第一篇:数学课堂有效教学应务
数学课堂有效教学应务“实”
尹志峰
数学课以往常常给人以枯燥、乏味的感觉,使广大师生在实际教学中缺少足够的兴趣与动力来认真组织、实施。但近年来随着新课程改革的逐步推进。原有的教学观念、方式、方法已经严重阻碍了新课程改革的深入发展,也与时代的要求相距甚远。为此,数学教师如果能、也必须根据教学形势的实际需要,认真钻研教材,组织教学,数学课也同样能上得生动活泼、精彩纷呈。作为一名多年工作在教育第一线的教师,经过这么多年的实际教学,我认为数学课要提高课堂教学效率就必需: 第一,结合实际。《数学新课程标准》明确指出:数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,掌握基本的数学知识和技能,发展他们的能力,激发对数学的兴趣,以及学好数学的愿望。而数学同时又源于生活,高于生活并最终服务于生活。
第二,注重实践。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”数学实践活动是实践性、探索性和应用性较强的一类学习活动,充分体现了“做中学”的特点。由此可见,实践活动在数学教学中有着举足轻重的地位。目前,随着新课程改革的深入进行,“实践活动课”也越来越普遍地出现在我们的教材中,出现在我们的教学中。“实践活动课”是小学数学新教材中的一种新课型。教材增设“实践活动”是课程标准新理念的一个具体体现,也是培养学生的思维、操作等能力的重要途径。
第三、讲究实用。目前,随着教学技术的不断发展,一本书、一张嘴、一支粉笔的时代已成为过去。伴随着多媒体技术在课堂中的使用,我们的教学又迎来了新的阶段。其中,生动的画面、悦耳的声音、优美的文字无不清晰的展示在学生面前,充分给学生以美的享受。第四、追求实效。所谓“实效”,主要是指通过教师一节课乃至一段时间的教学后,学生所获得进步或发展。也就是说,学生有无进步或发展是评价一节课成功与否乃至一位老师教学教学水平高与低的惟一指标。邓小平同志曾经也说过:不管是资本主义的还是社会主义的管理方法,只要能发展我国的经济,提高人民的生活水平的都是好方法。教学也一样,不管是应用什么教学方法、采用什么教学手段、利用什么教学媒体,一切的一切都是为了使学生更好地发现知识、掌握知识、提高学生的能力服务。
只要我们教师认真钻研教材,精心设计教法、组织教学,数学课就再也不会给人以枯燥乏味的感觉,数学课就一定能低消耗高效能,学生就一定能学得轻松,学得牢固。
第二篇:数学课堂有效教学应注重的三个目标
数学课堂有效教学应注重的三个目标
作者:苏州市教育科学研究院 殷堰工
一、注重体现以人为本
王光明教授在《数学教学效率论——走向高效率的数学教学》一书中指出:“高效率数学教学与其说激发学生求知欲,不如说激发求识欲。”“识”是领悟了某一问题的思 想、方法,更是一种思维品质以及寻找、抽象出隐含在数学材料中规律的习惯。“识”是隐藏在现象背后的事物的本质规律,当我们对一个事物的认识上升到本质的水平,也就达到了融会贯通的境地,也才能做到举一反三。课程改革重在“为了每一个学生的可持续发展”,以人为本,以学生的发展为本是愿景,也是根本。新课标更加注重了学生学习能力、兴趣等方面,数学课堂教学要体现有效性,我们教学的重点必须是认真研究学生,这就需要教师在教学设计上下工夫,努力做到目标合理定位、内容取舍相宜、方式适切有效、形式力戒浮华。更细化的话,还应包括课堂提问设计、课堂练习设计、板书设计等。以课堂提问为例,它是一种有效的教学组织形式,是一种最直接的师生双边活动。准确的、恰当的、有效的课堂提问能激发学生的学习兴趣,使学生思维进入竞技状态,从而提高课堂教学效率。
二、注重发展生成课堂
新课程下的教学观,强调教学的开放性和生成性。这是因为,师生不是外在于课程的,而是课程的有机构成部分,是课程的创造者和主体,他们共同参与课程开发,从而使课程实施过程成为课程内容持续生成与转化、课程意义不断建构与提升的过程。同时,教学也是一个发展的、增值的、生成的过程。从这一点上来说,正确处理好预设与生成的关系非常重要,这里需要强调几点:(1)课堂需要预设,但仅有预设是不够的;(2)生成的课堂充满了生命活力,但课堂也不能完全是师生的即兴创造;(3)没有预设的课堂是不负责任的课堂,而没有生成的课堂是不精彩的课堂;(4)预设与生成两相互补,相得益彰;(5)无论是预设还是生成,都要服从于有效的教学和学生的发展。省教科院杨九俊院长说得好:“预设就是一种生成;有了精彩的预设一定有精彩的生成;有了精彩的预设,会出现未曾预约的精彩。”具体到课堂教学操作层面,我们认为,教师应该尝试做到:学习目标的动态生成——“问题让学生提”;认知结构的动态生成——“方法让学生悟”;学习方法的动态生成——“思路让学生讲”;学习内容的动态生成——“错误让学生析”。
三、注重追求教学优化
数学教学的有效性,归根结底就是追求课堂教学的最优化。“教学最优化”是苏联教学论专家巴班斯基提出的理论,其主旨是:教师有目的地选择教学过程的最佳方案,保证在规定的时间内使教学和教育任务的解决达到最好的效果,随之建立了一个教学过程最优化的方法体系,为规定教学任务、确定教学内容、优选教学方法和手段、选择教学速度和分析教学结果这教学过程的六阶段分别提出教和学的最优化方法。为了达到最优化的目标,教师所采取的方法应具体问题具体分析,努力为实现教学的有效性服务。
比如,数学课堂教学目标的设计,教师要学习《数学课程标准》,要明确单元教学目标,要明确本课时教学的具体内容和要求,要了解学生的基础和学习特点,要按照内容(数学事实、数学概念、数学原理、数学问题解决、数学思想方法、数学技能、数学认知策略和态度)和水平分类(了解、理解、掌握、灵活运用等)确定教学目标并加以陈述。而像数学事实、数学概念、数学原理、数学技能属于基础知识和基本技能目标领域;数学问题解决、数学思想方法属于过程与方法目标领域;数学认知策略既有基础知识和基本技能也有过程与方法;态度属于情感、态度、价值观目标领域等知识结构体系对我们的数学教师来说都必须了如指掌。
