2018年云南省特岗教师招聘考试《语文》部分选题(共五篇)

时间:2019-05-12 15:30:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018年云南省特岗教师招聘考试《语文》部分选题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018年云南省特岗教师招聘考试《语文》部分选题》。

第一篇:2018年云南省特岗教师招聘考试《语文》部分选题

一、单项选择题(云众教育祝大家学习愉快)1.下列词语中,没有错别字的一组是()。

A.提纲 记传体 含辛茹苦 旁征博引

B.震憾 顶梁柱 多难兴邦 关怀备至

C.端倪 爆冷门 兴高采烈 浑然天成

D.磨砺 座右铭 不可明状 出类拔萃

3.依次填入下列句中横线处的词语,最恰当的一组是()。

①记者发现,共享停车给有车一族带来了很大方便,但仍 __________ 着停车位太少等诸多问题。

②__________金融安全,要从实际出发,准确把握金融发展特点和规律,标本兼治、综合施策。

③那些属于诗歌的伟大灵魂永远值得惦记,因为他们为人间 __________ 了一抹永不消失的春色。

A.面对 维持 增加

B.面临 维护 增添

C.面对 维护 增添

D.面临 维持 增加

4.下列句子中画横线的词语,使用正确的一项是()。

A.文学创作辅导资料汗牛充栋,而真正依靠这些辅导资料步入文学殿堂的作家却可谓寥若晨星啊

B.在今年的“排队推动日”活动中,不自觉的只是凤毛麟角,绝大多数市民不论乘车还是购物都能自觉排队

C.县领导在灾后重建工作总结会上,介绍了当地连年发生的较大地震灾害的情况,他情况熟悉,如数家珍

D.美国的一项科学研究成果表明,播放一些古典音乐能促使食客情不自禁地慷慨解囊,有助于增加酒店的收入

5.下列句子中,没有语病的一项是()。

A.历史既不是子虚乌有的过去,也不是凝固的实体性的存在,历史的丰富性、偶然性给了我们的心灵自由舞蹈的宽阔舞台

B.面对当前国际国内新形势,央企要以供给侧结构性改革为主线,坚持以增加发展质量和效益为中心,主动作为,苦练内功

C.根据资料显示,虎扑体育是国内最大的体育互联网平台,为喜爱体育的人们提供完整的覆盖线上线下的多样化服务和应用

D.“天舟一号”飞行任务的成功与否,标志着中国载人航天工程第二步胜利完成,对于实现不懈追求的航天梦,具有深远的意义

6.把下面几个句子组成语意连贯的一段文字,排序正确的一项是()。

①在古代,这个信念有些神秘色彩。

②在一切比较深入的科学研究后面,必定有一种信念驱使我们。

③对于数学研究则还要加上一点,这个世界的合理性,首先在于它可以用数学来描述。

④可是发展到现代,科学经过了多次伟大的综合,如欧几里得的综合、牛顿的综合、爱因斯坦的综合、计算机的出现,哪一次不是或多或少遵循这个信念?

⑤这个信念就是,世界是合理的、简单的,因而是可以理解的。

A.②①④③⑤

B.①④②③⑤

C.①④②⑤③

D.②⑤③①④

8.下列句子中画横线的词语,与现代汉语意思相同的一项是()。

A.鞣以为轮

B.不如须臾之所学也

C.而绝江河

D.蚓无爪牙之利

9.比较下面两组句子中画横线字的意义和用法,下列解释正确的一项是()。

①青,取之于蓝 冰,水为之,而寒于水

②吾尝终日而思矣 蟹六跪而二螯

A.两个“于”相同,两个“而”也相同

B.两个“于”相同,两个“而”不相同

C.两个“于”不相同,两个“而”相同

D.两个“于”不相同,两个“而”也不相同

10.将“君子生非异也,善假于物也”翻译成现代汉语,最准确的一项是()。

A.君子出生时(与一般人)没有不同,(只是)善于利用外物罢了

B.君子出生时(与一般人)没有不同,(只是)善于被外物利用罢了

C.君子的本性(与一般人)没有不同,(只是)善于利用外物罢了

D.君子的本性(与一般人)没有不同,(只是)善于被外物利用罢了

二、名句填空

请在每小题的空格中填上正确答案,错填、不填均无分。

11.__________,可以为师矣。(《论语·为政》)

12.__________,皎皎河汉女。(《古诗十九首》)

13.采菊东篱下,__________。(陶渊明《饮酒·其五》)

14.西当太白有鸟道,__________。(李白《蜀道难》)

15.__________,月涌大江流。(杜甫《旅夜书怀》)

16.__________,只是朱颜改。(李煜《虞美人》)

17.山水之乐,__________。(欧阳修《醉翁亭记》)

18.此情可待成追忆,__________。(李商隐《锦瑟》)

19.__________,只缘身在最高层。(王安石《登飞来峰》)

20.遥想公瑾当年,小乔初嫁了,__________。(苏轼《念奴娇.赤壁怀古》)

三、阅读简答题

阅读下面这首唐诗,回答21~22题。

送路六侍御入朝

杜甫

童稚情亲四十年,中间消息两茫然。

更为后会知何地?忽漫相逢是别筵!

不分①桃花红似锦,生憎②柳絮白于棉。

剑南春色还无赖,触忤愁人到酒边。

【注】①不分,不满,嫌恶之意。“分”,一作“忿”。②生憎,犹言偏憎、最憎。

21.本诗前四句抒发了诗人哪些感情?请简要分析。

21.请从景情关系的角度,对本诗后四句加以赏析。

阅读下面的文章。回答23—26题。

多年父子成兄弟

汪曾祺

①这是我父亲的一句名言。

②父亲是个绝顶聪明的人。他是画家,会刻图章,画写意花卉。他会摆弄各种乐器,弹琵琶,拉胡琴,笙箫管笛,无一不通。他养蟋蟀,养金铃子。他养过花,他养的一盆素心兰在我母亲病故那年死了,从此他就不再养花。我母亲死后,他亲手给她做了几箱子冥衣,单夹皮棉,四时不缺。

他做的皮衣能分得出小麦穗、羊羔、灰鼠、狐肷。

③父亲对待子女,从无疾言厉色。他喜欢孩子,爱跟孩子玩。我的姑妈称他为“孩子头”。春天,不到清明,他领一群孩子到麦田里放风筝。放的是他自己糊的蜈蚣,放风筝的线是胡琴的老弦。老弦结实而轻.这样风筝可笔直地飞上去。没有“肚儿”。他会做各种灯。用浅绿透明的“鱼鳞纸”扎了一只纺织娘,栩栩如生。用西洋红染了色,上深下浅,通草做花瓣,做了一个重瓣荷花灯,真是美极了。我们在这些灯里点了蜡烛,穿街过巷,邻居的孩子都跟过来看,非常羡慕。

④父亲对我的学业是关心的,但不强求。小时候,我的作文时得佳评,他就拿出去到处给人看。我的数学不好,他也不责怪,只要能及格,就行了。他画画,我小时也喜欢画画,但他从不指点我。他画画时,我在旁边看,其余时间由我自己乱翻画谱,瞎抹。我小时字写得不错,他倒是给我出过一点主意。在我写过一阵《圭峰碑》和《多宝塔》以后,他建议我写写《张猛龙》。这建议是很好的,到现在我写的字还有《张猛龙》的影响。我初中时爱唱戏,在家里,他拉胡琴,我唱。学校开同乐会,他应我的邀请,到学校去伴奏。几个同学都只是清唱。父亲那么大的人陪着几个孩子玩了一下午,还挺高兴。我十七岁初恋,暑假里,在家写情书,他在一旁瞎出主意!我十几岁就学会了抽烟喝酒。他喝酒,给我也倒一杯。抽烟,一次抽出两根,他一根我一根。他还总是先给我点上火。我们的这种关系,他人或以为怪。父亲 说:“我们是多年父子成兄弟。”

⑤我和儿子的关系也是不错的。我戴了“右派分子”的帽子下放张家口农村劳动,他那时还未从幼儿园刚毕业,刚刚学会汉语拼音,用汉语拼音给我写了第一封信。我也只好赶紧学会汉语拼音,好给他写回信。“文革”期间,我被打成“黑帮”,送进“牛棚”。偶尔回家,孩子们对我还是很亲热。我的老伴告诫他们:“你们要和爸爸‘划清界限’。”儿子反问母亲:“那你怎么还给他打酒?”只有一件事,两代之间曾有分歧。他下放山西忻县“插队落户”。按规定,春节可以回京探亲。我们等着他回来。不料他同时带回了一个同学。他这个同学的父亲是一位正受迫害的空军将领,按照大队的规定是不能回北京的,但是这孩子很想回北京,在一伙同学的秘密帮助下,我的儿子就偷偷地把他带回来了。当时人人自危,自顾不暇,儿子惹了这么一个麻烦,使我们非常为难。我和老伴把他叫到我们的卧室,对他的冒失行为表示很不满,我责备他:“怎么事前也不和我们商量一下!”我的儿子哭了,哭得很委屈,很伤心。我们当时立刻明白了:他是对的,我们是错的。我们这种怕担干系的思想是庸俗的。我们对儿子和同学之间的义气缺乏理解,对他的感情不够尊重。他的同学在我们家一直住了四十多天,才离去。

⑥对儿子的几次恋爱,我采取的态度是“闻而不问”。了解,但不干涉。我们相信他自己的选择,他的决定。最后,他悄悄和一个小学时期女同学好上了,结了婚。有了一个女儿,已近七岁。

我的孩子有时叫我“爸”,有时叫我“老头子”!连我的孙女也跟着叫。我的亲家母说这孩子“没大没小”。我觉得一个现代化的、充满人情味的家庭,首先必须做到“没大没小”。父母叫人敬畏,儿女“笔管条直”,最没有意思。

⑦儿女是属于他们自己的。他们的现在,和他们的未来,都应由他们自己来设计。一个想用自己理想的模式塑造自己的孩子的父亲是愚蠢的,而且可恶!

(有删改)

23.文中“我”的父亲具有哪些特点?请简要概括。

24.简要分析标题“多年父子成兄弟”的作用。

25.作者在第⑤段写了两代人之间的分歧,写这些有什么好处?

