第一篇:三角形中常用的辅助线作法举例总结
《三角形中常用的辅助线作法举例》总结
几何是初中教学的一门重要课程,其基本思路是将复杂的问题转化为较为熟悉的或已经掌握的问题,不少几何问题都需要进行这种转化,添加适当的辅助线就是实现这种转化的一种重要手段。要系统地掌握添加辅助线的方法并非易事。梁永平老师从几何学习的基础三角形中有关辅助线讲起,系统阐述了以下几方面内容。
一、辅助线的涵义
1、为了证明的需要,在原来图形上添画的线叫做辅助线。
2、辅助线在几何题中的三个作用:
(1)辅助线能巧妙地连接起已知条件与未知条件,是解题的桥梁。
(2)辅助线能够把分散的条件集中起来,构成基本图形,便于利用图形性质去解题。
(3)辅助线能使隐蔽的条件明朗化,为顺利解几何题创造条件。
二、添加辅助线的基本思路
由于证明几何题有两种基本方法—综合法和分析法。因此,做辅助线有两条基本思路:一是从综合法的需要出发做辅助线。用综合法证题,从已知推证结论受阻时,可以从图形的特征入手,根据添加辅助线的规律,巧设辅助线,利用图形的性质继续推证;二是从分析法的需要做辅助线。用分析法证题,当从结论出发,寻找使结论成立的条件,难以进行下去时,可以添加辅助线,使追溯过程进行下去。三、三角形中的辅助线
添加辅助线的目的是将分散的元素集中,是使隐蔽的条件显现,把复杂的问题化简。梁永平老师从全等三角形、等腰三角形、直角三角形、相似三角形等方面浅析三角形中辅助线的添法。3.1、三角形中的不等关系
(1)利用三角形的三边关系(2)利用三角形外角定理
3.2、全等三角形的辅助线作法
1、找全等三角形的方法:
2、三角形中常见辅助线的作法:(1)连接构全等
(2)倍长中线(线段)造全等(3)截长补短法(4)轴对称变换(5)平行变换
(6)借助角平分线造全等 3.3、等腰三角形辅助线的作法
(1)利用三线合一作辅助线(2)作平行线构造等腰三角形(3)运用角平分线作垂线
(4)依据角平分线+垂线构造等腰三角形;(5)用“截长补短法” 构造等腰三角形(6)依据2倍角关系构造等腰三角形(7)等腰三角形转化等边三角形解题
3.4、直角三角形常用的辅助线
(1)运用勾股定理及其逆定理求解(2)利用给定的特殊角求解
(3)利用等腰直角三角形的性质求解(4)利用斜边上中线的性质求解(5)逆用特殊角的三角函数定义求解(6)综合运用
3.5、相似三角形常用的辅助线
1、相似三角形一些常用的方法
2、相似三角形中的辅助线(1)作平行线(2)作延长线(3)作中线(4)作高
3、中考综合题型
讲座中梁老师把三角形辅助线问题分门别类的总结,结合这些年中考试题细心的讲解,思路清晰。与会的老师积极讨论、研究、做好自己的笔记,收益良多。希望各位老师在今后教学中勤于思考,勤于总结,带着收获,带着感悟,带着满腔热情投身与课堂教学中,创造出属于自己的一片天地。
最后谢谢各位老师的积极参与,谢谢梁老师精心的讲解。
肇源县教师进修学校 高寒竹
2017年8月23日
第二篇:三角形中的常用辅助线方法总结
数学:三角形中的常用辅助线
典型例题
人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。
全等三角形辅助线 找全等三角形的方法:
(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;
(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。
常见辅助线的作法有以下几种:
(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。
思路分析:
1)题意分析:本题考查等腰三角形的三线合一定理的应用
2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。
解答过程:
证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。又∠1+∠F=∠3+∠F=90°,故∠1=∠3。
在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。
(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。
思路分析:
1)题意分析:本题考查全等三角形常见辅助线的知识。
2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。
解答过程:
证明:延长AD到E,使DE=AD,连接BE。又因为AD是BC边上的中线,∴BD=DC 又∠BDE=∠CDA ΔBED≌ΔCAD,故EB=AC,∠E=∠2,∵AD是∠BAC的平分线 ∴∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。
解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。
(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。
例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。
思路分析:
1)题意分析:本题考查角平分线定理的应用。
2)解题思路:因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。