必须指出,有效教学没有“最”,只有“更”。正如化学中的一个普遍现象,理想状态是好的,但也是难以达到的,而我们总是可以不断接近这个理想状态。用这样的话来概括也许是合适的,即“教学起点‘适’、教学环节‘细’、教学反馈‘勤’”。
辩”化有“常”
作者:无锡市安镇中心小学 黄 芳
【摘要】“辩证性实施小学数学教材”有一定的规律可循。全文首先对其概念界定作了介绍,其后重点从实践层面对如何把握“浅与深、薄与厚、显与隐、静与动”这四对矛盾双方的辩证统一关系进行了论述,对一线教师“辩证性实施小学数学教材”有一定的指导意义。
【关键词】辩证 实施 小学数学 教材
“辩证性实施小学数学教材”是指以全面、联系、发展的眼光来实施小学数学教材,在准确理解学生实际、课程标准、学科特点、教材内容的基础上,以该教材为载体,因时、因地、因人,灵活地把握教学关系的动态平衡,创新地组织教学的实践全程,实现最优化实施教材和最大化发展学生的目标。
变化无常,但“辩”化有“常”。从理念来理解,此“常”表现为“和而不同”,表示不同事物之间的交流,和谐统一的平衡,其原则是“勿必——不能绝对肯定;勿固——不能拘泥固执;勿我——不能湮没和萎缩自我”。辩证性实施小学数学教材,就需以“生”为本,以“执两用中”的基本态度和方法,尊重教材,不盲目崇拜也不全盘否定
教材;理解教材,不随意曲解也不照本宣科教材;创新教材,不游离目标也不偏离学生。从实践层面来诉求,此“常”又表现为灵活地把握好“浅与深、薄与厚、显与隐、静与动”等多对矛盾双方的辩证统一关系,从而实现教学过程“和而不同”的境界,最终促进人的和谐发展。
一辩:浅与深
教师有了教材,则需要在思想挖掘、内容重构与语言表达上下工夫。从静止观点看,过深或过浅的内容都不易引起学生注意;从动态观点看;由浅至深、由深至浅的课堂节奏易吸引学生注意。
1.深入。
教师首先要能准确、深入地理解教材,从不同深度、不同侧面理解教材内涵,将浅显的教材内容解读得深刻。但在深入教材的基础上,教师还要把握好教学的深浅度,如果一味将简单知识复杂化,将感性知识晦涩化,就会使学生产生畏难情绪,不利于数学知识的建构。
【案例】四下“解决问题的策略”
第二课时内容有:“相遇问题”(例题)→“相背问题”(试一试)→“环形问题”(练习题),然后拓展到“工程问题”(练习题)。这些题目实质都反映“两部分量之和等于总量”的基本数量关系,由此把各种行程问题和工程问题纳入了同一数学模型。“环形问题”,如果将它化曲为直:从出发点“剪开拉直”,就可看成相向而行(相遇)的问题;从相遇点“剪开拉直”,又可看成背向而行的问题。这就是恰如其分地深入教材。2.浅出。
在“深入”教材的基础上,还要以相对浅显的方式引导学生从深刻的内容回归到浅显的境界,此谓“浅出”。要实现“深入浅出”,不是依靠游离教材另增其他内容,而要紧紧围绕教材的基点、重难点、关键点、延伸点和学生的内隐学习点、认知盲点、认知生成点来展开教学。
【案例】四下“乘法分配律”
教材分析中指出“教学乘法分配律把重点放在引导学生发现规律、理解含义上”,如何立足于算理来揭示乘法分配律,引导学生既知乘法分配律外表的“情”,更达内在的“理”? 1.解决实际问题。
(1)在小学生武术比赛中,某校武术队一举夺得了9个冠军、2个亚军和9个季军!教练准备购买奖品赠送给运动员,她一共带了多少钱?(先出示3张100元人民币和6张50元人民币,再增加3张100元人民币)(2)每件运动服65元,每条运动裤45元,教练准备给9个冠军每人购买一套运动装,一共要付多少元? 问题(1)是在教材例题外增加的,学生容易根据人民币的直观图用乘法意义解释两种解法相等的合理性,还便于安排铺垫题,使学生感悟到“人民币张数相同的时候才可以用两种方法解答”,为理解乘法分配律中的“相同乘数”埋下伏笔。2.适度比较抽象。
要求学生读一读上面得到的两个等式,并说说左边和右边分别是怎样的算式,有什么联系。
3.逐步符号抽象。
(1)将9个改成20个、c个,引导改变等式,并追问“c”还能表示哪些数?(2)将65元改成。元,45元改成b元,引导改变等式,并追问“(a+b)”还能表示哪些数量?(3)揭示:(a+b)×c=a-c+b-c,这就是乘法分配律。
在改变套数和单价的过程中抽象出字母表达式,再将生活中的其他数量纳入到模型中。乘法分配律就不再只是“钱”这个点,而是一组相关问题“面”的扩展,串联它们的“红线”是乘法分配律。
4.新旧对比抽象。乘法分配律和我们以前学过的运算律相比有什么不同? 对教师而言,“深入”是过程,“浅出”是结果,学生则反之。只有教师对教材真正“深入”,才能演绎教的“浅出”和学的“浅入”,最终实现教学的“深出”。比起其他关系来,“浅”与“深”的关系是更重要、更具有一般性的关系,称得上规律的规律。
二辩:薄与厚
教材通常以精炼的叙述方式呈现最基本、最重要、最持久的内容,教师的作用恰在于立足某个知识点“深”入挖掘教材背后的内容,再放眼知识体系将“薄”的教材读“厚”,最后还要将教材由“厚”读“薄”。
1.由薄到厚。
解读教材除了就某个知识点进行深入剖析外,还需要从某个知识点出发从整体上把握教材在单元、整册乃至整个小学阶段的地位及作用,同时也要多参阅各种版本的教材,以此系统了解知识体系,明确各年级段的重难点和教学目标。2.由厚到薄。
再通过提纲挈领,将“厚”的内容回归到“薄”的境界,主要工作就是条理化。教师要通过单元总结、学期总结、毕业总复习等途径帮助学生理解知识结构、内在关联以及重难点。学生则需要自己前后分析比较,左右观察其关联,在理解的过程中使知识系统化、条理化。