26.文章结尾说:“一个想用自己理想的模式塑造自己的孩子的父亲是愚蠢的,而且,可恶!”这句话体现了怎样的教育理念?请简要概括并分析。

第二篇:云南省特岗教师招聘小学语文考试大纲

云南省特岗教师招聘小学语文考试大纲

一、考试性质

招聘小学语文教师考试是由合格的师范院校专科本科毕业生和具有同等学力的考生参加的选拔性考试。各所招聘学校根据考生的成绩,按已确定的计划,德、智、体全面衡量,择优录取。因此,招聘考试应有较高的信度、效度、必要的区分度和适当的难度。既要体现大学专科水平,同时又考虑到小学语文教学的实际。

二、考试能力要求

招聘小学语文教师要求测试识记、理解、分析综合、表达运用、鉴赏评价和小学语文教学技能六种能力。这六种能力表现为六个层级。

云南省特岗教师招聘《小学语文教师专业课考试大纲》考试能力要求

6.小学语文教学能力

指进行小学语文教学的基本能力。是以小学语文教材教法知识为基础,在小学语文教学方面发展了的能力层级。

三、考试内容

考试内容及相应的能力层级如下:(一)语言知识和语言表达

能识记基本的语言知识,掌握常见的语言表达技能。1.识记A(1)识记现代汉语普通话常用字的音字。(2)识记现代常用字的字形。2.表达应用D(1)正确使用标点符号。

(2)正确理解词语的含义,正确使用词语,辨析多义词。

(3)辨析并修改病句(病句类型:语序不当、搭配不当、成分残缺或赘余、结构混乱、表义不明、不合逻辑)。

(4)选用、仿用、变换句式。

(5)正确运用常见的修辞手法(常见的修辞手法:比喻、比拟、借代、夸张、对偶、排比、设问、反问)。

(6)识记中国重要作家及其时代和代表作。(7)识记外国重要作家及其国别和代表作。(8)默写常见的名句名篇。(二)古代诗文阅读

能阅读浅易的古代诗文。1.理解B(1)理解常见文言实词在文中的含义。

(2)理解常见文言虚词在文中的用法(常见的文言虚词:而、何、乎、乃、其、且、然、若、所、为、焉、也、以、矣、因、与、于、则、者、之)。

(3)理解与现代汉语不同的句式和用法(不同的句试和用法:判断句、被动句、宾语前置、成分省略、词类活用)。

(4)理解并翻译文中的句子。2.分析综合C(1)筛选文中的信息。

(2)归纳内容要点,概括中心意思。(3)分析概括作者在文中的观点态度。3.鉴赏评价E(1)鉴赏文学作品中的形象、语言和表达技巧。(2)评价作品的思想内容和作者的观点态度。(三)现代文阅读

能阅读一般社会类、自然科学类文章和文学作品。1.理解E(1)理解文中重要词语的含义。(2)理解文中重要句子的含义。2.分析综合c(1)筛选并整合文中的信息。

(2)分析文章结构,把握文章思路。(3)归纳内容要点,概括中心意思。(4)分析概括作者在文中的观点态度。(5)理解文章内容进行推断和想象。3.鉴赏评价E(1)鉴赏文学作品的形象,语言和表达技巧。(2)评价文章的思想内容和作者的观点态度。(四)写

能写记叙文、议论文、说明文及其他常见体裁的文章。作文考试的要求分为基础和发展两个等级: 1.基础等级D(1)符合题意。(2)符合文体要求。

(3)感情真挚,思想健康。(4)内容充实,中心明确。(5)语言通顺,结构完整。(6)书写规范,标点正确。2.发展等级D(1)写一般的记叙文,线索清楚,能综合运用记叙、说明、议论、描写等方法,鲜明地表达中心思想。

(2)写一般的说明文,抓住说明对象的特征,使用准确明白的语言说明事物,恰当地采用各种说明方法。

(3)写一般的议论文,能透过现象深入本质,揭示事物内在的因果关系,观点具有启发性。(4)语言富有文采,用词贴切,句式灵活,善于运用修辞手法,文句富有表现力。(5)立意新颖,材料新鲜,构思新巧,推理想象有独到之处,有个性色彩。(五)小学语文教学能力

能简要评析小学语文的各个教学环节设计,能恰当地写出小学生作文评语,能进行简要的小学语文教学环节设计。1.分析综合C 能简要地评析小学语文中的汉语拼音、识字写字、阅读、口语交际、作文等教学设计。2.小学语文教学能力F(1)能恰当地写出小学生作文评语。

(2)能简要地写出小学语文中的汉语拼音、识字写字、阅读、口语交际、写作等教学环节设计。

四、考试形式及试卷结构

1.答卷方式:闭卷,笔试。试卷满分为l00分,考试时限150分钟。

2.试卷形式:试卷由语文基础知识、现代文阅读、古诗文阅读、写作、小学语文教学技能、教育学及教育心理学知识六个部分组成。

3.试题类型:单项选择题、判断题、现代文阅读题、古代诗文阅读题、写作、小学语文教学技能题。

第三篇:云南省特岗教师招聘考试试题(小学数学)_部分试题

云南省2009年特岗教师招聘考试试题(小学数学)部分试题

一、单项选择题(在每小题的4个备选答案中,选出一个符合题意的答案,并将其号码写在题干后的括号内。本大题共10个小题,每小题3分,共30分)

1.设M、N是非空数集,定义:MN={a+b|a∈M,b∈N},若M={1,2,3},N={4,5,6},则MN=()

A.{1,2,3}∪{4,5,6}

B.{5,5,6,6,7,7,8,8,9,9}

C.{5,6,7,8,9}

D.{5,7,9}

2.函数y=3x21-x+lg(3x+1)的定义域为()

A.(-∞,-13)

B.(-13,13)

C.(-13,1)

D.(-13,+∞)

3.函数y=ax+a-x2()

A.是奇函数,不是偶函数

B.是偶函数,不是奇函数

C.既是偶函数,又是奇函数

D.既不是偶函数,又不是奇函数

4.一种商品的价格先提高了10%,再降低10%,结果与原价相比()

A.相等

B.不能确定

C.提高了

D.降低了

5.若曲线y=x4的一条切线L与直线x+4y-8=0垂直,则L的方程为()

A.x+4x-5=0

B.4x-y+3=0

C.x+4y+3=0

D.4x-y-3=0

6.已知:l1、l2是空间两条直线,条件p:直线l1、l2没有公共点;条件q:直线l1、l2是平行直线,则p是q的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分又不必要条件

试题由中人教育独家提供,任何网站如需转载,均需得到中国教育在线教师招聘频道和中人教育双方的 书面许可,否则追究法律责任。

7.下列说法错误的是()

A.小明和小红用“石头、剪子、布”游戏决定谁胜谁负,这个随机事件共有“出石头、出剪子、出布”三种可能的结果发生

B.随机事件具有不确定性和规律性两个特点

C.若事件A与B相互独立,则事件A与、与、与B也相互独立

D.设A为随机事件,则P(A+)=1,P(A)=0

8.已知a→=(3,4),b→=(sinα,cosα),若a→∥b→,则tanα的值为()

A.43

B.34

C.0

D.不存在

9.由曲线y=x3与直线x=-1,x=1及x轴所围成图形的面积为()

A.0

B.12

C.14

D.-14

10.下列说法正确的是()

A.自然数是有限集合的标记

B.形如mn的数,叫做分数

C.十进分数是有限小数的另一种表现形式

D.把一个分数的分子、分母分别除以它们的公约数,叫做约分

得分评卷人

二、填空题(本大题共6个小题,每小题3分,共18分)

1.数列34,78,1516,3132,„的通项公式为。

2.在比例尺是1∶500 000的地图上,量得甲、乙两地之间的距离是12厘米,甲、乙两地之间的实际距离大约是千米。

3.自然数有和两重意义。

4.有两个质数,它们的和既是一个小于100的奇数,又是13的倍数,这两个质数可能是。

5.若某水文观测站观测的准确率是0.9,则它的5次预报中恰有4次准确的概率为。

6.设集合A={1,2,3,4,5},a∈A,b∈A,则方程x2a+y2b=1表示的椭圆中,焦点在Y轴上的共有个。(用数字作答)

得分评卷人

三、解答题(本大题共3个小题,其中第1、2小题每个小题10分,第3小题12分,共32分)

1.已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定此二次函数的解析式。

2.从原点向圆x2+y2-12y+27=0作两条切线,求该圆夹在两条切线间的劣弧之长。

3.已知{an}是等比数列,a1=2,a4=54;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3。

(1)求数列{an}的通项公式及前n项和公式;

(2)求数列{bn}的通项公式;

(3)设Un=b1+b4+b7+„+b3n-2,其中n=1,2,3,„,求U10的值。云南省2009年特岗教师招考试卷[小学数学科目

(一)]参考答案及解析

专业基础知识部分

一、单项选择题

1.C 【解析】略。

2.C 【解析】求解1-x>0和3x+1>0得:-13

3.B 【解析】∵y(-x)=ax+a-xx=y(x),∴y(x)是偶函数。

4.D 【解析】因为(1+10%)(1-10%)=0.99<1,所以选D。

5.D 【解析】设切点是(x0,y0),则切线L的斜率k=4x30=4,即x0=1,y0=1。因此,L的方程是y-4x+3=0。

6.B 【解析】略。

7.A 【解析】略。

8.B 【解析】a→∥b→,则34=sinacosa=tana。

9.B 【解析】所围成的图形面积S=2∫10x3dx=12,故选B。

10.D 【解析】A.自然数是一类等价的有限集合的标记;B.形如mn,m、n都是整数且n≠0的数,叫做分数;C.有限小数是十进制分数的另外一种表现形式。故选D。

二、填空题

1.an=1-12n+1,n∈N+ 【解析】略。

2.60 【解析】12×10-5×500 000=60(千米)。

3.表示数量,表示次序 【解析】略。

4.(2,11)或(2,37)或(2,89)【解析】略。

5.0.328 05 【解析】所求概率=C45×0.94×(1-0.9)=0.328 05。

6.10 【解析】由已知得,a

三、解答题

1.解:由已知条件可以假设二次函数为f(x)=a(x-2)(x+1)-1,a为待定常数。

即,f(x)=a(x-122)-1-94a。因为f(x)有最大值8,所以a<0,且f(12)=-1-44a=8,即f(x)在x=12处取最大值。解之得,a=-4。

因此,此二次函数的解析式为f(x)=-(x-12)2+8。

2.解:该圆也即x2+(y-6)2=9,如右图所示。那么,由已知条件得:O′A=3,O′O=6,∠O′AO=90°

∠O′OA=60°

∠BO′A=120°

因此,该圆夹在两条切线间的劣弧的长为120°360°×2π×3=2π。

3.解:(1)设公比为q,则an=a1qn-1,那么a4a1=q3=27,解得q=3。因此,数列{an}的通项公式为an=2×3n-1,前n项和的公式为Sn=a1(1-qn)1-q=3n-1。

(2)设公差为d,则bn=b1+(n-1)d,前n项和的公式为Sn=2n+n(n-1)d2。

由已知条件得,8+6d=26,即d=3。因此,数列{bn}的通项公式为bn=3n-1。

(3)不妨令c1=b1,c2=b4,„,cn=b3n-2,则数列{cn}也是等差数列,且等差为9,因此,Un=2n+n(n-1)2×9。所以,U10=425。

第四篇:云南省特岗教师招聘考试大纲(小学)