解答过程:
证明:作CE⊥AB于E,CF⊥AD于F。∵AC平分∠BAD,∴CE=CF。
在Rt△CBE和Rt△CDF中,∵CE=CF,CB=CD,∴Rt△CBE≌Rt△CDF,∴∠B=∠CDF,∵∠CDF+∠ADC=180°,∴∠B+∠ADC=180°。解题后的思考:
①关于角平行线的问题,常用两种辅助线;
②见中点即联想到中位线。
(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”
例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF。求证:DE=DF。
思路分析:
1)题意分析: 本题考查全等三角形常见辅助线的知识:作平行线。
2)解题思路:因为DE、DF所在的两个三角形ΔDEB与ΔDFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换:过E作EG//CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。
解答过程:
证明:过E作EG//AC交BC于G,则∠EGB=∠ACB,又AB=AC,∴∠B=∠ACB,∴∠B=∠EGB,∴∠EGD=∠DCF,∴EB=EG=CF,∵∠EDB=∠CDF,∴ΔDGE≌ΔDCF,∴DE=DF。
解题后的思考:此题的辅助线还可以有以下几种作法:
例5:△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。
思路分析:
1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。
2)解题思路:本题要证明的是AB+BP=BQ+AQ。形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过O作BC的平行线。得△ADO≌△AQO。得到OD=OQ,AD=AQ,只要再证出BD=OD就可以了。
解答过程:
证明:如图(1),过O作OD∥BC交AB于D,∴∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,∴∠ADO=∠AQO,又∵∠DAO=∠QAO,OA=AO,∴△ADO≌△AQO,∴OD=OQ,AD=AQ,又∵OD∥BP,∴∠PBO=∠DOB,又∵∠PBO=∠DBO,∴∠DBO=∠DOB,∴BD=OD,又∵∠BPA=∠C+∠PAC=70°,∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO,∴BP=OB,∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。
解题后的思考:(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。(2)本题利用“平行法”的解法也较多,举例如下:
①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。
④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP从而得以解决。
小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。
(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。例6:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。求证:CD=AD+BC。
思路分析:
1)题意分析: 本题考查全等三角形常见辅助线的知识:截长法或补短法。2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
解答过程:
证明:在CD上截取CF=BC,如图乙
∴△FCE≌△BCE(SAS),∴∠2=∠1。又∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠CDE=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4。
在△FDE与△ADE中,∴△FDE≌△ADE(ASA),∴DF=DA,∵CD=DF+CF,∴CD=AD+BC。
解题后的思考:遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:
截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;
补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。
1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。
2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。
小结:三角形
图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。
同步练习
(答题时间:90分钟)
这几道题一定要认真思考啊,都是要添加辅助线的,开动脑筋好好想一想吧!加油!你一定行!