【案例】六下数的运算(2):复习四则混合运算
如何使四则混合运算的复习有序而有效?在引导学生自主整理与巩固练习的过程中,我在黑板上同步生成板书,对四则混合运算的系统化整理起到画龙点睛之效。
由“薄”到“厚”,再由“厚”到“薄”,既是教师自身“充电”的过程,也是学生深刻、整体把握知识和提升能力的过程。前一个“薄”是属于教材本身的,后一个“薄”是属于学生理解的,这是一个质的飞跃。
三辩:显与隐
教材内容由表及里分为知识、方法、思想三个层次,在小学阶段通常把数学思想和方法看成一个整体,即小学数学思想方法。有效的教学要让“隐”层次的数学思想方法成为学生学习数学的印记。苏教版小学数学教材巧妙地设计了一明(知识技能)一暗(思想方法)两条主线,使教学的显性和隐性目标同时得到落实。
1.合“理”确定数学思想方法。
教师先要将思想方法由隐形态变为显形态,其次就要合理确定数学思想方法。同一内容蕴含的数学思想方法不止一种,需要重点渗透的可能只是某种思想方法。即使同一数学思想方法,在不同的阶段,也要确定不同的要求。比如,在低中年级,可以先让学生产生初步的感性认识,到高年级再正式介绍。2.合“法”渗透数学思想方法。
数学知识的探究过程,比如概念的形成、规律的发现、策略的体会等也是数学思想方法的发生过程。在这个过程中,教师要根据不同的知识,运用不同的方法,让学生在探究中领悟不同的数学思想方法。
【案例】五上“认识负数”
温度计本身就是数轴的“模型”,已具备数轴的“原点、正方向、单位长度”等三要素。某教师巧妙地将温度计横放过来,其直观的表象有力地支撑起抽象的数轴,学生在数形结合的过程中较好地建构起对“正数、负数、0”三者关系的认识。由“显”入“隐”,以“隐”促“显”,核心问题都在于数学思想方法的培养和建立,唯此,才有助于学生学习效率的提高和数学素养的发展。
四辩:静与动
教材知识存在的方式是静止的、符号化的。如何将“符号化”的知识激活为“生命化”的知识?不仅需要将教材上的静止情境还原成动态的教学活动,创造条件让学生“动”起来,而且重要的是要实现“静”态化教材与“动”态化学生之间的有效融合,引导学生在经历知识经验的体悟过程中敞开生命之门。1.沟通“教材”与学生的“已有知识基础”。
为准确把握学生的学习起点,教师要考虑教材的知识体系以及学生的已有知识基础等,分析学生需要具备哪些双基,是否已经具备,并据此对教学目标做出动态调整。
【案例】二下“退位减”
教材引导学生在解决两个问题的过程中探索只有一次退位的三位数减三位数计算方法和连续退位的三位数减三位数计算方法。学生对图书室情境已略有厌倦,如何使学生“触景生需”、“触景生思”? 课前,老师和学生展开了“比身高”的话题。新授中,又通过师生比身高、姚明和老师比身高、老师的儿子和姚明比身高的问题串组织计算“160-138”、“226-160”、“226-127"这3个减法算式。
“比身高”的现实情境鲜活而有趣。改编后的“160-138”和“226-160”都只有一次退位,“226-127”又和教材上的连续退位减“210-185”有区别,前者个位向十位借一作10后还要和本位上的6相加再减,后者个位向十位借一作10后可直接减,可能略高于学生已有基础。
课堂需要创设富有数学韵味和思考价值的生活情境,但要建立在读懂、读透教材的编排意图和知识逻辑关系之上,不能忽略情境与知识的连接点。2.沟通“教材”与学生的“自主建构过程”。
只有学生亲身体验、建构的东西才能最终沉淀到内心,成为一种素质伴其一生,受用一生。如果知识缺乏相关经验的支持,就难以与新知识建立实质性的联系,机械学习就这样产生并恶性循环。
【案例】四下“乘法分配律”
想想做做1巩固对乘法分配律的理解,想想做做4是计算后对比。学习乘法分配律的着眼点在形成简算意识和提高简算能力,引导学生感悟其价值是基础。
1.填一填:巩固意义。(40+4)×25=40×□+4×□ 125×(80×8):125×□○□×□ 64×8+36×8=(64+□)□×□ 25×17+25×3=□○(□○□)2.选一选:体会简便。
在上面等式两边各选择一个算式抢答,让完成快的学生说说选择的理由。
从“先算后比”到“在选择中计算”,“逼迫”学生在抢答情境中产生“使用乘法分配律可以使计算简便”的切身体验。学生在这种自下而上的体验过程中感悟了简算价值,“静”态化教材与“动”态化的自主建构过程得到了有效的融通。
3.沟通“教材”与学生的“数学学习特征”。
小学生的年龄特征一方面反映在学习活动中,同时也影响着学习质量。因此在辩证性实施小学数学教材时,既要考虑小学生的认知发展水平、注意、记忆、自我意识等一般心理特点,又需要考虑他们的数学学习动机、数学思维特点、数学学习策略等数学学习特征。
“动”与“静”的协同运用也体现了过程与结果的统一。关键不在于水的多少,而在于怎样使静止的水变为流动的水。教师只有真正将教材化“静”为“动”,才能最终实现教学的“生命化”。
“浅与深、薄与厚、显与隐、静与动”这四对关系,依次着力于教材的某一知识点、某一知识点与知识体系、知识体系与思想方法、教材与学生来论述如何辩证性实施小学数学教材。根据对这几对关系的解读来实施教材,最终将使教学指向“和而不同”的境界,达到上位意义上的“常”。
【参考文献】
【1)严育洪.课堂焦点:新课程教学九辩.北京:首都师范大学出版社,2007.
【2】张延楚.教学细则一百讲.湖南:湖南师范大学出版社,2000.
【3】顾明远.和而不同.北京:人民教育出版社,2007.
【4】庞维国.数学学习与教学设计.上海:上海教育出版社,2005.
【5】黄芳.三维一体:课堂教学设计的走向.《江苏教育》.2009年第1期.