招聘小学信息技术教师考试大纲

一、考试性质

招聘小学信息技术教师考试选拔考试。编写本大纲的主要目的是为了招聘合格的小学信息技术课教师服务,为学生备考和考试命题提供规范的依据。《大纲》既可作为招聘特岗教师的指导用书,也可作为各类学校招聘合格的小学信息技术课教师的指导性用书。

二、考试范围

考试围绕小学信息技术课程的教学目标“培养学生积极主动参与信息技术学习的兴趣,良好的信息意识和必要的信息处理能力,健康负责的信息技术使用习惯,引导学生学会使用信息技术支持学习和解决问题”及实施内容,结合云南的实际考核专科专业层次毕业生的信息技术能力和教学能力。考试范围如下:

1、信息技术基础

了解信息及其基本特征、信息技术的发展与应用;掌握计算机中数的编码和各种编码在计算机中的表示及运算。掌握微型计算机系统的基本结构及计算机各个部件的功能。了解与信息技术相关的道德规范及法律、规范。了解信息安全的知识和计算机病毒特征、危害及防治措施。

2、操作系统及其应用

以window操作系统的运行环境及相关知识为主。了解操作系统的概念、功能与发展,了解window操作系统的运行环境和桌面、窗口、菜单等概念。理解文件和文件夹的概念并熟练掌握其操作。熟练掌握window的启动、退出、窗口、菜单、工具按钮等操作。熟练掌握剪贴板、资源管理器和控制面板的概念与应用。熟练掌握常用工具的使用。

3、word文字处理

word文字处理软件的基本知识和主要功能。掌握word的窗口组成,熟练掌握文件建立和编辑的操作技能,熟练掌握文档的排版和打印功能,熟练掌握表格、图形插入的功能。

4、电子表格

Excel的只是和基本功能。掌握Excel的敞口结构,熟练掌握工作的简历以编辑。掌握单元格地址表示、数据类型和引用。掌握公式和常用的使用,熟练掌握利用Excel进行速回据处理和各类图表的建立。

5、多媒体基础与演示文稿

理解多媒体、多媒体技的概念和多媒体技术的基本特征,了解常用的声音、音频、图形、图像和动画的文件格式一级常用的多媒体制作工具。掌握PPT的基础只是和基本功能。熟练掌握PPT建立演示文稿的基本操作和板式设置、设计模板选择等操作。掌握PPT中文字、图片、绘图、声音、动画、影片等元素的基本操作。掌握幻灯片的播放的链接。

6、计算机网络基础

了解计算机网络的定义、发张、基本拓扑结构、网络协议及网络的组成和功能。了解ISO/OSI参考模型和TCP/IP协议。了解常见的网络硬件和网络传输介质。理解Internet的概念、IP地址和域名。熟练掌握利用IE浏览器搜索和获取信息。掌握电子邮件、电子公告牌(BBS)和博客(BLOG)等信息交流工具。程序设计基础

了解程序、程序设计的概念一级常见的程序设计语言。了解程序的三种基本结构,了解算法的概念、基本描述方法和流程图的含义及基本图形符号。掌握Visual Basic编程环境,理解工程、对象、控件、属性、事件、方法等的含义,掌握常用控件的基本属性、常用事件和方法。

信息技术教学设计

了解课件的概念和作用。了解教学设计的要素和环节。掌握教学目标分析、学习者特征分析、教学策略选择、学习环境创建和教学结果评价的内容与方法,能够结合小学信息技术课程的内容设计完整的教学方案。

三、考试内容

(一)信息技术基础

1、了解信息及基本特征

2、了解信息技术的发展与应用

3、数的进位计数制

(1)掌握计算机中数制的基本概念。

(2)掌握十进制、二进制、八进制、十六进制数之间的相互转换;(3)了解计算机中数制数据的表示、英文字符的表示、汉字字符的表示。

4、了解常用的ASCII码、汉字编码的相关概念;

5、了解计算机的生产和发展;

6、理解计算机的特点、分类和主要用途;

7、理解计算机系统的基本组成及应用;

8、了解硬件系统的组成尤其是冯·诺依曼结构计算机的结构或及其主要特点;

9、理解计算机数据存储的基本概念;

10、了解主板、显示卡、显示器、硬盘驱动器、光盘驱动器、声卡与音箱、网卡、键盘、鼠标、扫描仪、调制解调器、电源、机箱、中央处理器CPU、存储器包括内存(只读存储器ROM、随机存取存储器RAM)、外存(软盘、硬盘、光盘)、打印机(点阵打印机、喷墨打印机、激光打印机)、绘图仪等的分类、结构、基本工作原理和主要参数、选购、安装、拆卸方法。

11、掌握网络道德和相关概念以及可借鉴的规范和网络道德的特点;

12、了解知识产权的概念和相关产权的概念以及软件只是产权、软件盗版;

13、了解计算机犯罪的定义、基本类型和主要特点;

14、了解常见的网络安全问题;

15、了解信息安全面临的威胁;

16、掌握计算机病毒的概念、特征、及分类以及计算机病毒的预防方法;

17、掌握病毒的清楚方法、了解目前相关的杀毒软件并且在进行杀毒时应该注意的事项。

(二)操作系统及其应用

1、掌握操作系统的运行环境以及操作系统的概念、功能;

2、了解操作系统的形成和发展;

3、了解操作系统的地位;

4、了解操作系统的分类;

5、了解Windows操作系统的运行环境、启动。退出和Windows桌面的组成;

6、理解文件、文件夹(目录)、路径的概念、了解窗口的组成和菜单的约定以及前铁板概念;

7、熟练掌握汉字输入方式的启动和一种汉字输入方法;

8、熟练掌握鼠标的使用窗口的各种操作方法;

9、熟练掌握菜单的基本操作和对话框的操作;

10、掌握工具栏按钮操作及任务栏的使用;

11、掌握开始菜单的定制;

12、熟练掌握剪切与粘贴操作;

13、熟练掌握快捷方式的创立、使用、删除和命令执行方法;

14、了解资源管理器窗口组成,熟练掌握应用资源管理器进行文件夹与文件的管理;

15、熟练掌握控制面板的基本操作和功能;

16、掌握系统工具、“写字板”、“计算器”、“画图”等基本工具的使用;

(三)word文字处理

1、了解word的主要功能、特点、word窗口各个部分的名称和作用;

2、掌握word的启动和退出;

3、掌握word工作窗口的基本构成元素;

4、掌握word文档的创建、打开和保存;

5、熟练掌握文本编辑的对象选定、内容的插入、修改以及熟练掌握剪贴、移动、复制、删除、撤销、回复操作;

6、熟练掌握页面、文字格式和段落格式设置以及word文档的打印;

7、熟练掌握word表格的建立; 8;掌握表格格式、内容的编辑和修改;

9、掌握绘制自选图形的操作;

10、掌握图形的插入、艺术字的插入;

11、掌握图形元素的基本操作;

12、掌握文本框、图文框的插入以及图文混排技术;

13、掌握打印预览和打印输出

(四)电子表格

1、了解Excel的基本功能、特点;

2、掌握Excel的启动、退出和Excel的窗口界面;

3、掌握新建、打开、保存、关闭工作薄;

4、了解工作表的结构;

5、掌握单元格的选取、插入、解除、数据的输入、插入、解除和数据的编辑、修改以及数据的清除、移动、复制;

6、掌握工作表的创建、选取、重命名、插入、删除、移动和复制;

7、掌握工作表格式中设置的基本操作和工作表的打印输出;

8、掌握Excel公式和函数的使用;

9、掌握数据的查找;

10、掌握数据的排序;

11、掌握数据的筛选;

12、掌握数据的分类汇总; 13了解Excel图表类型;

14、掌握Excel图表的创建、编辑和修改;

15、掌握图表的编辑和打印。

(五)多媒体基础与演示文稿

1、了解多媒体、多媒体技术的基本概念;

2、了解多媒体常用的声音、视频、图形、图像、动画文件格式类型已经常用的多媒体制作工具;

4、了解常见多媒体文件的类型和文件格式;

5、了解PPT的基本功能和运行环境;

6、了解PPT文件的存储格式;

7、了解PPT文件的放映环境;

8、掌握PPT的启动、退出方法;

9、了解PPT的窗口界面;

10、熟练掌握PPT演示文稿的创建、打开和保存的基本操作;

12、熟练掌握板式设置和设计模板选择的操作;

13、掌握文本框的使用、艺术字制作和幻灯片背景设置;

14、掌握图片、声音、视频、动画、影片等幻灯片元素的插入以及属性的设置;

15、掌握幻灯片的插入、删除、复制和次序交换;

16、掌握幻灯片切换和放映的操作;

17、掌握幻灯片自定义动画和效果的基本操作;

18、掌握动作设置的基本操作以及超链接到外部文件、超链接到电子邮件和设置幻灯片之间的超链接。

(六)计算机网络基础

1、了解计算机网络的概念及分类;

2、了解计算机网络的基本功能、网络传输速度、计算机网络系统的组成;

3、了解网络协议的基本概念和ISO/OSI网络协议模型;

4、了解TCP/IP协议、IP地址和域名系统的基本概念;

5、了解常用网络硬件和网络传输介质;

6、了解常见的形成与发展;

7、了解常见的网络拓扑结构分类;

8、了解Internet的发展历史以及Internet网络基本概念的相关知识;

9、掌握IE(Internet Explorer)的使用;

10、只能怪我常用的搜索引擎和搜索技巧以及各种网络信息(软件、网页、图片、文字、声音、视频等)的获取方法;

11、掌握在IE地址栏中访问FTP站点的操作;

12、了解BBS的基本操作;

13、理解电子邮件的基本概念和收发过程;

14、通过网站发电子邮件,掌握使用Outlook Express收发邮件以及电子邮件的基本操作、邮件管理的基本操作和通讯簿的使用;

15、了解电子公告牌、网络博客、IP电话以及Internet上应用的功能与特点;

16、掌握Internet的常用介入方式和地址标签。

(七)程序设计基础

1、了解程序设计语言、程序、程序设计的概念;

2、了解算法的概念、算法的基本描述方法、流程图的含义和基本图形符号;

3、理解Visual Basic的界面操作;

5、熟练掌握工程、对象、控件、属性、事件、方法、代码的含义; 6熟练掌握常用的空间:标签、文本框、命令按钮、图片框、驱动条等是使用;

7、熟练掌握常用的空间的基本属性;

8、熟练掌握常用的时间的使用;

9、失恋的掌握常用的方法调用;

10、掌握常量和变量的含义、命名、定义及使用;

11、熟练掌握基本数据类型和运算符和表达式;

12、熟练掌握常用内部函数的含义及使用方法;

13、掌握顺序结构语句、分支结构语句、循环结构语句的含义、合适和使用方法。

(八)信息技术教学设计

1、了解课件的概念和使用

2、了解小学信息技术教学设计的理论基础和信息技术教学设计理论;