1、已知,如图1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC。求证:∠BAD+∠BCD=180°。
2、已知,如图2,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD。求证:∠BAP+∠BCP=180°。
3、已知,如图3,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。
试题答案
1、分析:因为平角等于180°,因而应考虑把两个不在一起的角通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长法或补短法”来实现。
证明:过点D作DE垂直BA的延长线于点E,作DF⊥BC于点F,如图1-2
∴Rt△ADE≌Rt△CDF(HL),∴∠DAE=∠DCF。
又∠BAD+∠DAE=180°,∴∠BAD+∠DCF=180°,即∠BAD+∠BCD=180°
2、分析:与1相类似,证两个角的和是180°,可把它们移到一起,让它们成为邻补角,即证明∠BCP=∠EAP,因而此题适用“补短”进行全等三角形的构造。
证明:过点P作PE垂直BA的延长线于点E,如图2-2
∴Rt△APE≌Rt△CPD(SAS),∴∠PAE=∠PCD
又∵∠BAP+∠PAE=180°。∴∠BAP+∠BCP=180°
3、分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC至E使CE=CD,或在AB上截取AF=AC。
证明:方法一(补短法)
延长AC到E,使DC=CE,则∠CDE=∠CED,如图3-2
∴△AFD≌△ACD(SAS),∴DF=DC,∠AFD=∠ACD。又∵∠ACB=2∠B,∴∠FDB=∠B,∴FD=FB。∵AB=AF+FB=AC+FD,∴AB=AC+CD。
4、证明:(方法一)
将DE两边延长分别交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE; ① 在△BDM中,MB+MD>BD; ② 在△CEN中,CN+NE>CE; ③ 由①+②+③得:
AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC(方法二:图4-2)
延长BD交AC于F,延长CE交BF于G,在△ABF、△GFC和△GDE中有: AB+AF>BD+DG+GF
① GF+FC>GE+CE
② DG+GE>DE
③ 由①+②+③得:
AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC。
5、分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去
∴△ACD≌△EBD(SAS)
∴BE=CA(全等三角形对应边相等)
∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)∴AB+AC>2AD。
6、分析:欲证AC=BF,只需证AC、BF所在两个三角形全等,显然图中没有含有AC、BF的两个全等三角形,而根据题目条件去构造两个含有AC、BF的全等三角形也并不容易。这时我们想到在同一个三角形中等角对等边,能够把这两条线段转移到同一个三角形中,只要说明转移到同一个三角形以后的这两条线段,所对的角相等即可。
思路
一、以三角形ADC为基础三角形,转移线段AC,使AC、BF在三角形BFH中
方法一:延长AD到H,使得DH=AD,连结BH,证明△ADC和△HDB全等,得AC=BH。
通过证明∠H=∠BFH,得到BF=BH。
∴ △ADC≌△HDB(SAS)
∴ AC=BH,∠H=∠HAC
∵ EA=EF
∴ ∠HAE=∠AFE
又∵ ∠BFH=∠AFE
∴BH=BF
∴BF=AC
方法二:过B点作BH平行AC,与AD的延长线相交于点H,证明△ADC和△HDB全等即可。
小结:对于含有中点的问题,通过“倍长中线” 可以得到两个全等三角形。而过一点作已知直线的平行线,可以起到转移角的作用,也起到了构造全等三角形的作用。
思路
二、以三角形BFD为基础三角形。转移线段BF,使AC、BF在两个全等三角形中
方法三:延长FD至H,使得DH=FD,连接HC。证明△CDH和△BDF全等即可。
∴ △BFD≌△CHD(SAS)∴ ∠H=∠BFH ∵ AE=FE ∴ ∠HAC=∠AFE 又∵ ∠AFE=∠BFH ∴ ∠H=∠HAC ∴ CH=CA ∴ BF=AC 方法四:过C点作CH平行BF,与AD的延长线相交于点H,证明△CDH和△BDF全等即可。
第三篇:初中几何常见辅助线作法口诀
初中几何常见辅助线作法口诀
三角形
图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,中线加倍全等现。四边形
平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。
要作等角添个圆,证明题目少困难。
等积式子比例换,寻找线段很关键。
辅助线,是虚线,画图注意勿改变。
直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。
常见基本图形:8字形,平行8字形,平行等8字形,领子,射影,类射影 1.平行、平分、等腰,知二推一。2. 中线加倍 3. 补形
4. 旋转、平移、轴对称
5. 遇角分线截长补短或作双垂直,构成一对全等三角形。
6. 遇两个等边三角形有公共顶点,用一长一短和长短间的夹角证全等 7. 遇2倍角常变作等腰三角形顶角的外角
8. 证线段的1/2时,常变作中位线,直角三角形斜边中线或30°Rt△ 9. 等边三角形面积:
10.30°底角等腰三角形,腰是a,底是a,面积是
11.图中见120°角,想60°角;见15°角,想30°角;
12.梯形常用辅助线:延两腰,作双高,平行于一腰,平行于对角线。遇一腰中点,作平行等8字13.见直径,有直角
14.证切线,两方法:(1)连半径,证垂直;(2)作垂直,证半径 15.正多边形内切圆与外接圆对应线段比:面积比:
假如图形较分散,对称旋转去实验。圆
半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。
第四篇:初中数学复习专题:全等三角形问题中常见的8种辅助线的作法(有答案)
全等三角形问题中常见的辅助线的作法(有答案)
总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等
【三角形辅助线做法】
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题
2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形
3.角平分线在三种添辅助线
4.垂直平分线联结线段两端
5.用“截长法”或“补短法”:
遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形
7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)
遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.