概念教学:基于对概念的认识
作者:南京师范大学附属小学 贲友林
概念是小学数学学习的重要内容,研究概念教学应先研究概念、认识概念。本文试从对描述性概念与定义性概念、自发性概念与科学概念、概念定义与概念意象的认识过程,谈对概念教学的思考。
一、描述性概念与定义性概念
从概念表达的方式来看,小学数学中的概念有定义性概念与描述性概念两种形式。定义性概念,即用下定义的方式表述概念的本质属性,解释概念的内涵。一般采用“属+种差”的方式进行定义。例如,给直径下定义,首先指出直径的属概念是线段,再指出是“通过圆心并且两端都在圆上”。因此,可给直径下定义:“通过圆心并且两端都在圆上的线段叫做圆的直径。”在小学里,有相当一部分数学概念不能定义或不宜定义,而采用描述的方法说明。如什么是圆,教师可能会这样说,如果我们沿着圆形物体的周边把它们的形状画下来,就会得到大小不同的圆。或者说,把圆规的一只脚固定,用另一只脚画一圈就会得到一个圆。这就是应用了描述的方法向学生说明圆的概念。
哪些概念适合采用定义的方式,哪些概念适合采用描述的方式?有的是由概念本身决定的,如像直线这样的原始概念,往往用“拉直的线”这样描述的方式来说明。有的是由学生的学习水平决定的,如小学教材中两次安排“小数”的认识:第一次,以描述的方式认识小数,呈现购物场景中以小数形式出示的商品价格,进而指出“像5.98、0.85和2.60这样的数叫做小数”;第二次,认识小数的含义,通过具体问题引导学生认识把“1”平均分成10份、100份、1000份„„这样的一份或几份可以用分母是10、100、1000„„的分数表示,分母是10、100、1000„„的分数可以用小数表示,得出一位小
数表示十分之几,两位小数表示百分之几,三位小数表示千分之几„„第一次认识小数,侧重从形式上认识,第二次认识小数,侧重对其内涵、本质的理解。
教学概念时,应把握好定义性概念与描述性概念的不同,在兼顾内涵与外延的前提下有所侧重。教学定义性概念时,应侧重概念的内涵;教学描述性概念时,应侧重外延,既要有注意阶段性,又要有整体观念。
如,方程是刻画现实世界数量关系的数学模型,在教学时不仅要让学生在形式上认识方程,而且要从数学建模的角度展开方程的学习。某教师依次出示5幅天平图(如图1),引导学生用语言描述天平两边物体的质量关系,并思考怎样用式子表示。根据学生回答,教师在黑板上集中呈现5个式子:50+50=100,x+50>100,x+50=150,x+50<200,2x=200。接着,教师组织学生把这些式子按照一定的标准进行分类,全班交流。学生将这些式子按照大于号、小于号、等号分成三类。教师在此基础上引导学生按是否是等式进行分类,并将等式按照是否含有字母x分成两类,指出“这里用字母x表示未知数”。在学生交流分类方法之后,教师引导学生把两种分类方法综合起来对这些式子进行分类(如图2)。教师引导学生观察这几类式子,说一说每一组式子有什么特征,学生描述后,教师指出:“正如同学们所描述的,③类式子都是含有未知数的等式,我们把这类等式叫方程。”
这里,教师以天平为形象支撑,结合具体的问题情境,让学生通过观察、分析、写出式子,再通过分类,比较式子的异同,由具体到抽象感受、理解方程的含义。
二、自发性概念与科学概念
在学习某一概念前,学生一般都会有一些不知不觉形成的认识。这种认识产生于他们的日常生活或其他无意识的活动,是他们日常生活经验在感性层次上的概括,并成为他们学习科学概念的出发点。维果斯基把没有人刻意教的、没有正式学习而形成的概念称为自发性概念,把定义明确的、精细的、有一定逻辑意义和体系属性的概念称为科学概念。自发性概念相对于科学概念来说,一般是低水平的,可能会对学生学习科学概念产生干扰。
在教学时,教师应当正视自发性概念的存在,一方面要积极利用它,发挥其实践性、浅显性、通俗性等特点,为科学概念的建构作铺垫;另一方面要分析它对学生正确理解科学概念产生的干扰,设法提防、抑制或纠正。实际上,自发性概念和科学概念可以看成是概念形成的两极,即起点和终点。科学概念抽象性、概括性、精确性的特点需要以自发性概念具体性、特殊性的成分为依托,以便能借助经验事实,使概念变得容易理解。
如,学习“角”的概念时,学生可能把立体事物中的“角(角落)”与平面图形的“角”混淆,这就是学生在日常生活中形成的“角”概念对学习活动产生的干扰。在教学“角”概念时,教师应针对学生认识上的局限性,纠正他们原有理解上的错误,帮助他们建立正确的“角”概念。课件出示三角尺图片后,教师问:“你知道为什么叫它三角尺吗?”在学生回答“它有三个角”后,教师让学生指出三角尺的三个角,并引导:”看来,它是以角的个数来命名的。”同时,以课件闪烁的方式突显三角尺的三个角。接着,教师出示剪刀、练习本、钟面的图片,让学生指出这些物体面上的角后,闭上眼睛想一想角 是什么样的,再用手比画角的模样,然后看课件演示:剪刀、练习本、钟面三幅图渐渐淡去实物部分,留下三个角。教师指出这三个图形都是角,并引导学生观察它们有什么相同的地方,先同桌互相说一说,再全班交流。教师结合学生的发言指出:“尖尖,叫做这个角的顶点;直直的线,叫做这个角的边。”教师边讲解边借助课件闪烁出示角的顶点和边。最后,教师指名学生指一指屏幕上三个角的顶点和边,数一数角有几个顶点、几条边,并提炼出“角有一个顶点,两条边”。
在此课之前,学生对角的认识是在日常生活中积累的,是模糊的、肤浅的,非数学意义的。如何根植学生认知结构中原有的关于角的观念,将其重组和改造为数学层面的认识呢?教师借助学生非常熟悉的三角尺,激活学生的认知经验,让学生通过看图找、闭眼想、用手比、观看课件动态演示等活动,建立角的正确表象,并引导学生思考、交流这些角有什么相同的地方,实现对角的认识的提炼。
三、概念定义与概念意象
