整除,这个七位数是多少?
4、.3□6□5是一个五位数,且是75的倍数。若想使3□6□5无重复数字,3□6□5是多少?
四、答案
(一)、1、1339 2、8880 3、2520 4、8个5、84480
(二)、1、最小123768 最大987624 2、800088 3、257160 4、4020,4320,4620,4920 5、519930,919935
(三)、1、973120 2、3次3、8200800 4、38625,30675,39675
第二篇:数的整除教案
1、使学生理解自然数与整数的意义.
2、使学生掌握整除、约数与倍数的概念.
3、培养学生抽象概括与观察物的能力. 教学过程
一、建议自然数与整数的概念
1、谈话引入:今天这节课,我们学习数的整除.(板书课题)
2、教师提问:既然是数的整除,自然就与数有关,同学们都学过什么数?
(教师板书:整数、小数、分数)
同学们会数数吧?(学生数数)
(教师板书:1、2、3、4、5、)
继续数下去,能数到头吗?
数不到头,我们可以用一个什么标点符号来表示呢?
(教师板书:“„„”)
3、教师小结:
用来表示物体个数的1、2、3、4、5等等,叫做自然数.(板书:自然数)
提问:最小的自然数是几?有最大的自然数吗?
当一个物体也没有时,我们用几来表示?(板书:0)
二、建立整除的概念
1、教师明确:数的整除,不仅与数有关,还与除有关,一说到除,在家就会想到两个数相除,那么整除又是什么意思呢?整除也是两个数相除,但是在小学阶段,我们研究整除不包括“0”.
2、出示卡片 1.2÷4
提问:在数的整除中研究这样的两个数相除吗?为什么?
3、再出示卡片:10÷20,16÷5,15÷3,36÷9,24÷2
提问:这几个式子中的被除数和除数都是什么数?
教师明确:被除数和除数都是自然数,这是我们研究数的整除的一个非常重要的条件.
4、教师说明:被除数和除数都是自然数,如:10÷20,我们能不能说10能被20整除呢?还不能,还要看它的商.
组织学生口算出5张卡片的商.(其中16÷5指定回答“商几余几”)
提问:被除数和除数都是自然数,商可能有哪几种情况?
排除没有整除关系的卡片,指15÷3=5一类的卡片,说明:只有这样的,我们才能说15能被3整除.
5、学生举例
6、提问:用字母a表示这样的被除数,用b表示这样的除数,商怎么样,我们就说a能被b整除呢?
这样看来,整除除了被除数和除数都是自然数外,还得有一个什么条件?
教师明确:商是自然数,没有余数是整除的又一个重要的条件.
7、出示卡片(区别整除和除尽)
4÷3=1.3 18÷18=1 7÷5=1.4
4÷0.2=20 42÷6=7
三、建立约数与倍数的概念
1、教师说明:当数a能被数b整除时,a就是b的倍数;b就是a的约数.
2、联想训练:教师说一句由学生说出另外两句.
如:教师:15能被3整除(生:15是3的倍数,3是15的约数)
教师:36是9的倍数(生:36能被9整除,9是36的约)
教师:2是24的约数(生:24能被2整除, 24是2的倍数)
教师:7不能被4整除(生:7不是4的倍数,4又不是7的约数)
3、区分“倍数”与“几倍”
教师提问:能说4是0.2的倍数吗?为什么?
4、判断
12是3的倍数()7是21的约数()
1是25的约数()3.6是3的倍数()
4是约数()(说明:通过此题,深化倍数、约数相互依存的关系)
四、巩固练习
思考题:1,3,6,9,12这几个数中谁与谁之间有约数和倍数的关系?
五、课堂小结
1、数的整除是在自然数范围内讨论的.
2、两个数之间,一旦具备整除关系,那么这两个数之间必定还具有约数、倍数的关系.所以,整除是前提,倍数、约数是在这个前提下必然产生的一种结果.
六、布置作业
1、下面的说法对吗?说出理由.
(1)因为36÷9=4,所以36是倍数,9是约数.
(2)57是3的倍数.
(3)1是1、2、3、4、5,„„的约数.
2、一个数是42的约数,同时又是3的倍数.这个数可以是多少?
七、板书设计 数的整除
整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或因数).
探究活动 把数分类 活动目的
1、使学生掌握奇数、偶数、约数、倍数的交叉关系和区别.
2、帮助学生建立完整的知识结构. 活动题目
桌上有20张卡片,在这些卡片上分别写着1,2,3,„19,20这20个数.请将这20个数加以分类. 活动过程
1、学生以小组为单位讨论.
2、汇报讨论结果.