2)
遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”
法构造全等三角形.
3)
遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
4)
过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”
5)
截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
6)
已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.应用:
1、(09崇文二模)以的两边AB、AC为腰分别向外作等腰Rt和等腰Rt,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.
(1)如图①
当为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;
(2)将图①中的等腰Rt绕点A沿逆时针方向旋转(0<<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.
二、截长补短
1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC。
3、如图,已知在内,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,求证:
5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC
应用:
三、平移变换
例1
AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为,△EBC周长记为.求证>.例2
如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.四、借助角平分线造全等
1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.应用:
1、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;
(第23题图)
O
P
A
M
N
E
B
C
D
F
A
C
E
F
B
D
图①
图②
图③
(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
五、旋转
例1
正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.例2
D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。
(1)
当绕点D转动时,求证DE=DF。
(2)
若AB=2,求四边形DECF的面积。
例3
如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为;
应用:
1、已知四边形中,,,绕点旋转,它的两边分别交(或它们的延长线)于.
当绕点旋转到时(如图1),易证.
当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,又有怎样的数量关系?请写出你的猜想,不需证明.
(图1)
(图2)
(图3)
2、(西城09年一模)已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.3、在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系.
图1
图2
图3
(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;
此时;
(II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;
(III)
如图3,当M、N分别在边AB、CA的延长线上时,若AN=,则Q=
(用、L表示).
参考答案与提示
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.解:延长AD至E使AE=2AD,连BE,由三角形性质知
AB-BE
<2AD 故AD的取值范围是1 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG,显然BG=FC,在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知 EG=EF 在△BEG中,由三角形性质知 EG 故:EF 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.解:延长AE至G使AG=2AE,连BG,DG,显然DG=AC,∠GDC=∠ACD 由于DC=AC,故 ∠ADC=∠DAC 在△ADB与△ADG中,BD=AC=DG,AD=AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG 故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE 应用: 1、(09崇文二模)以的两边AB、AC为腰分别向外作等腰Rt和等腰Rt,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系. (1)如图① 当为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是; (2)将图①中的等腰Rt绕点A沿逆时针方向旋转(0<<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 解:(1),; 证明:延长AM到G,使,连BG,则ABGC是平行四边形 G C H A B D M N E ∴,又∵ ∴ 再证: ∴,延长MN交DE于H ∵ ∴ ∴ (2)结论仍然成立. 