心理学研究表明,数学概念的心理表征在大多数情况下并非相应的形式定义,而是由多种成分组成的复合物;与形式定义的明确性、一义性、不变性、抽象性等特征相比,人们关于数学概念的心理表征具有一些不同的特征。因此,人们提出要明确区分概念定义与概念意象。
关于概念定义,有学者指出“概念定义是用来说明概念的一种词语形式”。在概念学习中,小学生获得的并不是那几句条文式的概念定义,而是丰富的、鲜活的概念意象。所谓概念意象,是指与所说的概念直接相联系的各种心理成分的总和,具有以下特征: ①丰富性。概念意象不仅指个体关于某一概念的心理表征,往往还包含多种不同的成分,如心智图像、对有关性质和过程的记忆等。概念意象的各个成分具有一定的相互联系,而不是互不相关的孤立部分。概念意象的这种丰富性与概念定义的贫乏性(概念定义仅仅是由若干词语构成的)构成了鲜明的对照。②个体性。概念意象从属于具体个人,并在很大程度上是因人而异的。概念意象的这种个体性与概念定义的客观性和一义性直接对立。③可变性。概念意象并非某种先验的、绝对不变的东西,而必然地会随着后天经验的积累,特别是学习活动发生一定的变化。
概念教学就是对概念的认识不断完善的过程,教师和学生通过不断地构建,最终达成一致,而这种一致建立在丰富的概念意象的基础之上,即实现概念意象与概念定义的整合。要指出的是,整合不是用概念意象替代概念定义,而是建立概念意象与概念定义之间相互依赖、相互促进的密切联系。概念意象建立在对概念本质的正确理解之上,就会因为有了相应的形式定义支撑而更精确、更深刻。形式定义因为有了概念意象的补充而变得丰富和生动,不再是一种空洞的定义。在概念教学中,教师要引导学生以概念意象作支撑理解概念定义,以概念定义中的本质属性为中心建立概念意象,使学生能用自己的数学理解表述概念,建立严密性与描述性相统一的数学概念。
如教学圆的半径和直径,要先梳理半径和直径这两个概念在学生头脑中的存在方式,思考应该帮助学生建立关于半径和直径的怎样的图式。教学《圆的认识》时,在学生画出一个半径为3厘米的圆后,某教师这样组织教学——
师:如果问你,这是一个多大的圆?该怎么说? 生:量它的直径就知道了。师:他刚才说了一个词,是什么? 生:直径。(教师板书“直径”。)师:什么叫直径呢? 生:从一个点向中心引一条直线。
生:从边缘画到它的对面。
生:把圆对折形成的一条线。
师:看来,现在让我们用语言来表述什么是直径,有点困难。如果用笔画,大家能画出来吗?大家试一试,画一条直径。(学生试画直径。)师:谁愿意到前面来展示一下你画的直径?(某学生展示画的直径,并介绍:从圆上的一,氛到另一点,而且通过圆心。)师:直径是一条—— 生:直线。
生:线段!师:为什么不能说是直线呢? 生:直线是无限长的,而线段的长度是有限的。
师:直径是线段。我们来找一找它的两个端点在哪儿?一个端点在——圆上,另一个端点——也在圆上,而且——通过圆心。
师:你知道这条直径长多少吗? 生:6厘米。(教师组织学生用直尺量一量。)师:这是一个直径为6厘米的圆。这个圆多大,还可以怎么说呢? 生:这是一个半径为3厘米的圆。
师:他的发言中说了一个词——半径。大家能画一条半径吗?(学生画半径,并展示、介绍所画的半径:半径是一条线段,它的一端在圆心,另一端在圆上。)从上面的教学片段可以看出,有些学生已经知道“半径”和“直径”这两个词,并且对它们有一定的认识,只是还处于知而难言或言而不准的状态,也就是说,学生已有 的关于半径和直径的概念意象还比较模糊。教师引导学生先用画的方式外化各自内心的想法,然后在交流的过程中用自己的理解建构对半径和直径的认识,并逐步借助形象的图示支撑,建立形式化的概念定义。
总之,在小学数学概念教学中,教师要把握教材中呈现的概念特点,充分认识学生已有的自发性概念的现实与作用,促进学生建立概念定义与概念意象的融合体。
对小学数学教学“情境创设”的“冷”思考
新课改为小学数学教学改革带来了生机与活力:全新的教育理念给教师的活动注入了新的动力;活跃的课堂气氛增强了学生的自主空间;生活化的情境创设改变了原有单调而又枯燥的模式。但随着新课程改革的不断深入,在热闹、自主的背后也隐藏着一些深层次的问题,小学数学教学情境的创设也存在着不少误区,值得冷静思考。
误区一:凭空想象的多,而非现实生活中所必然存在的——内容脱离“现实性”
【案例】《梯形面积的计算》教学片段 出示情境:小明不小心把装饰橱上的一块梯形玻璃打碎的情境。
师:橱上的玻璃打碎了该怎么办呢? 生:配一块新的玻璃。
师:配一块新玻璃需要考虑什么呢? 生:(沉默)要考虑这块玻璃的面积。
师:今天,我们就来学习梯形的面积。
【分析】玻璃打碎后重配,这是生活中常见的现象,教者试从配玻璃这个生活现象来引入新课,激发学生探索的热情,这也充分体现了新课程的理念。但细细回味,这个情境“有悖常理”,在我们生活中,配一块玻璃需要知道面积吗?一般我们需要的是所配玻璃的边长、形状。老师在提出“配一块新玻璃需要考虑什么”时,学生沉默了,但又马上意会了老师的用意说出了“面积”。所以利用这个情境引出“梯形的面积”就显得比较牵强了。我们也不难发现,这种凭空想象的情境,虽然关注了生活,来自于学生的生活,却违背了生活,脱离了“现实性”,容易给学生带来错误的理解。
【思考】数学课程标准中提出:“让学生在现实情境中体验和理解数学。”“现实情境”既可以是学生在自己的生活中能够见到、听到、感受到的生活现实,也可以是学生在学习过程中的知识现实和思维现实。从这个意义上讲,现实情境也并不都是一个个实实在在的生活背景。如果处处强调与生活联系,凭空想象而非现实生活中的一些情境,反而会导致一些教学情境庸俗化,甚至误导学生。儿童也并不是一张白纸,可以让成人随意涂画,他们有着自己对自然界、社会和他人的感性认识,并以自己的生活经验来解读生活中的数学现象。为此,在教学中,我们要创设与学生现实生活密切相关的、富有时代气息的真实情境。引导学生借助身边的事物来认识数学、理解数学,这样才能使学生在积极的情感中更有效地建构知识;才能有利于培养学生的真实情感和态度.有利于学生形成正确的价值观和世界观。