3、交流收获. 参考答案
要把这20个数分类,首先确定分类标准,不同的标准有不同的分类方法.
1、根据数的奇偶性分类.
奇数:1,3,5,7,9,11,13,15,17,19
偶数:2,4,6,8,10,12,14,16,18,20
2、根据数的位数分类.
一位数:1,2,3,4,5,6,7,8,9
两位数:10,11,12,13,14,15,16,17,18,19,20
3、根据是否大于8分类.
大于8:9,10,11,12,13,14,15,16,17,18,19,20
不大于8:1,2,3,4,5,6,7,8
4、根据约数个数的多少分类.
一个约数:1
两个约数:2,3,5,7,11,13,17,19
两个以上约数:4,6,8,9,10,12,14,15,16
5、根据约数的个数是否是奇数分类.
约数的个数是奇数:1,4,9,16
约数的个数是偶数:2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20
第三篇:奥数教案
课题 :应用题的基本数量关系 知识点
用数学的方法解决在生活和工作中的实际问题 ————— 解应用题。教学目标
1、分析思考题目所包含的数量关系,锻炼思维的灵活性。
2、让学生在学习数学的过程中,感受数学与日常生活的密 切联系,体验数学的价值,增强应用数学的意识。
3、在探索问题解决方法的过程中,发展学生的数学思考能力,培养主动探索的意识。教 学 内 容
【典型例题】
例1:一根绳子原来长20米,第一天剪去3米,第二天剪去的和第一天同样多,剩下的米数比原来短几米?
解题策略:这题要求剩下的米数比原来短几米,通常我们用以下的数量关系来解: 解法一:20-3-3=14(米)20-14=6(米)
有没有更简便的方法呢?聪明的小朋友是否考虑到“剩下的米数比原来短的米数”就是剪去的米数,这样只要用一步计算就能解答。解法二:3+3=6米
这种方法是不是更简便?
【画龙点睛】
解答应用题时,我们不但要多动脑,分析思考题目所包含的数量关系,还要选择最简便的方法来解答,锻炼思维的灵活性,使我们应得更聪明。
第2课时
【举一反三】
1、水果店有52箱水果,卖出16箱,又运进23箱,现在水果的箱数和原来比多了还是少了?多或少几箱?
2、饲养场养的羊比牛少36只,牛比猪少29只,那么羊比猪少几只?
3、把两条长38厘米的纸条粘在一起,成为一条长72厘米的纸条,中间粘贴部分的纸条长几厘米?
4、小明、小李和小红三个朋友做红花,小明和小李共做27朵,小明和小红共做32朵,小李和小红共做25朵,问:三个小朋友各做几朵?
5、五(1)班有20名少先队员,而五(2)班的少先队员比五(1)班多9名,问两班共有多少少先队员?
6、一道既简单又复杂的题:游戏开始了,请你们快速计算:
一辆载着16名乘客的公共汽车驶进车站,这时有4人下车,又上来4人; 在下一站上来10人,下去4人; 在下一站下去11 人,上来6人; 在下一站,下去4人,上来4人;
在下一站又下去8人,上来15。
还有,请你们接着计算:公共汽车继续往前开,到了下一站下去6人,上来7人;在下一站下去5人,没有人上来;在下一站只下去1人,又上来8人。
好了,记住你的计算结果,回答:这辆公共汽车究竟停了多少站?(不要重新计算哦)
7、商店共有61千克红糖,第一天卖掉19千克,第二天比第一天多卖4千克,商店还剩多少斤红糖?
8、买来17米布,做床单用去7米,做衣服用的和做床单用的同样多,还剩几米?
9、小王买了一只文具盒花了2元,又买了4个作业本,共
课题 :两步计算的应用题、用画图法解应用题 知识点
1、用数学的方法解决在生活和工作中的实际问题 ————— 解应用题。
2、用画图来表示题目中的条件,帮助理解题意,正确解答。
教学目标
1、分析思考题目所包含的数量关系,锻炼思维的灵活性。
2、让学生在学习数学的过程中,感学与日常生活的密切联 系,体验数学的价值,增强受数应用数学的意识。
3、在探索问题解决方法的过程中,发展学生的数学思考能力,培养主动探索的意识。教 学 内 容
第一课时: 【典型例题】
例1:小明的钱不到5元(是整角数),如果买6枝铅笔,钱不够,还少5角。小明原来最多有多少钱?