3、理解教学目标的含义及分类;

4、掌握教学目标的分析和编写方法;

5、理解学习者起点分析的意义;

6、掌握分析学习者学习动机和学习风格的方法;

7、熟练掌握在网络环境下学习者的特征分析;

8、理解学习者的特征分析实例;

9、理解教学策略选择和设计的案例分析以及学习环境的创设;

10、掌握学习环境设计、教学媒体的选择和设计以及如何应用教学媒体激发学生兴趣;

11、掌握学习资源和工具的选择、设计与开发;

12、理解学习环境设计实例;

13、理解教学评价的含义、内容和类型;

14、掌握教学效果评价设计;

15、熟练掌握教学设计方案、多媒体教学资源的评价以及教学设计结果的形成性和总结性评价;

16、熟练掌握能够结合小学信息技术课程的内容设计完整而有趣味性的教学方案。

四、参考书目

1、《信息技术应用基础教程》云南大学出版社;主编:刘敏昆、李志平

2、《计算机应用基础》清华大学出版社;刘义常主编

3、《大学计算基础及应用》科学出版社;黄求根、姜明华主编;

4、《大学计算基础及应用》高等教育出版社、中山大学出版社;崔洪芳主编。

5、《信息技术教育的理论与方法》高等教育出版社;徐晓东主编。

五、考试形式与试题结构

1、命题依据

云南省招聘特岗教师信息技术考试根据小学信息技术课程的目标“培养学生积极主动参与信息技术学习的兴趣,良好的信息意识和必要的信息处理能力,健康负责的信息技术使用习惯,引导学生学会使用信息技术支持学习和解决问题”及实施内容、结合专科师范、非师范专业信息技术课程大纲说明进行命题。

2、总分与考试时间

考试采用闭卷方式,全卷满分为100分。考试时间为150分钟。

3、试卷难度

试题按难度分为容易题、中等题、难题,试卷中试题易中、难的比例为5:4:1。

4、试卷形式

云南省招聘特岗教师信息技术考试笔试部分。要求考生直接在试卷纸上完成考试内容。

5、试卷题型、分值

试卷分为选择题、填空题、简答题、论述题四种题型。选择题分为单项选择题和多项选择题。填空题是对考试要求的内容进行知识与技能的考查,简答题和论述题是对知识和技能、过程与方法进行全面的考查。

第五篇:云南省特岗教师招聘考试

云南省特岗教师招聘考试《初中数学教师专业课考试大纲》

[日期:2008-03-21] 来源:云南培训认证网

作者: [字体:大 中 小]

全面围绕出题规律,准确分析总结考点,精准预测命题趋势,培养应试思维,掌握高分方法,轻松应对2011年云南省公务员考试!

昆明航帆培训中心2011年农村信用社招聘考试培训,强大的师资、全面的知识、足量的课时、严谨的办学,让我们一起再创辉煌!

一、考试性质

招聘从事初中数学教学工作的教师的考试属选拔性考试。考试采用闭卷笔试形式,全卷满分1OO分,考试时间150分钟。

要求考生比较系统地理解和掌握从事初中数学教学工作必须具备的数学专业基础知识(有关初中数学和大学数学中最基本的概念、理论和方法)、教法技能知识和教育学、教育心理学和初中数学教育学中最基本的常识。

要求考生具有数学抽象思维能力、数学逻辑思维推理能力、数学空间想象能力、数学运算能力和综合运用数学去分析问题和解决问题的能力。

二、考试范围

考试范围划分为代数、几何、初中数学教育学三大模块:

Ⅰ.代数模块

(一)初中代数中的数、式概念及其运算法则、重要公式,方程、不等式和函数;

(二)一元函数微分学

1.极限

数列的极限,函数的极限,极限的四则运算以及函数的连续性。

2.导数

导数的概念,导数的几何意义,基本初等函数的导数,两个函数的和、差、积、商的导数,复合函数的导数,函数导数的应用。

(三)一元函数积分学

原函数、不定积分的概念、不定积分的基本性质、基本积分公式。Ⅱ.几何模块

线段、角、有关三角形、四边形、多边形、圆最重要的数学结论以及两个三角形全等、两个三角形相似的概念、性质和判定方法。

Ⅲ.初中数学教育学模块

初中数学的教学目的、初中数学的教学原则、初中数学教学的常用方法以及对教学内容与教学过程的认识。

三、考试内容与要求

Ⅰ.代数模块的考试内容与考试要求

(一)有理数

1.有理数的概念

(1)了解有理数的意义,会用正数与负数表示相反意义的量以及按要求把给出的有理数归类。

(2)了解数轴、相反数、绝对值等概念会求有理数的相反数与绝对值。

(3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。

2.有理数的运算

(1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算,灵活运用运算律简化运算。

(2)了解倒数概念,会求有理数的倒数。

(3)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人法求有理数的近似数。

(4)了解有理数的加法与减法、乘法与除法可以相互转化。

(二)实数

(1)了解无理数与实数的概念,会把给出的实数按要求进行归类;了解实数的相反数、绝对值的意义以及实数与数轴上的点一一对应。

(2)了解有理数的运算律在实数运算中同样适用;会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算。

(3)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算。

(4)会用科学记数法表示实数。

(三)数的开方

(1)了解平方根、算术平方根、立方根的概念以及用根号表示数的平方根、算术平方根与立方根。

(2).了解开方与乘方互为逆运算,会用平方运算求非负数的平方根与算术平方根,用立方运算求数的立方根。

(四)二次根式

(1)了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

(2)掌握积与商的方根的运算性质,会根据它们熟练地化简二次根式。

(3)掌握二次根式的加、减、乘、除的运算法则,会用它们进行运算。

(4)会将给定的一个二次根式进行有理化。

(5)掌握二次根式的性质,会利用它化简二次根式。

(五)整式的加减

(1)掌握用字母表示有理数,了解用字母表示数是数学的一大进步。

(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值。

(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式按某个字母降幂排列或升幂排列。

(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算。

(六)整式的乘除

1.整式的乘法

(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则(其中的多项式相乘仅指一次式相乘),会用它们进行运算。

(3)灵活运用平方差与完全平方公式进行运算。

2.整式的除法

(1)掌握同底数幂的除法运算性质,会用它熟练地进行运算。

(2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算。

(3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便。

(七)因式分解

(1)了解因式分解的意义及其与整式乘法的区别和联系,了解因式分解的一般步骤。

(2)掌握提公因式法、运用公式法、分组分解法这三种分解因式的基本方法,会用这些方法分解因式。

(八)分式

1.分式

(1)了解分式、有理式、最简分式、最简分母的概念,掌握分式的基本性质,会进行约分与通分。

(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行分式运算。2.可化为一元一次方程的分式方程

(1)掌握含有字母系数的一元一次方程的解法。

(2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分式方程;了解增根的概念,会检验一个数是不是分式方程的增根。

(九)一元一次方程

(1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元一次方程的解。

(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验。(3)通过解方程的教学,了解“未知”可以转化为“已知“的思想方法。

(十)二元一次方程组

(1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。

(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组的一个解。

(3)灵活运用代人法、加减法解二元一次方程组,并会解三元一次方程组。

(4)能够列出二元、三元一次方程组解应用题。能够发现、提出日常生活或生产中可以利用二元一次方程组来解决的实际问题,并正确地用语言表述问题及其解决过程。

(5)通过解方程组,了解把“三元”转化为“二元”,把“二元”转化为“一元”的消元的思想方法,从而初步理解把“未知“转化为“已知”和把复杂问题转化为简单问题的思想方法。

(十一)一元一次不等式和一元一次不等式组

(1)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本性质的异同。

(2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的解集。

(3)会用不等式的基本性质和移项法则解一元一次不等式。

(4)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的区别和联系。

(5)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。

(十二)一元二次方程

1.一元二次方程

(1)了解一元二次方程的概念,会用直接开平方法解形如(b≥O)的方程,用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程。

(2)理解一元二次方程的根的判别式,会根据根的判别式判断数字系数的一元二次方程的根的情况。(3)掌握一元二次方程根与系数的关系式,会用它们由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程两个根的倒数和与平方和。

(4)了解二次三项式的因式分解与解方程的关系,会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式。

(5)能够列出一元二次方程解应用题。

2.可化为一元二次方程的分式方程

(1)掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求分式方程的解,并会验根。

(2)能够列出可化为一元二次方程的分式方程解应用题。

3.简单的二元二次方程组

(1)了解二元二次方程、二元二次方程组的概念,掌握由一个二元一次方程和一个二元二次方程组成的方程组的解法,会用代人法求方程组的解。

(2)掌握由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。

(十三)函数及其图象

1.函数

(1)理解平面直角坐标系的有关概念,并会正确地画出直角坐标系;理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。了解平面内的点与有序实数对之间一一对应。

(2)了解常量、变量、函数的意义,会发现、提出函数的实例,以及分辨常量与变量、自变量与函数。

(3)理解自变量的取值范围和函数值的意义,会根据函数解析式确定自变量的取值范围和函数

(4)了解函数的三种表示。

2.正比例函数和反比例函数

(1)理解正比例函数、反比例函数的概念,能够根据问题中的条件确定正比例函数和反比例函数的解析式。

(2)理解正比例函数、反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减小而变化的情况。

(3)理解待定系数法。会用待定系数法求正、反比例函数的解析式。

3.一次函数的图象和性质

(1)理解一次函数的概念,能够根据实际问题中的条件,确定一次函数的解析式。

(2)理解一次函数的性质,会画出它的图象。

(3)会用待定系数法求一次函数的解析式。

4.二次函数的图象

(1)理解二次函数和抛物线的有关概念,会求抛物线的顶点和对称轴。

(2)会用待定系数法求二次函数的解析式。

5.指数函数与对数函数

(1)掌握指数函数的概念、图象和性质。

(2)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。

(十四)极限

(1)从数列和函数的变化趋势了解数列极限和函数极限的概念。

(2)掌握极限的四则运算法则与两个重要的极限公式;会求数列与函数的极限。

(3)理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。

(十五)导数

(1)了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。

(2)熟记基本初等函数导数公式;掌握两个函数和、差、积、商的求导法则;了解复合函数的求导法则,会求给出解析式的函数的导数。

(3)理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。(十六)一元函数积分学

(1)理解原函数概念,理解不定积分的概念。

(2)掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法与分部积分法。

(3)会用求不定积分的基本方法求简单函数的不定积分。Ⅱ.几何模块的考试内容与考试要求

(十七)直线、射线、线段、角

(1)了解直线、线段、射线、角等概念的区别。

(2)掌握角的平分线的概念。会画角的平分线。

(3)理解对顶角的概念。理解对顶角的性质和它的推证过程,会用它进行推理和计算。

(4)理解补角、邻补角的概念,理解同角或等角的补角相等的性质和它的推证过程,会用它进行推理和计算。

(5)会识别同位角、内错角和同旁内角。

(6)了解平行线的概念及平行线的基本性质。会用平行关系的传递性进行推理。

(7)会用一直线截两平行直线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算;会用同位角相等或内错角相等,或同旁内角互补判定两条直线平行。