误区二:牵强附会的多,而非学生所亲身经历和喜闻乐见的——素材缺乏“趣味性”
【案例】《折线统计图》教学片段 多媒体出示:某日一些股票的走向图。
师:仔细观察这张“折线统计图”,9时30分股票的价格是多少?它在怎样变化? 生:有两条线,我不知道看哪一条? 师:看蓝色这条折线。
生:9时30分时,它是12元3角,它在忽上忽下。师:看了它上午的表现,你估计它下午有怎样的走势? „„
【分析】股票的走势图中,的确存在着各种折线统计图,教师煞费苦心地让学生观察这些花花绿绿的股票统计图,想让学生进一步巩固、掌握折线统计图,体会折线统计图在生活中的价值,可学生偏偏不领情,学生看得糊里糊涂,什么也说不上来,更不要说有什么兴趣了。其实,这也并不奇怪,股票对于小学生来说是多么陌生,就算是教师,一般也不太熟悉。而且在股票的走势图中有很多的术语,学生能理解吗?股票的走势忽上忽下,受各种因素的影响,学生能预测下午的走势吗?这种脱离学生实际、并非学生所亲身经历和喜闻乐见的情境,只会让学生失去学习的兴趣和童真。
【思考】美国心理学家布鲁纳指出:“学习最好的刺激乃是对所学知识的兴趣。”兴趣是学生学习的基础,是获取知识的良好开端,是学习的最大动力。为此,要让学生真正成为学习的主人,能积极主动地参与到学习中来,我们就应从儿童的角度来思考,以学生感兴趣的事情为背景来创设充满童趣、充满童真的情境。当然,充满趣味性的情境也并不是一个幼稚的故事,空洞的幽默,而应符合儿童的认知心理、年龄特征和认知世界的真实。处于不同年龄、不同学段的小学生,对情境的兴趣指向也存在差异性。低年级的学生对美丽生动的故事、活泼有趣的游戏、直观形象的表演特感兴趣,而到了中高年级,他们逐渐对自主学习、合作交流的情境感兴趣,这一学段就要用数学自身的魅力去吸引学生,尽量让他们获得情感体验,感受数学的力量,从而促进学生自主探索的动力。
误区三:舍本逐末的多,为了刻意追求生活化的内容而丢掉了数学的本味——情境欠缺“数学味”
【案例】《百分数的意义和写法》教学片段
师:同学们,你们喜欢看篮球赛吗? 生:喜欢。
(播放一段篮球比赛录像)师:说说你最喜欢的篮球队员。
生1:我喜欢姚明,姚明太有名了,是我们中国人的骄傲。
生2:我喜欢王治郅,他打中锋的,也很有名。
生3:我喜欢易建联,他打球很厉害,转身跳投的动作很优美。
生4:我喜欢巴特尔,他也经常在NBA赛场上打球。
【分析】教师为了引出王治郅、姚明、巴特尔中,谁的进球率高,创设了高年级学生喜欢的篮球比赛情境,学生的兴趣高涨,各自介绍了自己喜欢的明星。但学生经过了好几分钟还在议论着“喜欢谁”,教师并没有及时引导学生进入数学的实质,仅仅停留在生活的层面。这样的情境似乎有点喧宾夺主,关注了生活化,而失去了数学味。所以创设情境,要恰到好处,要用在非用不可的关键处,不能为了刻意追求生活化的情境,而舍本逐末,丢掉了数学的本味。
【思考】数学源于生活,生活是学生数学现实的重要源泉。所以我们创设的情境应贴近学生的生活,它不仅能为学生提供一个主动参与数学活动的经验平台,同时也架设了一座联系数学与生活的桥梁,还能让学生体验到数学在生活中的广泛应用。但数学并不等同于生活,而是高于生活,数学不只是生活的简单“复制”,而是对生活的再加工。实践中,如果把情境创设等同于情境的生活化,一味追求数学与生活的联系,就可能会导致学生的生活被人为地拓展和提升,从而阻碍情境内在的数学功能的发挥。为此,我们在创设数学情境时,不仅要注重情境的生活化,同时还要注重情境的数学味。教师要及时引导学生在情境中发现其中所蕴含的数学信息,进而提出相关的数学问题,经历从实际问题到数学问题、从具体问题到抽象概念的全过程,从而使学生的生活经验上升为数学知识,并能把数学知识运用于生活。
误区四:热热闹闹的多,而非致力个数学的应用性和学习过程的探索性——活动缺少“思考性”
【案例】《圆的周长》教学片段
学生动手测量直径1分米的硬纸圆的周长。
师:在测量中,你们发现了什么? 生1:硬纸圆在米尺上滚动了3分米多一些。
生2:圆的直径1分米,圆的周长是3分米。
生3:我们测出的圆的周长3分米不到点。
师:直径1分米的硬纸圆的周长到底是多少呢? 学生争论,教师马上用课件在屏幕上分别演示直径为1分米、2分米的圆在米尺上滚动一周,提问现在你们有什么发现? 【分析】创设动手操作的情境,让学生在亲身的探索中获得“圆的周长是直径的3倍多一些”的结论,这也符合了学生的学习方式,但学生在交流中出现不同结论时,教师并没有充分利用好这一生成资源,引导学生寻找原因形成统一结论,而是用媒体的动态演示来平息争论,学生只成了教师的一个忠实的观众。这样的情境中,学生的动手操作、自主探索的价值能体现吗?这样的情境有思维价值吗?只能是表面的热闹,成为一种摆设而已。情境的创设不在于它的外形,而在于能否诱发学生思考的兴趣和进行深层次的探索和思考。
【思考】数学情境的创设应该是使学生更快、更全面的、更深刻的理解数学知识和促进学生思维的发展,而并不是数学课堂所追求的最终目的。心理学家皮亚杰曾说过:“思维是从动作开始的,切断了动作和思维的联系,思维就得不到发展。”为此,数学情境的创设应致力于学生对知识的亲身经历和体验,以思维为核心,不然,情境的创设就会变成空中楼阁。创设中,教师要深入分析内容,把握数学概念与数学本质,创设适合学生的探究起点,能启发、激励学生数学思考,真正体现数学学习的内在价值的情境;活动中,要为学生提供探索、思考的空间,要适时予以必要、有价值的引领,避免学生在活动中热闹非凡却离题万里的现象,引导进行更深层次的探索与思考。只有这样学生的探索才有价值,学生才会得到发展。
总而言之,我们在大力倡导创设情境的今天,澄清认识、走出误区,是十分必要的。我们要以“现实性”为情境创设的基本前提,以“趣味性”为情境创设的动力,以“数 学味”为情境创设的根本保证,以“思考性”为情境创设的价值导向来创设情境,才能创设出有效、有价值的情境。