解题策略:问题求的是“小明原来最多有多少钱”。由题意已知小明原来的钱不到5元,但加上5角后就超过5元,且能被6整除。假设每枝笔8角钱,6枝则是48角,不到5元,所以不能;如果每枝9角,6枝就是54角,再减去少5角,原来最多49角。算式:6×9-5=49(【画龙点睛】
解答两步计算的应用题,如果不认真思考,提笔就做,很容易出错。所以应该先从条件或问题入手,仔细分析,找出正确的解题方法。
第二课时
【举一反三】
1、一盒糖果,总数不超过20颗,把它们平均分给6个小朋友,还余2颗,这盒糖最多有几颗?最少有几颗?
2、停车场里原来停放的轿车比卡车多12辆,后来轿车开走6辆,卡车开进8辆,这时停车场里哪种车多?多多少辆?
3、有大、小两桶油共重50千克,两个桶都倒出同样多的油后,分别还剩10千克和6千克。大、小两个桶原来各装油多少千克? 第二课时: 【典型例题】
例2:小明有10枝铅笔,小红有4枝铅笔,要使两人的铅笔同样多,小明要给小红几枝铅笔?
解题策略:我们用图来表示已知条件: 小明: 小红:
从图中我们可以清楚地看到,小明比小红多6枝铅笔,把多出来的6枝铅笔平均分成两份,即6÷2=3,所以小明给小红3枝铅笔后,两人的枝数相同。
【画龙点睛】
用画图法解应用题,特别是解技巧性较强的题,能形象直观地揭示数量关系,使抽象思维与形象思维协同发挥作用,从而构建出解题思维的模式。
第三课时 【举一反三】
1、小明给小红3枝铅笔后,两人的枝数相同。问:小明比小红多几枝铅笔?
2、小红有4枝铅笔,小明给小红3枝铅笔后,两人的枝数相同,小明有几支铅笔?
3、一根12米长的木条,锯3次,每段几米?
4、小红妈妈到水果店买苹果,她的钱若买3斤多1元,若买4斤少1元5角,问妈妈带了多少钱?
6、二(1)班同学做早操,每行人数相等,小李的位置从左边数是第3个,从右边数是第4 个,从前边数是第4个,从后边数是第2个。问:二(1)班有多少同学在做早操?
课题: 等量代换法 知识点
1、等量代换的思想:相等的量可以互相代替。
2、2、运用等量代换法来解决生活中的实际问题。
3、在解决等量代换数学问题的过程中,初步体会等量代换数学题的思想方法。教学目标
1.使学生能初步学会等量代换的方法,接受等量代换的思想。2.培养学生的观察力及初步的逻辑推理能力。
3、让学生在经历解决问题的过程中,获得经验,让学生充分感受生活中处处有数学,数学与生活息息相关,形成我要学好数学的精神风貌。
4、在学习过程中培养学生团结、友好合作,营造和谐共进的氛围。教 学 内 容 第一课时 【典型例题】
例1、1只河马的体重等于2只大象的体重,1只大象的体重等于10匹马的体重。1匹马的体重是320千克,这只河马的体重是多少千克?
解题策略:
1匹马的体重是320千克,10匹马的体重就是320×10=3200(千克),这也就是1只大象的体重。又知1只 河马的体重等于2只大象的体重,用2只大象的体重代替1只河马,则这只河马体重是3200×2=6400(千克)
【画龙点睛】
也可以这样想:1只大象的体重是10匹马的体重,即2只大象的体重就等于2个10匹马的体重,即20匹马的体重,因为2只大象的体重与1只河马的体重相等,所以1只河马的体重就是20匹马的体重。320×(2×10)=6400(千克)
第二课时 【举一反三】
1、已知1个 =3个 , 1个 =5个。那么1个 =()个
2、△+△+△+□=25,□=△+△。求 △=? □=?
3、一只菠萝的重量等于2只梨的重量,也等于4只香蕉的重量,还等于2只苹果、1只梨、1只香蕉的重量之和。那么1只菠萝等于几只苹果的重量?
4、一条鱼,鱼头重9千克,鱼头重量等于鱼身一半加鱼尾的重量,而鱼身的重量等于鱼头加鱼尾的重量。问:这条鱼重几千克?
第三课时
同步练习
1.一根20米长的木条,把它据成4段,要锯几次?
2.商店有480本练习本,又运来500本,卖出去360本,商店还有多少本练习本?
3.小明的爸爸年龄比妈妈大5岁,妈妈今年38岁,爸爸今年多少岁?小明 出生时妈妈30岁,小明今年是多大?
4.○+○+○=21 ☆-□=38 □+□+□=15 ○+○+□=18 ☆-△=45 △+△+△=12 ○-□=()□-△=()□+△=()
5.一个数加上4,减去4,乘以4,再除以2,结果是2,求这个数。
6.一条毛毛虫从幼虫长成成虫,每天长大一倍,10天时能长到20厘米。问:长到5厘米时是第几天?