证明:如图,延长CA至F,使,FA交DE于点P,并连接BF ∵,∴ F C P A B D M N E ∵在和中 ∴(SAS) ∴,∴ ∴ 又∵,∴,且 ∴,二、截长补短 1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC 解:(截长法)在AB上取中点F,连FD △ADB是等腰三角形,F是底AB中点,由三线合一知 DF⊥AB,故∠AFD=90° △ADF≌△ADC(SAS) ∠ACD=∠AFD=90°即:CD⊥AC2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC 解:(截长法)在AB上取点F,使AF=AD,连FE △ADE≌△AFE(SAS) ∠ADE=∠AFE,∠ADE+∠BCE=180° ∠AFE+∠BFE=180° 故∠ECB=∠EFB △FBE≌△CBE(AAS) 故有BF=BC 从而;AB=AD+BC3、如图,已知在△ABC内,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP 解:(补短法,计算数值法)延长AB至D,使BD=BP,连DP 在等腰△BPD中,可得∠BDP=40° 从而∠BDP=40°=∠ACP △ADP≌△ACP(ASA) 故AD=AC 又∠QBC=40°=∠QCB 故 BQ=QC BD=BP 从而BQ+AQ=AB+BP4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,求证: 解:(补短法)延长BA至F,使BF=BC,连FD △BDF≌△BDC(SAS) 故∠DFB=∠DCB,FD=DC 又AD=CD 故在等腰△BFD中 ∠DFB=∠DAF 故有∠BAD+∠BCD=180° 5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC 解:(补短法)延长AC至F,使AF=AB,连PD △ABP≌△AFP(SAS) 故BP=PF 由三角形性质知 PB-PC=PF-PC CF=AF-AC=AB-AC 应用: 分析:此题连接AC,把梯形的问题转化成等边三角形的问题,然后利用已知条件和等边三角形的性质通过证明三角形全等解决它们的问题。 解:有 D E A C B F 连接AC,过E作并AC于F点 则可证为等边三角形 即,∴ 又∵,∴ D E A C B 又∵ ∴ 在与中,∴ ∴ ∴ 点评:此题的解法比较新颖,把梯形的问题转化成等边三角形的问题,然后利用全等三角形的性质解决。 三、平移变换 例1 AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为,△EBC周长记为.求证>.解:(镜面反射法)延长BA至F,使AF=AC,连FE AD为△ABC的角平分线,MN⊥AD 知∠FAE=∠CAE 故有 △FAE≌△CAE(SAS) 故EF=CE 在△BEF中有: BE+EF>BF=BA+AF=BA+AC 从而PB=BE+CE+BC>BF+BC=BA+AC+BC=PA 例2 如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.证明:取BC中点M,连AM并延长至N,使MN=AM,连BN,DN.∵BD=CE,∴DM=EM,∴△DMN≌△EMA(SAS),∴DN=AE,同理BN=CA.延长ND交AB于P,则BN+BP>PN,DP+PA>AD,相加得BN+BP+DP+PA>PN+AD,各减去DP,得BN+AB>DN+AD,∴AB+AC>AD+AE。 四、借助角平分线造全等 1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD,DC+AE =AC 证明L(角平分线在三种添辅助线,计算数值法)∠B=60度,则∠BAC+∠BCA=120度; AD,CE均为角平分线,则∠OAC+∠OCA=60度=∠AOE=∠COD; ∠AOC=120度.在AC上截取线段AF=AE,连接OF.又AO=AO;∠OAE=∠OAF .则⊿OAE≌ΔOAF(SAS),OE=OF;AE=AF; ∠AOF=∠AOE=60度.则∠COF=∠AOC-∠AOF=60度=∠COD; 又CO=CO;∠OCD=∠OCF.故⊿OCD≌ΔOCF(SAS),OD=OF;CD=CF.OE=OD DC+AE=CF+AF=AC.2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.解:(垂直平分线联结线段两端)连接BD,DC DG垂直平分BC,故BD=DC 由于AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,故有 ED=DF 故RT△DBE≌RT△DFC(HL) 故有BE=CF。 AB+AC=2AE AE=(a+b)/2 BE=(a-b)/2 应用: 1、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题: (1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系; (第23题图) O P A M N E B C D F A C E F B D 图① 图② 图③ (2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。 解:(1)FE与FD之间的数量关系为 (2)答:(1)中的结论仍然成立。 证法一:如图1,在AC上截取,连结FG ∵,AF为公共边,∴ ∴,F B E A C D 图 G ∵,AD、CE分别是、的平分线 ∴ ∴ ∴ ∵及FC为公共边 ∴ ∴ ∴ 证法二:如图2,过点F分别作于点G,于点H F B E A C D 图 H G ∵,AD、CE分别是、的平分线 ∴可得,F是的内心 ∴,又∵ ∴ ∴可证 ∴ 五、旋转 例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.