第三篇:小学数学课堂有效教学初探
小学数学课堂有效教学初探
数学课程标准要求学生学有价值的知识,有实用性的知识,促使学生的发展,提高课堂教学的有效性。由此可见,小学数学课堂的有效教学要结合学生的生活实际和教材内容,认真设计课堂教学过程,选择学生有兴趣的人、事、物、活动来创设教学情境,组织丰富多彩的学习活动,充分调动学生学习的积极主动性。
一、课堂有效教学的必要手段――创设情境
托尔斯泰说:“成功的教学所需要的不是强制,而是激发学生的兴趣。”因此在数学课堂教学中兴趣是最好的老师,教师要结合学生的生活实际和教材内容,以学生有兴趣的事物、故事、游戏、活动,创设生动形象的、与教材内容相关的教学情境,激发学生的学习兴趣,提高课堂教学的有效性。
二、课堂有效教学的灵魂――多彩的学习活动
课堂上学生的学习活动,是课堂有效教学的核心环节。我在教学“梯形的面积”时,精心设计了以下活动。
1.动态演示,感悟数学的转化思想
上课伊始,让学生复习前面学过的平行四边形、三角形的面积公式是怎样推导出来的,并通过课件演示,让学生进一步理解平行四边形面积公式的推导方法是把平行四边形沿着一个顶点所作的高剪下来,平移到另一边,拼成一个长方形;或是任意作平行四边形的一条高,沿着高剪下来,平移到另一边也可以拼成长方形。这是把平行四边形面积转化成长方形面积来计算。三角形的面积公式的推导是用两个完全一样的锐角三角形、直角三角形、钝角三角形拼成一个平行四边形,三角形面积是所拼成平行四边形面积的一半得到的。这是把三角形面积转化成平行四边形面积来计算。通过复习勾起学生对已有知识的回忆,进一步体会数学的转化思想,起到了温故知新的效应。
2.动手操作,推导梯形面积公式
提出问题:梯形的面积能否转化成已学过的图形面积来计算呢?你又准备把它转化成什么图形的面积来计算呢?让学生进行小组讨论、交流,然后一起用课前准备好的梯形纸片进行实验。学生的操作归结为四种:①把两个完全一样的一般梯形拼成一个平行四边形;②把两个完全一样的直角梯形拼成一个平行四边形;③把两个完全一样的等腰梯形拼成一个平行四边形;④用两个任意的梯形拼不成一个平行四边形。学生汇报展示后,教师再用课件演示“两个完全一样的梯形可以拼成一个平行四边形”,引导学生分析比较,寻求突破点。最后推导出梯形面积公式。
3.讨论交流,加深理解
(1)把两个完全一样的梯形拼成一个平行四边形,什么变了,什么没有变?
(2)拼成的平行四边形底和高与梯形上底、下底、高有何关系?
(3)拼成的平行四边形的面积和一个梯形的面积有何关系?
通过课堂上演示、操作、展示、交流等师生互动、生生互动,学生不仅能积极主动地参与学习,还学会了新知识,达成了预期目标。
三、课堂有效教学的保证――多样化练习
设计多样化练习是课堂有效教学的原则和保证。
在 “质数和合数”一课时,我制作了这样的一个练习课件:把班上的座位表出示在屏幕上,学生按问题说出座号,被说出座号的学生就站立起来。①座号是最小质数的;②座号是最小合数的;③座号既是合数又是奇数的;④座号是质数的;⑤座号是合数的;⑥座号既不是质数也不是合数的;⑦站立两次的;⑧只站立一次的。让学生兴趣盎然地参与学习,把课堂气氛推向了高潮。
在教学”分数的基本性质”的第一课时时,我设计了“搭火车”的练习题:每组第一个同学说一个分数,后面的每个同学说出和这个分数相等的一个分数,说对的就能搭上火车,说不对的就下一站搭车。这样的练习使学生思维的灵活性得到了充分的培养。
总之,在数学课堂教学中,教师用新课程理念指导教学,认真备课,精心设计教学环节,采用先进的教学手段,改变学生的学习方式,创设和谐的课堂氛围,调动学生学习的积极性,就一定能提高小学数学课堂的有效性。
(责编 金 铃)
第四篇:浅谈初中数学课堂有效教学
浅谈初中数学课堂有效教学 刘清泸
初中数学课堂教学是一种有计划、有目的、有组织的学习活动,是师生之间,学生之间交往互动与共同发展的过程。课堂教学是学生在校期间学习科学文化知识的主阵地,也是对学生进行思想品德教育的主渠道,课堂学习是学生获得知识与技能的主要途径,因此,教学质量如何,主要取决于课堂教学质量的好坏。
关键词:兴趣,教学方法,机智教学。
怎样才能较好地提高初中数学课堂教学质量?我认为:必须优化课堂结构、激发学生的学习兴趣,改进教学方法,重视数学机智教学。
一、以生活化情境激发学生学习兴趣
兴趣是学习的最佳营养剂和催化剂,学生对学习有了兴趣,学习就能取得事半功倍的效果,新课程标准也更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,从学生已有的生活经验出发,设计学生感兴趣的生活素材,以丰富多彩的形式展现给学生,使学生感受到数学来源于生活,又应用于生活。
我们知道,引入新课一般有开门见山的直导式,有观察规律的发现式,有实验操作的演算式,有具有诱惑力的问答式等,在各种不同的方式中,都可以创设与课本有关的问题或通过诱导的方式提出问题。例如:在宋双辉老师的引入分式方程的应用一节课时,就采用了直接引入法。
创改问题情境,激发学生好奇心,并由此产生求知欲望与热情,对课堂学风和理解内容起到了良好的作用。结合进行学习目的教育,可以激发学生的学习需要,培养学生的思维与兴趣。学习的兴趣浓厚,思维活跃,精力集中,课堂效果必然得到提高。如李彦虎老师的游戏公平吗一节时设计了小明和小丽都想去看电影,但只有一张票,这是提出问题如何设计一个游戏决定谁去。
二、认真钻研教材,提高备课的有效性
有效的备课应是备而有用的,应有利于教师落实地教、巧妙地教,促进学生学得快、学得扎实。有效备课重要的根据学生个体,教师的钻研、思考,采用合适的教学方式及手段。我力争这样备课:
一、确定目标:这节课从不同角度来诠释一次函数主要中的面积问题。