2.4瓶水全倒出来能装满3大碗,5杯水正好装满2瓶。装满3大碗要几杯水?20杯水能装满几大碗?
第四篇:数的整除反思
“数的整除”教学反思
东于中心校水屯营小学校
刘瑞红
在“数的整除”这部分内容中,虽然学生已经学过,但数的整除都是一些纯数学的概念,掌握的情况并不是很理想,针对这种情况,我是先让学生在课前预习,让他们对整除中的概念有一个温习的过程,接着在课堂上在通过老师的引导,让学生系统、全面地把所有的概念结合起来,用图例来让学生认识每一个概念的由来,与其他概念的结合点,最后通过练习进一步加深理解。
在今天的课堂上,出现了很多的问题:
第一,每一概念的出现都是教师硬塞给学生的。课后我也反思了,为什么会这样呢?我觉得问题还是出在我的设计上,如:公倍数出现,教师让学生去找两个数的倍数,然后提出把两个集合图并起来,再得出什么是公倍数,什么是公约数。在这过程中,老师是让学生做什么,学生就去做什么,学生的自主意识完全没了,学生也不知道为什么要这样做,做了之后会得到什么。我想,在我今后的复习课中,应尽量避免这样的情况再次出现,第二,每个概念之间的衔接不恰当,导致学生的思维比较乱。解析:概念多,如:在教学完能被2、3、5整除数的特征后,我是想通过38÷2=19,让学生通过说,38是2的倍数,2是38的约数,从而引出倍数和约数的概念,但为了让学生理解2的倍数,就是能被2整除的数的特征,再次提到能被2整除的数。再如,如何让学生系统地认识“倍数——公数数——最小公倍数,约数——公约数——最大公约数”这两组概念间的关系。第三,课堂效率并不高,解析:概念联系性强,如:有关约数,可以根据约数的个数可将自然数分成1、质数和合数,同时为了方便,我们可以将合数进行分解质因数,分解后每个因数就是这个合数的质因数,这个质因数一定是个质数,这一连串的关系比较抽象。
另外,在这堂课中的唯一收获,就是总结,在总结中,我是与学生连说每个概念,边把概念与概念之间的联系线板书出来。要这个总结中,才达到了我最后的教学目标,把所有的概念系统化了,让学生全面地认识知识。
改进:学生课前预习,课堂中让学生先说说每个概念及意义,再集体整理。
第五篇:六年级奥数教案
思源学校第二课堂(第六周)
判断与推理 2 授课人:雍尧
教学要求:(1)理解逻辑推理的四条基本规律,学会运用分析、推理方法解决问题。
(2)培养学生逻辑推理能力.教学重点:学会运用分析、推理方法解决问题。
教学难点: 理解、掌握分析、推理方法。
教学方法:讲解法、图表法、练习法。
(一)教学过程:
一、复习。
上节课的习题例2
二、教学新课 教学例3
甲乙丙三人被蒙上眼睛,告诉他们每个人头上都戴了一顶帽子,帽子的颜色不是红的就是绿的。然后,就去掉蒙眼睛的布,要求每个人如果看见别人(一个或两个)戴的是红帽子就举手,并且谁能断定自己头上帽子的颜色,谁就马上离开房间。三人碰巧戴的都是红帽子,因此三个人都举了手,几分钟后,丙首先走开了,他是怎么推导出自己头上帽子的颜色的?
(1)学生审题,理解题意。(2)同座位讨论。
(3)分析:此题关键:注意到甲乙两人没有立即离开房间这个事实。丙推理,我的帽子如果是绿的,甲根据乙举手立即知道自己的帽子是红的,那他应走出房间,乙会做同样的推理离开房间。甲乙不能很快判断自己帽子的颜色,说明我的帽子不是绿的,而是红的。(4)说说你的推理过程。
3、比较前面例2例3有什么相同不同之处。
三、巩固练习。教学例4 学田小学举行科技知识竞赛,同学们对一贯刻苦学习爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二;
(2)丙得第二,丁得第三;(3)甲得第二,丁得第四。
比赛结果一公布,果然是这四名学生获得前四名。但以上三种估计,每一种都对了一半错一半。他们各得第几名?(1)学生审题,理解题意。(2)同座位讨论。(3)分析:利用图表帮助学生去推理判断。
第一种假定“丙第一错,乙第二对”出现矛盾。照此推理“丙第一对,乙第二错”没有出
现矛盾。所以丙第一,甲第二,丁第三,乙第四。(4)每人口述推理过程。
四、小结。
这节课你学会了什么?