(十八)三角形

1.三角形

(1)理解三角形,三角形的顶点、边、内角、外角、角平分线、中线和高等概念。会画出任意三角形的角平分线、中线和高。

(2)理解三角形的任意两边之和大于第三边的性质。会根据三条线段的长度判断它们能否构成三角形。

(3)掌握三角形的内角和定理,三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角的性质。

(4)会按角的大小和边长的关系对三角形进行分类。

2.全等三角形(1)了解全等形、全等三角形的概念和性质,能够辨认全等形中的对应元素。

(2)能够灵活运用“边、角、边”、“角、边、角”、“角、角、边”、“边、边、边”等来判定三角形全等。

(3)会用三角形全等的判定定理来证明简单的有关问题,并会进行有关的计算。

3.等腰三角形

(1)掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质以及它的判定定理:有两个角相等的三角形是等腰三角形。能够灵活运用它们进行有关的论证和计算。

(2)掌握等边三角形的各角都是60。的性质以及它的判定定理:三个角都相等的三角形或有一个角是60。的等腰三角形是等边三角形。能够灵活运用它们进行有关的论证和计算。

(3)理解等腰三角形和等边三角形的性质定理之间的联系,理解等腰三角形和等边三角形的判定定理之间的联系。

4.直角三角形

(1)理解余角的概念,掌握同角或等角的余角相等、直角三角形中两锐角互余等性质,会用它们进行有关的论证和计算。

(2)会用“斜边、直角边"定理判定直角三角形全等。

(3)了解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题。

(4)掌握勾股定理,会用勾股定理由直角三角形两边的长求其第三边的长;会用勾股定理的逆定理判定直角三角形。

5.轴对称

(1)掌握角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角的平分线上的定理。

(2)理解线段的垂直平分线的概念,掌握线段的垂直平分线上的点到线段两个端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线上的定理。

(3)了解轴对称、轴对称图形的概念。了解关于轴对称的两个图形中,对应点所连线段被对称轴垂直平分的性质。了解关于轴对称的两条直线或平行,或相交于对称轴上的一点的性质。

(十九)四边形 1.多边形

(1)理解多边形,多边形的顶点、边、内角、外角和对角线等概念。

(2)理解多边形的内角和定理,外角和定理。掌握四边形的内角和与外角和都等于360。的性质。

2.平行四边形

(1)掌握平行四边形、矩形、菱形、正方形等概念;理解两条平行线问的距离的概念,会度量两条平行线间的距离;了解两点间的距离、点到直线的距离与两条平行线问的距离三者之间的联系。

(2)掌握平行四边形的以下性质:对边相等,对角相等,对角线互相平分。掌握平行四边形的判定定理:一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形。会用它们进行有关的论证和计算。了解平行四边形不稳定性的应用。

(3)掌握矩形的以下性质:四个角都是直角,对角线相等。掌握矩形的判定定理:三个角是直角的四边形,或对角线相等的平行四边形是矩形。掌握菱形的以下性质:四条边相等,对角线互相垂直。掌握菱形的判定定理:四边相等的四边形,或对角线互相垂直的平行四边形是菱形。掌握正方形具有矩形和菱形的一切性质。会画矩形、菱形、正方形的对称轴。

3.中心对称

(1)了解中心对称、中心对称图形的概念。了解以下性质:关于中心对称图形,对称点连线都经过对称中心,并且被对称中心平分。

(2)能找出线段、平行四边形的对称中心。会画与已知图形成中心对称的图形。

4.梯形

(1)掌握梯形、等腰梯形、直角梯形等概念。掌握等腰梯形的以下性质:同一底上的两底角相等,两条对角线相等。掌握等腰梯形的判定定理:同一底上的两底角相等的梯形是等腰梯形。

(2)掌握平行线等分线段定理,会用它等分一条已知线段。

(3)掌握三角形中位线定理和梯形中位线定理,过三角形一边中点且平行另一边的直线平分第三边,过梯形一腰的中点且平行底的直线平分另一腰的定理。会用它们进行有关的论证和计算。

(4)会将四边形分类。(二十)相似形 1.比例线段

(1)理解比与比例的概念。能够说出比例关系式中比例的内项、外项、第四比例项或比例中项。

(2)掌握比例的基本性质定理、合比性质和等比性质。会用它们进行简单的比例变形。

(3)理解线段的比.、成比例线段的概念。会判断线段是否成比例。了解黄金分割。

(4)了解平行线分线段成比例定理及截三角形两边或其延长线的直线平行于第三边的判定定理的证明;会用它们证明线段成比例、线段平行等问题,并会进行有关的计算。

2.相似形

(1)理解相似三角形的概念。

(2)灵活运用两对对应角相等、或一对对应角相等且夹边成比例、或三对边之比相等则两三角形相似的判定定理,以及一对直角边和斜边成比例则两直角三角形相似的判定定理。

(3)理解相似比的概念和相似三角形的对应高的比等于相似比的性质。

(二十一)解直角三角形

(1)了解锐角三角函数的概念,能够正确地应用表示直角三角形中两边的比。

(2)熟记角的三角函数值,会计算含有特殊角的三角函数式的值,会由一个特殊锐角的三角函数值,求出它对应的角度。

(3)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(二十二)圆

1.圆的有关性质

(1)理解圆、等圆、等弧等概念及圆的对称性。

(2)掌握点和圆的位置关系。

(3)掌握垂径定理及其逆定理(平分非直径的弦的直径垂直于弦且平分弦所对的弧,平分弦所对的一条弧的直径垂直平分弦,弦的垂直平分线经过圆心等性质)。

(4)掌握圆心角、弧、弦、弦心距及圆周角之间的主要关系;掌握圆周角定理以及直径所对的圆周角是直角,的圆周角所对的弦是直径等性质,并会用它们进行论证和计算,会作两条线段的比例中项。

(5)掌握圆的内接四边形的对角互补,外角等于它的内对角的性质。

2.直线和圆的位置关系

(1)掌握直线和圆的位置关系。

(2)掌握经过半径的外端且垂直于这条半径的直线是圆的切线,切点和圆心的连线与切线垂直等性质。

(3)掌握切线长定理、弦切角定理、相交弦定理、切割线定理,并会利用它们进行有关的计算。

3.圆和圆的位置关系

(1)掌握圆和圆的位置关系。

(2)掌握相交两圆的连心线垂直平分两圆的公共弦,相切两圆的连心线经过切点等性质。

(3)了解两圆的外公切线的长相等,两圆的内公切线的长相等等性质,了解两圆公切线长的求法。

(4)掌握两圆的外公切线的长相等、内公切线的长相等的性质。

4.正多边形和圆

(1)理解正多边形、正多边形的中心、半径、边心距、中心角等概念。会将正多边形边长、半径、边心距和中心角的有关计算的问题转变为解直角三角形的问题。

(2)通过对镶嵌平面图形的探究,了解正多边形在镶嵌中所起的作用。

(3)会计算圆的周长、弧长及简单组合图形的周长。

(4)会计算圆的面积、扇形的面积及简单组合图形的面积。

(5)了解圆柱、圆锥的侧面展开图分别是矩形和扇形,会计算圆柱和圆锥的侧面积和全面积。

Ⅲ.初中数学教育学模块的考试内容与考试要求

(1)理解初中数学的教学目的、初中数学的教学原则、初中数学教学的常用方法。

(2)了解一些有关初中数学教学内容与教学过程探索的观点与方法。

(3)能够应用有关的理论对初中数学教学中的普遍而且典型现象作出解释。

四、参考书目

1.数学分析(一元微积分部分)(公开出版的任何大学数学系教材都可以)

2.初中数学教材(几何、代数部分)

(1)人民教育出版社出版的九年义务教育初中数学教科书(一共7本)

(2)人民教育出版社出版的义务教育课程标准初中数学教科书(一共6本)

(3)北京师范大学出版社出版的义务教育课程标准初中数学教科书(一共6本)

(4)华东师范大学出版社出版的义务教育课程标准初中数学教科书(一共6本)

(5)江苏科技出版社出版的义务教育课程标准初中数学教科书(一共6本)

以上5套书任意选择一套即可。

3.中学数学教育学(概论)或者中学数学教材教法

公开出版的任何师范院校数学系的教科书都可以(重点为总论部分或者理论部分)。

五、重要说明

1.招聘初中数学教师考试试卷由数学专业基础知识(有关初中数学和大学数学中最基本的概念、理论和方法)和教法技能知识(心理学、教育学和初中数学教育学中最基本的常识)两部分组成。其中数学专业基础知识占70分,有单项选择题,填空题,计算题,应用题和证明题。其中单项选择题与填空题共占大约40分,计算题、应用题和证明题共占大约30分。教法技能知识共占30分,其中初中数学教育学占1O分,教育心理学、教育学共占20分。

2.本大纲只对专业基础知识与教法技能中有关初中数学教育学的考试内容与考试要求做了界定。有关教育学、教育心理学20分的考试内容与要求见相应大纲。

3.本大纲从进行初中数学教学工作必须具备的最起码的数学基础与数学素质的角度,强调用大学数学的观点来分析、看待、理解初中数学的内容,所以突出的是数学的核心内容,是数学中的主流。特别是与初中数学教学相关的核心内容。因此,各个大学数学系课程的差异、教科书的差异、理论体系与符号的差异不会造成参加招聘初中数学教师考试的影响。

2009年特岗教师招聘考试试题(小学数学)部分试题

一、单项选择题(在每小题的4个备选答案中,选出一个符合题意的答案,并将其号码写在题干后的括号内。本大题共10个小题,每小题3分,共30分)

1.设M、N是非空数集,定义:MN={a+b|a∈M,b∈N},若M={1,2,3},N={4,5,6},则MN=()

A.{1,2,3}∪{4,5,6}

B.{5,5,6,6,7,7,8,8,9,9}

C.{5,6,7,8,9}

D.{5,7,9}

2.函数y=3x21-x+lg(3x+1)的定义域为()

A.(-∞,-13)

B.(-13,13)

C.(-13,1)

D.(-13,+∞)

3.函数y=ax+a-x2()

A.是奇函数,不是偶函数

B.是偶函数,不是奇函数

C.既是偶函数,又是奇函数

D.既不是偶函数,又不是奇函数

4.一种商品的价格先提高了10%,再降低10%,结果与原价相比()

A.相等

B.不能确定

C.提高了

D.降低了

5.若曲线y=x4的一条切线L与直线x+4y-8=0垂直,则L的方程为()

A.x+4x-5=0

B.4x-y+3=0

C.x+4y+3=0

D.4x-y-3=0

6.已知:l1、l2是空间两条直线,条件p:直线l1、l2没有公共点;条件q:直线l1、l2是平行直线,则p是q的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分又不必要条件