证明:将三角形ADF绕点A顺时针旋转90度,至三角形ABG 则GE=GB+BE=DF+BE=EF 又AE=AE,AF=AG,所以三角形AEF全等于AEG 所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF 又∠EAF+∠BAE+∠DAF=90 所以∠EAF=45度 例2 D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。 (1)当绕点D转动时,求证DE=DF。 (2)若AB=2,求四边形DECF的面积。 解:(计算数值法)(1)连接DC,D为等腰斜边AB的中点,故有CD⊥AB,CD=DA CD平分∠BCA=90°,∠ECD=∠DCA=45° 由于DM⊥DN,有∠EDN=90° 由于 CD⊥AB,有∠CDA=90° 从而∠CDE=∠FDA= 故有△CDE≌△ADF(ASA) 故有DE=DF (2)S△ABC=2,S四DECF= S△ACD=1 例3 如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为; 解:(图形补全法,“截长法”或“补短法”,计算数值法) AC的延长线与BD的延长线交于点F,在线段CF上取点E,使CE=BM ∵△ABC为等边三角形,△BCD为等腰三角形,且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°-∠ACD=180°-∠ABD=90°,又∵BM=CE,BD=CD,∴△CDE≌△BDM,∴∠CDE=∠BDM,DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,∵在△DMN和△DEN中,DM=DE ∠MDN=∠EDN=60° DN=DN ∴△DMN≌△DEN,∴MN=NE ∵在△DMA和△DEF中,DM=DE ∠MDA=60°-∠MDB=60°-∠CDE=∠EDF (∠CDE=∠BDM) ∠DAM=∠DFE=30° ∴△DMN≌△DEN (AAS),∴MA=FE的周长为AN+MN+AM=AN+NE+EF=AF=6 应用: 1、已知四边形中,,,绕点旋转,它的两边分别交(或它们的延长线)于. 当绕点旋转到时(如图1),易证. 当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,又有怎样的数量关系?请写出你的猜想,不需证明. (图1) (图2) (图3) 解:(1)∵,,∴(SAS); ∴,∵,∴,为等边三角形 ∴,∴ (2)图2成立,图3不成立。 证明图2,延长DC至点K,使,连接BK K A B C D E F M N 图 则 ∴,∵,∴ ∴ ∴ ∴ ∴ ∴ 即 图3不成立,AE、CF、EF的关系是 2、(西城09年一模)已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长; (2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.分析:(1)作辅助线,过点A作于点E,在中,已知,AP的值,根据三角函数可将AE,PE的值求出,由PB的值,可求BE的值,在中,根据勾股定理可将AB的值求出;求PD的值有两种解法,解法一:可将绕点A顺时针旋转得到,可得,求PD长即为求的长,在中,可将的值求出,在中,根据勾股定理可将的值求出;解法二:过点P作AB的平行线,与DA的延长线交于F,交PB于G,在中,可求出AG,EG的长,进而可知PG的值,在中,可求出PF,在中,根据勾股定理可将PD的值求出; (2)将绕点A顺时针旋转,得到,PD的最大值即为的最大值,故当、P、B三点共线时,取得最大值,根据可求的最大值,此时. E P A D C B 解:(1)①如图,作于点E ∵中,∴ ∵ ∴ 在中,∴ P′ P A C B D E ②解法一:如图,因为四边形ABCD为正方形,可将将绕点A顺时针旋转得到,可得,∴,∴,∴; 解法二:如图,过点P作AB的平行线,与DA的延长线交于F,设DA的延长线交PB于G. G F P A C B D E 在中,可得,在中,可得,在中,可得 (2)如图所示,将绕点A顺时针旋转,得到,PD的最大值,即为的最大值 ∵中,,且P、D两点落在直线AB的两侧 ∴当、P、B三点共线时,取得最大值(如图) P′ P A C B D P′ P A C B D 此时,即的最大值为6 此时 3、在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系. 图1 图2 图3 (I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是; 此时; (II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明; (III) 如图3,当M、N分别在边AB、CA的延长线上时,若AN=,则Q= (用、L表示). 分析:(1)如果,因为,那么,也就有,直角三角形MBD、NCD中,因为,根据HL定理,两三角形全等。那么,三角形NCD中,,在三角形DNM中,,因此三角形DMN是个等边三角形,因此,三角形AMN的周长,三角形ABC的周长,因此. (2)如果,我们可通过构建全等三角形来实现线段的转换。延长AC至E,使,连接DE.(1)中我们已经得出,那么三角形MBD和ECD中,有了一组直角,,因此两三角形全等,那么,.三角形MDN和EDN中,有,有一条公共边,因此两三角形全等,至此我们把BM转换成了CE,把MN转换成了NE,因为,因此.Q与L的关系的求法同(1),得出的结果是一样的。 (3)我们可通过构建全等三角形来实现线段的转换,思路同(2)过D作,三角形BDM和CDH中,由(1)中已经得出的,我们做的角,因此两三角形全等(ASA).那么,三角形MDN和NDH中,已知的条件有,一条公共边ND,要想证得两三角形全等就需要知道,因为,因此,因为,那么,因此,这样就构成了两三角形全等的条件.三角形MDN和DNH就全等了.那么,三角形AMN的周长 .因为,因此三角形AMN的周长. 