试题由中人教育独家提供,任何网站如需转载,均需得到中国教育在线教师招聘频道和中人教育双方的 书面许可,否则追究法律责任。

7.下列说法错误的是()

A.小明和小红用“石头、剪子、布”游戏决定谁胜谁负,这个随机事件共有“出石头、出剪子、出布”三种可能的结果发生

B.随机事件具有不确定性和规律性两个特点

C.若事件A与B相互独立,则事件A与、与、与B也相互独立

D.设A为随机事件,则P(A+)=1,P(A)=0

8.已知a→=(3,4),b→=(sinα,cosα),若a→∥b→,则tanα的值为()

A.43

B.34

C.0

D.不存在

9.由曲线y=x3与直线x=-1,x=1及x轴所围成图形的面积为()

A.0

B.12

C.14

D.-14

10.下列说法正确的是()

A.自然数是有限集合的标记

B.形如mn的数,叫做分数

C.十进分数是有限小数的另一种表现形式

D.把一个分数的分子、分母分别除以它们的公约数,叫做约分

得分评卷人

二、填空题(本大题共6个小题,每小题3分,共18分)

1.数列34,78,1516,3132,„的通项公式为。

2.在比例尺是1∶500 000的地图上,量得甲、乙两地之间的距离是12厘米,甲、乙两地之间的实际距离大约是千米。

3.自然数有和两重意义。

4.有两个质数,它们的和既是一个小于100的奇数,又是13的倍数,这两个质数可能是。

5.若某水文观测站观测的准确率是0.9,则它的5次预报中恰有4次准确的概率为。

6.设集合A={1,2,3,4,5},a∈A,b∈A,则方程x2a+y2b=1表示的椭圆中,焦点在Y轴上的共有个。(用数字作答)

得分评卷人

三、解答题(本大题共3个小题,其中第1、2小题每个小题10分,第3小题12分,共32分)

1.已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定此二次函数的解析式。

2.从原点向圆x2+y2-12y+27=0作两条切线,求该圆夹在两条切线间的劣弧之长。

3.已知{an}是等比数列,a1=2,a4=54;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3。

(1)求数列{an}的通项公式及前n项和公式;

(2)求数列{bn}的通项公式;

(3)设Un=b1+b4+b7+„+b3n-2,其中n=1,2,3,„,求U10的值。

云南省2009年特岗教师招考试卷[小学数学科目

(一)]参考答案及解析

专业基础知识部分

一、单项选择题

1.C 【解析】略。

2.C 【解析】求解1-x>0和3x+1>0得:-13

3.B 【解析】∵y(-x)=ax+a-xx=y(x),∴y(x)是偶函数。

4.D 【解析】因为(1+10%)(1-10%)=0.99<1,所以选D。

5.D 【解析】设切点是(x0,y0),则切线L的斜率k=4x30=4,即x0=1,y0=1。因此,L的方程是y-4x+3=0。

6.B 【解析】略。

7.A 【解析】略。

8.B 【解析】a→∥b→,则34=sinacosa=tana。

9.B 【解析】所围成的图形面积S=2∫10x3dx=12,故选B。

10.D 【解析】A.自然数是一类等价的有限集合的标记;B.形如mn,m、n都是整数且n≠0的数,叫做分数;C.有限小数是十进制分数的另外一种表现形式。故选D。

二、填空题

1.an=1-12n+1,n∈N+ 【解析】略。

2.60 【解析】12³10-5³500 000=60(千米)。

3.表示数量,表示次序 【解析】略。

4.(2,11)或(2,37)或(2,89)【解析】略。

5.0.328 05 【解析】所求概率=C45³0.94³(1-0.9)=0.328 05。

6.10 【解析】由已知得,a

三、解答题

1.解:由已知条件可以假设二次函数为f(x)=a(x-2)(x+1)-1,a为待定常数。

即,f(x)=a(x-122)-1-94a。因为f(x)有最大值8,所以a<0,且f(12)=-1-44a=8,即f(x)在x=12处取最大值。解之得,a=-4。

因此,此二次函数的解析式为f(x)=-(x-12)2+8。

2.解:该圆也即x2+(y-6)2=9,如右图所示。那么,由已知条件得:O′A=3,O′O=6,∠O′AO=90°

∠O′OA=60°

∠BO′A=120°

因此,该圆夹在两条切线间的劣弧的长为120°360°³2π³3=2π。

3.解:(1)设公比为q,则an=a1qn-1,那么a4a1=q3=27,解得q=3。因此,数列{an}的通项公式为an=2³3n-1,前n项和的公式为Sn=a1(1-qn)1-q=3n-1。

(2)设公差为d,则bn=b1+(n-1)d,前n项和的公式为Sn=2n+n(n-1)d2。

由已知条件得,8+6d=26,即d=3。因此,数列{bn}的通项公式为bn=3n-1。

(3)不妨令c1=b1,c2=b4,„,cn=b3n-2,则数列{cn}也是等差数列,且等差为9,因此,Un=2n+n(n-1)2³9。所以,U10=425。

云南省特岗教师招聘考试仿真试卷四(小学数学)部分试题

(满分:100分考试时间:150分钟)

专业基础知识部分

得分评卷人

一、单项选择题(每小题3分,共30分)

1.一个真分数的分子、分母是互质的合数,这个真分数可能是()。

A.49B.3931

C.125D.810

2.某班男生人数如果减少15,就与女生人数相等,下面不正确的是()。

A.男生比女生多20%

B.男生是女生的125%

C.女生比男生少20%

D.男生占全班人数的59

3.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()。

A.冠军属于中国选手B.冠军属于外国选手

C.冠军属于中国选手甲D.冠军属于中国选手乙

4.如果AB为⊙O的直径,弦CD⊥AB,垂足为E(如图所示),那么下面结论中错误的是()。

A.CE=DEB.BC=BD

C.∠BAC=∠BADD.AC>AD

第4题图第5题图

试题由中人教育独家提供,任何网站如需转载,均需得到中国教育在线教师招聘频道和中人教育双方的书面许可,否则追究法律责任。

5.如图,E、F、G、H分别为正方形ABCD的边AB、BC、CD、DA上的点,且AE=BF=CG=DH=13AB,则图中阴影部分的面积与正方形ABCD的面积之比为()。

A.25B.49

C.12D.35

6.一个口袋中装有4个红球、3个绿球、2个黄球,每个球除颜色外其他都相同,搅匀后随机地从中摸出一个球是绿球的概率是()。

A.49B.29

C.13D.23

7.下面几何体的主视图是()。

8.如图,AB∥CD,直线PQ分别交AB、CD于点E、F,FG是∠EFD的平分线,交AB于点G,若∠PFD=140°,那么∠FGB等于()。

A.80°B.100°

C.110°D.120°

9.函数y=x+1x的图像如图所示,下列对该函数性质的论断不可能正确的是()。

A.该函数的图像是中心对称图形

B.当x>0时,该函数在x=1时取得最小值2

C.在每个象限内,y的值随x值的增大而减小

D.y的值不可能为1

10.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠0)的图像可能是()。

得分评卷人

二、填空题(每小题3分,共15分)

11.将14x+x3-x2分解因式的结果是。

12.如图,半圆的直径AB=。

第12题图第13题图

13.如图,l1∥l2,∠α=度。

14.计算:48+1412÷27=。

15.设数列{an}的前n项和为Sn,Sn=a1(3n-1)2,且a4=54,则a1的值是。

得分评卷人

三、解答题(共35分)

16.(7分)在△ABC中,角A、B、C的对边分别为a、b、c。已知向量=(a+c,b-a),=(a-c,b),且⊥。

(1)求角C的大小;

(2)若sinA+sinB=62,求角A的值。

17.(8分)某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩。为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)

***52630

***92826

(1)请根据以上信息完成下表:

销售额(万元)***62830

频数(人数)1133

(2)上述数据中,众数是万元,中位数是万元,平均数是万元;

(3)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由。

18.(10分)2008年初,我国南方部分省区发生了雪灾,造成通信受阻。如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高。(精确到0.1米)

19.(10分)已知点A(a,y1)、B(2a,y2)、C(3a,y3)都在抛物线y=5x2+12x上。

(1)求抛物线与x轴的交点坐标;

(2)当a=1时,求△ABC的面积;

(3)是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由。

云南省特岗教师招考仿真试卷[小学数学科目]参考答案及解析

专业基础知识部分

一、单项选择题

1.A 【解析】略。

2.A 【解析】设男生人数为x,则女生人数为45x,男生比女生多15x,男生比女生多25%,故A不正确。女生比男生少20%,C正确,男生是女生的x45x=125%,B正确。男生占全班的xx+45x=59,D正确。故选A。

3.A 【解析】A为必然事件,B为不可能事件,C、D为随机事件。

4.D 【解析】根据垂径定理,可得AC=AD,故AC>AD是错误的,故选D。

5.A 【解析】设AB=1,AF与ED交于点M。则AE=13。而AE∶EM∶AM=10∶1∶3。所以AM=13³310=1010,EM=13³110=1030,AF=103。所以阴影部分的面积为103-1010-10302=610302=25。即面积比为25∶1=25。

6.C 【解析】P=34+3+2=13

7.B 【解析】本题主要考查三视图的意义及识别。

8.C 【解析】∠FGB=∠CFG=180°-∠DFG=180°-12 ∠EFD=180°-70°=110°。

9.C 【解析】在第一象限内,当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小。

10.D 【解析】当m>0时,函数y=mx+m的图像经过第一、第二、第三象限,y=-mx2+2x+2的图像开口向下;当m<0时,函数y=mx+m的图像经过第二、第三、第四象限,y=-mx2+2x+2的图像开口向上,且对称轴x=2m在y轴左边。

二、填空题

11.x(x-12)2(或14x(2x-1)2)

【解析】14x+x3-x2=x(x2-x+14)=x(x-12)2。

12.22

【解析】由图可知,半圆的半径为正方形的对角线长,即半径为2,所以直径AB=22。

13.35

【解析】因为l1∥l2,所以∠1=∠2=120°,所以∠α=180°-120°-25°=35°。

14.32

【解析】本题主要考查二次根式的化简与四则运算,48+1412÷27=43+32÷33=932³133=32。

15.2

【解析】由已知有:a4=S4-S3=a1(34-1)2-a1(33-1)2=54,解之得:a1=2。

三、解答题

16.【解析】(1)由⊥得(a+c)(a-c)+(b-a)b=0

整理得a2+b2-c2-ab=0,即a2+b2-c2=ab

又cosC=a2+b2-c22ab=ab2ab=12

因为0

所以C=π3

(2)因为C=π3,所以A+B=2π3, 故B=2π3-A

由sinA+sinB=62,得sinA+sin2π3-A=62

即sinA+32cosA+12sinA=62

所以3sinA+cosA=2

即sinA+π6=22

因为0

故A+π6=π4或A+π6=3π4

所以A=π12 或A=7π12

17.【解析】(1)3,5,2,2

(2)26,25,24

(3)不能

因为此时众数26万元>中位数25万元。

(或:因为从统计表中可知20名营业员中,只有9名达到或超过目标,不到半数)

18.【解析】作BD⊥AC于D,由已知得:∠CBD=38°,∠ABD=21°,AB=15米

在Rt△ADB中,∵sin∠ABD=ADAB,∴AD=AB²sin∠ABD=15³sin21°≈5.38

∴cos∠ABD=BDAB

∴BD=AB²cos∠ABD=15³cos21°≈14.00

在Rt△BDC中,∵tan∠CBD=CDBD

∴CD=BD²tan∠CBD≈14.00³tan38°≈10.94

∵cos∠CBD=BDBC,∴BC=BDcos∠CBD≈14.00cos38°≈17.77

∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1

答:折断前发射塔的高约为34.1米。

19.【解析】(1)由5x2+12x=0

得x1=0,x2=-125

∴抛物线与x轴的交点坐标为(0,0)、-125,0。

(2)当a=1时,得A(1,17)、B(2,44)、C(3,81),分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有

S△ABC=S梯形ADFC-S梯形ADEB-S梯形BEFC

=(17+81)³22-(17+44)³12-(44+81)³12

=5(个单位面积)

(3)如:y3=3(y2-y1)

事实上,y3=5³(3a)2+12³(3a)=45a2+36a

3(y2-y1)=3[5³(2a)2+12³2a-(5a2+12a)] =45a2+36a

∴ y3=3(y2-y1)云南省特岗教师招聘考试仿真试卷三(小学数学)部分试题

(满分:100分考试时间:150分钟)

专业基础知识部分

得分评卷人

一、填空题(本大题共6小题,每小题3分,共18分。只要求写出最后结果)

1.据某市统计局初步核算,去年实现地区生产总值1 583.45亿元。这个数据用科学记数法表示约为元。(保留三位有效数字)

2.如下图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是。

第2题图

第6题图

3.若正方形AOBC的边OA、OB在坐标轴上,顶点C在第一象限且在反比例函数y=1x的图像上,则点C的坐标是。

4.将一列数按下面的规律排列下去,那么问号处应填的数字为。

①①②③⑤⑧○?

5.方程x2x-3+53-2x=4的解是。

6.如上图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处东500米的B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=米。(用根号表示)

试题由中人教育独家提供,任何网站如需转载,均需得到中国教育在线教师招聘频道和中人教育双方的书面许可,否则追究法律责任。

得分评卷人

二、选择题(每小题3分,共30分)

7.左下图几何体是由三个同样大小的立方体搭成的,其左视图为()。

8.下列计算正确的是()。

A.130³3=0B.x5+x5=x10

C.x8÷x2=x4D.(-a3)2=a6

9.如图,AB是⊙O的直径,点C、D在⊙O上,OD∥AC,下列结论错误的是()。

A.∠BOD=∠BACB.∠BOD=∠COD

C.∠BAD=∠CADD.∠C=∠D

10.如图,一个扇形铁皮OAB。已知OA=60cm,∠AOB=120°,小华将OA、OB合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为()。

A.10 cm

B.20 cm

C.24 cm

D.30 cm

11.科技馆为某机器人编制一段程序,如果机器人在平地上按照下图中所示的步骤行走,那么该机器人所走的总路程为()。

A.6米B.8米

C.12米D.不能确定

12.把抛物线y=x2+bx+c的图像向右平移3个单位,再向下平移2个单位,所得图像的解析式为y=x2-3x+5,则()。

A.b=3,c=7B.b=6,c=3

C.b=-9,c=-5D.b=-9,c=21

13.在△ABC中,若AB²BC+AB2=0,则△ABC为()。

A.等腰三角形B.等边三角形

C.等腰直角三角形D.直角三角形

14.若函数f(x)=3cos(ωx+θ)对任意x都有fπ6+x=fπ6-x,则fπ6等于()。

A.-3B.0

C.3D.±3

15.对于任意的x∈R,不等式2x2-ax2+1+3>0恒成立,则实数a的取值范围是()。

A.a<22B.a≤22

C.a<3D.a≤3

16.limx→111-x-21-x2=()。

A.-1B.1

C.-12D.12

※答案见下页※

云南省特岗教师招考仿真试卷[小学数学科目]参考答案及解析

专业基础知识部分

一、填空题

1.158³1011

【解析】1 58345亿元=1 583.45³108元=1.583 45³1011元≈158³1011元

2.36°

【解析】因为∠BAE=180°-360°5=108°,且∠BAC=∠CAD=∠DAE=13∠BAE=36°。

3.(1,1)

【解析】设顶点C坐标为(x0,y0),则x0=y0,且x0>0,y0>0。而x0²y0=1,所以x0=y0=1,即顶点C坐标为(1,1)。

4.34

【解析】规律:每一个数等于前两个数的和(从第3个数开始)。

5.x=1

【解析】因为x2x-3+53-2x=4,所以x-52x-3=4,即x=1。经检验x=1是原方程的根。

6.2503

【解析】本题主要考查方位角和三角函数的应用。因为AB=PB=500米,所以PC=PB²sin60 °=500³32=2503(米)。

二、选择题

7.A 【解析】本题主要考查三视图的相关知识。

8.D 【解析】130³3=1³3=3≠0,x5+x5=2x5≠x10,x8÷x2=x6≠x4,(-a3)2=a6,故选择D。

9.D 【解析】因为OD∥AC,所以∠D=∠BAD=∠DAC=12∠BAC=12∠BOD。故选项A、B、C正确,选项D错误。

10.B 【解析】本题主要考查圆锥的侧面展开图。由题意可知,AB的长为圆锥的底面周长,设圆锥的底面半径为r,则2πr=120° 180° ²π²60。所以r=20(cm)。故选择B。

11.C 【解析】由题意可知,机器人沿着一个边长为1的正十二边形行走一周(因为多边形的外角和为360°,且360° ÷30° =12),故选择C。

12.A 【解析】本题主要考查函数图像平移的性质规律。由题意可知y=x2-3x+5向上平移2个单位y=x2-3x+5+2向左平移3个单位y=(x+3)2-3(x+3)+7即得到y=x2+bx+c。所以b=3,c=7。故选择A。

13.D 【解析】本题考查向量数量积的运算及性质。据已知得:

AB²BC+AB2=AB²(AB+BC)=AB²AC=0,即AB⊥AC,故三角形ABC为直角三角形。

14.D 【解析】本题考查三角函数的图像与性质,一般地对于形如y=Acos(ωx+φ)类型的函数,其对称轴的意义是使得函数取得极值,据条件fπ6-x=f(π6+x),知x=π6是函数的一条对称轴,则据对称轴的意义可知fπ6=±3

15.C 【解析】可采用分离变量求最值的方法解答。据已知得:

a<2x2+3x2+1=2(x2+1)+1x2+1=2x2+1+1x2+1

t=x2+1(t≥1),f(t)=2t+1t(t≥1),由于f′(t)=2-1t2>0

在t≥1上恒成立,故f(t)=2t+1t为增函数,即f(t)min=f(1)=3

故若使原不等式恒成立,只需a<3即可。

16.C 【解析】通分化简得:limx→1(11-x-21-x2)=limx→1(-1x+1)=-12 云南省特岗教师招聘考试仿真试卷二(小学数学)部分试题

(满分:100分考试时间:150分钟)

专业基础知识部分

得分评卷人

一、填空题(每小题1分,共10分)

1.1.75小时=()分1吨80千克=()吨

2.三个质数的最小公倍数是70,这三个数是()、()和()。

3.在67、0.83²²、83%和0.83²中,最大的数是(),最小的数是()。

4.在一张图纸上,1厘米表示实际距离100米,这张图的比例尺是()。

5.一件工程,甲独做10天可以完成,乙独做8天可以完成,两人合做一天后,剩下这项工程的()。

6.汽车站的1路车20分钟发一次车,5路车15分钟发一次车,车站在8:00同时发车后,至少再过()后又同时发车。

7.甲、乙两袋米,从甲袋倒110到乙袋,则两袋米的重量相等,原来乙袋米的重量是甲袋的()%。

8.在钟面上,6点整时,分针和时针所夹的角是()度。

9.在1、2、9这三个数中,()既是质数又是偶数,()既是合数又是奇数,()既不是质数也不是合数。

10.一个分数约简后是37,若分母加上10可以约简成38。原分数是()。

得分评卷人

试题由中人教育独家提供,任何网站如需转载,均需得到中国教育在线教师招聘频道和中人教育双方的书面许可,否则追究法律责任。

二、单项选择题(每小题2分,共10分)

1.棱长5分米的正方体,它的表面积和体积的关系是()。

A.同样大B.表面积大

C.不能比较D.体积大

2.1~20这20个数中,最小的奇数、偶数、合数、质数的和是()。

A.10B.9

C.8D.7

3.50克比25克多()。

A.25%B.50%

C.100%D.200%

4.一个圆柱体和一个圆锥体,底面周长比是2∶3,它们体积比是5∶6,圆柱和圆锥高的最简整数比是()。

A.8∶5B.12∶5

C.5∶8D.5∶12

5.圆心角是60度的扇形,面积是所在圆面积的()。

A.56B.16

C.15D.13

得分评卷人

三、计算题(每小题3分,共12分)

1.259+259+259+259³0.252.3.6-1.6+29-79³37

3.89³34-716-0.254.1+16³1+17³1+18³1+19³1+110

云南省特岗教师招考仿真试卷[小学数学科目]参考答案及解析

专业基础知识部分

一、填空题

1.105 1.08

2.257

3.6783%

4.1∶10 000

5.3140

6.1小时(或60分钟)

【解析】根据题意,可知15、20的最小公倍数是60。

7.80

【解析】设原来甲、乙两袋米的重量x、y,910x=y+110x∴y/x=80%

8.180

9.291

10.3070

【解析】设原分数为xy,则有xy=37xy+10=38∴x=30

y=70

二、单项选择题

1.C 【解析】单位不统一,不能比较。

2.B 【解析】1+2+2+4=9。

3.C 【解析】50-2525³100%=100%。

4.C 【解析】圆柱和圆锥的半径之比是2∶3,体积比=π³4³h113π³9³h2=56∴h1h2=58。

5.B 【解析】60°360°=16。

三、计算题

1.原式=259³4³14=259

2.原式=(3.6-1.6-29-79)³37=37

3.原式=89³(34+14-716)=89³916=12

4.原式=76³87³98³109³1110=116

云南省特岗教师招聘考试仿真试卷五(小学数学)部分试题

三、解答题(本大题共4小题,共38分,解答应写出文字说明、证明过程或演算步骤)

15.(本小题10分)

某地区为了加大“退耕还林”的力度,出台了一系列的激励措施:在“退耕还林”过程中,每一年的林地面积达到10亩且每年的林地面积在增加的农户,当年都可得生活补贴费2 000元,且每超过10亩的部分还给予奖励每亩a元,在林间还有套种其他农作物,平均每亩还有b元的收入。下表是某农户在头两年通过“退耕还林”每年获得的总收入情况:

年份拥有林地的亩数年总收入

2002203 100元

2003265 560元

(注:年总收入=生活补贴量+政府奖励量+种农作物收入)

(1)已知这位农户在2002年没有套种其他农作物,并且新增的林地第二年才能套种农作物,该农户为了增加收入,2003年把原有林地都套种了农作物。试根据以上提供的资料确定a、b的值。

(2)从2003年起,如果该农户每年新增林地的亩数比前一年按相同的增长率增长,那么2005年该农户获得的总收入最多达到多少元?