解:(1)如图1,BM、NC、MN之间的数量关系:;此时. 图 N M A D C B (2)猜想:结论仍然成立. 证明:如图2,延长AC至E,使,连接DE ∵,且 ∴ 又是等边三角形 E 图 N M A D C B ∴ 在与中 H 图 N M A D C B ∴(SAS) ∴,∴ 在与中 ∴(SAS) ∴ 故的周长 而等边的周长 ∴ (3)如图3,当M、N分别在AB、CA的延长线上时,若,则(用x、L表示). 点评:本题考查了三角形全等的判定及性质;题目中线段的转换都是根据全等三角形来实现的,当题中没有明显的全等三角形时,我们要根据条件通过作辅助线来构建于已知和所求条件相关的全等三角形。 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 作辅助线的方法一:中点、中位线,延线,平行线。如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。二:垂线、分角线,翻转全等连。如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。三:边边若相等,旋转做实验。如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。七:切线连直径,直角与半圆。如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。八:弧、弦、弦心距;平行、等距、弦。如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。九:面积找底高,多边变三边。如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。如遇多边形,想法割补成三角形;反之,亦成立。另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自已试一试。 二、角分线上点向两边作垂线构全等 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。三、三线合一构造等腰三角形 如图,AB=AC,∠BAC=90,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。 分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。 由线段和差想到的辅助线 截长补短法 AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。 分析:过C点作AD垂线,得到全等即可。由中点想到的辅助线 一、中线把三角形面积等分 如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。 分析:利用中线分等底和同高得面积关系。 二、中点联中点得中位线 如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。 分析:联BD取中点联接联接,通过中位线得平行传递角度。 三、倍长中线 如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。 分析:倍长中线得到全等易得。 四、RTΔ斜边中线 如图,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。 分析:取AB中点得RTΔ斜边中线得到等量关系。 由全等三角形想到的辅助线 一、倍长过中点得线段 已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是。 分析:利用倍长中线做。 二、截长补短 如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,求证:∠A+∠C=180 分析:在角上截取相同的线段得到全等。 三、平移变换 如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE 分析:将△ACE平移使EC与BD重合。 四、旋转 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数 分析:将△ADF旋转使AD与AB重合。全等得证。由梯形想到的辅助线 一、平移一腰 所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的长。 分析:利用平移一腰把梯形分割成三角形和平行四边形。 二、平移两腰 如图,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。 分析:利用平移两腰把梯形底角放在一个三角形内。 三、平移对角线 已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面积。 分析:通过平移梯形一对角线构造直角三角形求解。 四、作双高 在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。 分析:作梯形双高利用勾股定理和三角形边边边的关系可得。 五、作中位线 (1)如图,在梯形ABCD中,AD//BC,E、F分别是BD、AC的中点,求证:EF//AD 分析:联DF并延长,利用全等即得中位线。 (2)在梯形ABCD中,AD∥BC,∠BAD=90°,E是DC上的中点,连接AE和BE,求∠AEB=2∠CBE。 分析:在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。 1.已知:如图,在正方形ABCD中,E、F分别在AD、DC上,且DE=DF,BM⊥EF于M.求证:ME=MF. 2.如图,正方形ABCD,E是BC上的一点,延长AB至F使BE=BF,延长AE交CF于G。求证:CFAG. 3.如图,ABCD、BEFG都是正方形,A、B、E在一条直线上,连结A、G,且延长交CE的连线为H,求证:CEAH.第五篇:初中几何常见辅助线作法口诀及习题