16.(本小题8分)

集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1~20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1~20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。

(1)你认为该游戏对“摸彩”者有利吗?说明你的理由。

(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?

试题由中人教育独家提供,任何网站如需转载,均需得到中国教育在线教师招聘频道和中人教育双方的书面许可,否则追究法律责任。

17.(本小题8分)

已知函数f(x)和g(x)的图像关于原点对称,且f(x)=x2+2x。

(1)求g(x)的解析式

(2)解不等式g(x)≥f(x)-x-1

18.(本小题12分)

如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于P,连接MP。已知动点运动了x秒。

(1)P点的坐标为(,);(用含x的代数式表示)

(2)试求△MPA面积的最大值,并求此时x的值。

(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果。

教育学、教育心理学部分

得分评卷人

四、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共20分)

1.推动教育学发展的内在动力是()的发展。

A.教育规律B.教育价值

C.教育现象D.教育问题

2.提出“泛智”教育思想,探讨“把一切事物教给一切人类的全部艺术”的教育家是()。

A.培根 B.夸美纽斯

C.赫尔巴特D.赞可夫

3.学校的中心工作是()。

A.教学工作 B.公共关系

C.行政工作 D.总务工作

4.“活到老学到老”是现代教育()特点的要求。

A.大众性 B.公平性

C.终身性 D.未来性

5.学校管理的目标和尺度是()。

A.经济收入 B.良好的公共关系

C.学校绩效 D.政治影响

6.()是全部教育活动的主题和灵魂,是教育的最高理想。

A.教育方针 B.教育政策

C.教育目的 D.教育目标

7.学校德育对政治、经济、文化发生影响的功能即指()。

A.发展性功能 B.个体性功能

C.教育性功能 D.社会性功能

8.教学活动的本质是()。

A.认识活动 B.实践活动

C.交往活动 D.课堂活动

9.“除数是小数的除法”,某老师把学生的回答的分12个馒头的计算板书出来:12÷3=4(人),12÷2=6(人),12÷1=12(人),12÷0.5=24(人),这一做法体现了()。

A.巩固性原则 B.直观性原则

C.理论联系实际原则 D.因材施教原则

10.把两个及其两个年级以上的儿童编在一个班级,直接教学与布置、完成作业轮流交替进行,在一节课内由一位教师对不同年级学生进行教学的组织形式是()。

A.分层教学 B.合作学习

C.小班教学 D.复式教学

得分评卷人

五、论述题(10分)

联系实际谈谈一个合格的教师的职业素质。

三、解答题

15.【解析】(1)a=110,b=90提示:可由3 100=2 000+10a5 560=2 000+16a+20b 解得。

(2)从表中的信息可知:该农户每年新增林地亩数的增长率为30%,则2004年林地的亩数为26³(1+30%)=33.8亩,2005年林地的亩数为33.8³(1+30%)=43.94亩,故2005年的总收入为2 000+43.94³110+33.8³90=8 775.4元。

16.【解析】(1)P(摸到红球)=P(摸到同号球)=121;故不利;

(2)每次的平均收益为121(5+10)-1921=-421<0,故每次平均损失421元。

17.【解析】解:(1)在y=g(x)的图像上任取一点P(x,y)

∴P(x,y)关于原点的对称点M(-x,-y)

∵y=f(x)与y=g(x)二者的图像关于原点对称

∴M(-x,-y)在y=f(x)的图像上,∴-y=(-x)2-2x

∴y=-x2+2x,g(x)=-x2+2x

(2)∵g(x)≥f(x)-x-1,∴-x2+2x≥x2+2x-x-1,∴2x2≤x-1

∴x-1≥2x2或x-1≤-2x2,∴2x2-x+1≤0或2x2+x-1≤0

∵2x2-x+1≤0无解,2x2+x-1≤0的解为-1≤x≤12

∴不等式的解为-1≤x≤12

18.【解析】(1)(6x,43x)

根据A(6,0),C(0,8)可知AC所在直线方程为y=-43x+8(0≤x≤6),由B(6,8),可知P点横坐标为6x,代入方程得出纵坐标为43x。

(2)设△MPA的面积为S。在△MPA中,MA=6x,MA边上的高为43x,其中,0≤x≤6。

∴S=12(6x)³43x=23(x2+6x)=-23(x3)2+6

∴S的最大值为6, 此时x=3。

(3)延长NP交x轴于Q,则有PQ⊥OA

①若MP=PA ∵PQ⊥MA ∴MQ=QA=x。∴3x=6, ∴x=2;

②若MP=MA,则MQ=62x,PQ=43x,PM=MA=6x

在Rt△PMQ中,∵PM2=MQ2+PQ2 ∴(6x)2=(62x)2+(43x)2∴x=10843

③若PA=AM,∵PA=53x,AM=6x ∴53x=6x ∴x=94

综上所述,x=2,或x=10843,或x=94。

教育学、教育心理学部分

四、单项选择题

1.D2.B3.A4.C5.C6.C7.D8.A9.C10.D

五、论述题

【答案要点】(1)文化素养与学科专业知识:

①所教学科全面扎实的专业知识技能。

②广博文化科学知识与多方面的兴趣和才能。

(2)教育理论知识与技能:

①教育理论知识与实践能力。

②观察能力和教研能力。

③教学组织能力和语言表达能力。

④教育机智。

(3)职业道德素养:

①忠诚教育事业。

②热爱学生。

③严于律己,为人师表。

云南省特岗教师招聘考试仿真试卷一(小学数学)部分试题

(满分:100分考试时间150分)

专业基础知识部分

得分评卷人

一、填空题(每小题2分,共20分)

1.20吨40千克=()吨=()千克()日=4时=()分

2.2÷3的商用循环小数表示是(),保留两位小数约是(),用分数表示是()。

3.我市新建一座大桥,在桥的两侧等距离安装照明灯,要求在A、B、C三处都有一盏灯,这样至少要安装()盏灯。

4.某商场十月份销售总额为120万元,据测算,利润占销售总额的15%,按规定,商场应按利润的30%交纳营业税,某商场十月份应交纳税款()元。

5.我国农历中冬天有“九九”的说法(每个“九”都是9天)。从图中可以看出这天是“一九”第一天,那么“三九”第三天是公历()年()月()日,星期()。

6.一项工程,单独做,甲、乙所用的时间比是4∶5,甲、乙二人的工作效率比是();若二人合作,完工时,两人的工作总量比是()。

7.如图,图中阴影部分的面积是()。

2006年

12月22日

星期五

冬至

一九第一天

第5题图第7题图

试题由中人教育独家提供,任何网站如需转载,均需得到中国教育在线教师招聘频道和中人教育双方的 书面许可,否则追究法律责任。

8.有10根完全相同的圆柱形木头,要把每根木头都锯成3段,每锯一段需要3分钟,把这10根木头全部锯完,需要()分钟。

9.小红和小明两人都想买一本书,小红的钱缺2元2角,小明的钱缺1元8角,而两个人的钱合起来就够买这本书,那么这本书卖()元,小红原有()元,小明原有()元。

10.已知:A³15³1199=B³23÷34³15=C³15.2÷45=D³14.8³7374。A、B、C、D四个数中最大的数是()。

得分评卷人

二、单项选择题(每小题2分,共10分)

1.把5米长的绳子平均分成6段,每段是这条绳子的()。

A.13B.23

C.56D.16

2.一个整数精确到万位是30万,这个数精确前可能是()。

A.294 999B.295 786

下载2018年云南省特岗教师招聘考试《语文》部分选题(共五篇)word格式文档
下载2018年云南省特岗教师招聘考试《语文》部分选题(共五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    云南省特岗教师招聘试题(小学语文科目六)部分试题(共5篇)

    云南省特岗教师招聘试题(小学语文科目六)部分试题 专业基础知识部分 一、单项选择题(每题 2 分,共 20 分) 1.下列词语中没有错别字的一组是 A.追溯老两口双向选择谈笑风生 B.......

    云南省特岗教师《语文》试卷

    小学语文教学基本知识 常规教学方法: 1. 讲授法:是教师通过语言(主要是口头语言)向学生系统地传授知识方法。 2. 谈话法:也叫问答法,是以师生的相互谈话和问答为主要方式来组织课......

    云南省2006年特岗教师招聘考试试卷生物

    云南省2006年特岗教师招聘考试试卷(初中生物)部分试题 (满分:150分考试时间:150分钟) 一、名词解释(本大题共5小题,每小题4分,共20分) 1.物种 2.原体腔 3.细胞工程 4.双重呼吸 5.光......

    云南省2008年特岗教师招聘考试试卷生物

    云南省2008年特岗教师招聘考试试卷(初中生物)部分试题 (满分:100分考试时间:150分钟) 一、选择题(本大题共40小题,每小题1分,共40分。在下列各小题的四个选项中,每题只有一个选项是......

    云南省2007年特岗教师招聘考试试卷生物

    云南省2007年特岗教师招聘考试试卷(初中生物)部分试题 (满分:150分考试时间:150分钟) 专业基础知识部分 一、名词解释(本大题共5小题,每小题4分,共20分) 1.基因工程 2.单子叶植物......

    云南省2006年特岗教师招聘考试试卷(小学)

    云南省2006年特岗教师招聘考试试卷(小学信息技术)部分试题 一、单项选择题(在每小题的4个备选答案中,选择一个符合题意的答案,并将其号码写在题干后的括号内。本大题共20小题,......

    云南省特岗教师招聘初中信息技术教师考试试题

    一、单项选择题。(在每小题的4个备选答案中,选出一个符合题意的正确答案,并将其号码写在题干后的括号内,每小题1分,共20分) 1.如果要获得关于“超文本标记语言”创始人的信息,一般......

    2018年云南省教师招聘考试特岗教师考试真题

    2018年云南省教师招聘考试特岗教师考试真题 一、单选题 1、20世纪60年代至70年代,教育心理学形成了独立的理论体系,并注重与教育实际相结合。这一时期是教育心理学的( ) A.......