二、确定教材:要教什么内容,教学重点是什么;
三、关注学生:教到什么程度,教学难点是什么,用什么方法教,要让每个学生上了这节课后,至少知道这节课是学数学,学了数学的哪些知识。如果教师一味地追求难度、深度、广度,而一部分学生
却跟不上来,势必他们就会把精力转移到与上课无关的事中去(开小差);
四、课后反思:“精炼提升",根据课堂的实际情况写出课后反思,调整自己的教学策略,不断提升自己的教学艺术.可见备学生是提高有效课堂教学的一个重要方面。
三、优化课堂结构以提高课堂时间的利用率
数学课堂教学一般有复习、引入、传授、反馈、深化、小结、作业布置等过程,如何恰当地把各部分进行搭配与排列,设计合理的课堂教学层次,充分利用课堂的时间,是初中数学课堂有效教学的重要因素。
设计课堂教学层次还要注意课堂容量大小,当课堂容量较大时,要保证讲清重点,突破难点,其他的可以指明思路,指导学生自学完成。当课堂容量不大时,可安排学生分析讨论,讲一些深化练习,进行比较提高。这样,课堂结构紧凑,时间得到充分利用,有利于实现课堂教学目标。
四、优化教学方法以提高学生对知识的吸收率
教学方法是教师借以引导学生掌握知识,形成技巧的一种手段,要提高课堂教学效果,必须有良好的教学方法。
具体一堂课,到底选用哪种教学方法,必须根据教学目的,教学内容和学生已有知识水平考虑,通常所采用的都是课授与练习相配合的方法。例如,在讲“概率”时,应采取游戏演示,学生动手操作,合作交流、自主探究学习。这样根据内容不同,采用不同教学方法使知识了解、透彻,课堂吸收好。
五、增强数学教学机智以提高发散思维能力的优化率
课堂教学中,要引导学生对知识由理解到掌握,进而能灵活运用,变为能力,最大限度地发挥学生的思维才智,以求得最佳教学效果,这就要求在教学中充分发挥教学机智。数学教学机智主要有启发联想、构思多解、运用反例、及时调节、渗透数学思想与方法等。
在课堂教学中,培养学生的发散思维能力一般可以从以下几个方面入手,训练学生对同一条件,联想多种结论,改变思维角度,进行复式训练,培养学生个性,鼓励创优创新;加强一题多解、一题多变、一题多思等,特别是近年来,随着开放题的出现,不仅弥补了以往习题发散思维的不足,同时也为发散思维注入新的活力,例如:在吴丽娜老师设计的“摸到红球的概率”这节课时,设计一道摸球游戏的开放题如:用8个除颜色外完全相同球设计一个摸球游戏,(1)以使摸到白球的概率为1/2,摸到红球的概率为 1/2(2)使摸到白球的概率为1/2,摸到红球和黄球的概率都是1/4
六、课堂教学结构,实行分层次教学
课堂教学结构的安排切实抓好五个环节:1明确教学目标,创设问题情境,把问题作为教学的出发点;
2、指导学生开展尝试活动,启发他们发现问题,提出问题,分析问题和解决问题;
3、围绕教学目标,组织变试训练,注重一题多解,以提高训练效率;
4、及时评价,实现多途径、多方位、多形式的反馈矫正;5总结归纳,深化目标,引导学生概括所学知识、方法,并联系已有的知识形成新的知识结构
教学中可采取“低起点,多已层次”的教学方法,即适当放低教学起点,适当增加教学层次,尽可能提高课堂教学效益。已知直线y=ax+ 1分别与x轴和y轴交于B、C两点,直线y=-x+b与x轴交于点A,并且两直线交点P为(2,2)
(1)求两直线解析式;(2)求四边形AOBP 学生自己完成。教师点思路,讲方法,形成思路。最
后由学生讲自己的解题思路,让选择适合自己的解题 方法。从而归纳归纳出解题方法:在直角坐标系中求面积问题,往往化归到有一条边在坐标轴上的三角形(规则图形)的面积。
实行分层教学,调整课堂结构,实施有效教学,起到了巩固“双基”和培优的作用。
总之,课堂教学是教师与学生的双边活动,要提高中学数学课堂教学质量,必须树立教师是主导,学生是主体的辩证观点。精心设计教案,让学生在“做中学”在“练中悟”,注重学生优秀思维品质的培养,变被动为主动,变学会为会学,这样就一定能达到传授知识,培养能力的目的,使初中教学课堂教学在单位时间内获得最大的教学成效。
第五篇:数学课堂有效教学心得
高中数学课堂有效教学心得
摘要:有效课堂教学能够使教师花尽可能少的时间、精力和物力投入,取得尽可能好的教学效果。经过一个多月的课堂教学实践,营造高效的课堂教学可以从以下几方面着手:1.建立和谐的师生关系;2.坚持认真备课优化课堂情境的设计;3.营造轻松愉快的课堂氛围;4.调动学生上课的积极性;5.采取适当的教学方法。关键字:高效课堂 教学心得
有效课堂教学是指教师以尽可能少的时间、精力和物力投入,取得尽可能好的教学效果,从而完成指定的教学目标,有效教学追求社会化、人性化教育,强调有效果、有效率、有效益。有效课堂教学的表现:课堂上教师能自由驾驭课堂,收放自如:要动能动,要静能静,要思能思,要看能看,要停能停,学生没有一个睡觉、说话、开小差等游离于课堂之外的现象,课后每个学生都有学习的收获,都有学习的快乐和成就感。
实习过程中,深切的体会到有效的课堂教学是如此的重要。因为我所在的实习学校是一所中等学校,学生成绩不是很好。高一共有5个班,重点班有2个。而我在的高一(3)班是普通班,学生德育基础、纪律观念薄弱。多数学生成绩基础处于中等或者中下层次,学习能力弱,接受能力差。因此刚开始在(3)上课,有睡觉的学生,有听课听不懂干脆不听的学生。整个班的课堂气氛不活跃,一个班能有一半的学生听课已经很不错了。因此,我总在想办法如何让课堂气氛更活跃,学生愿意听课并听得懂。总的来说,就是让课堂教学更高效。经过快两个月的课堂教学实践,要提高数学课堂教学的有效性,我认为可以从以下几方面着手:
1.建立和谐的师生关系。
1.1和谐的师生关系是有效课堂教学的前提,教师善意的批评、提醒能被学生接受和理解,甚至感激,如果师生关系不和谐,那么善意的批评、提醒则不被学生接受和理解,有时甚至导致师生冲突,影响课堂教学。
1.2 一位老师,如果太过严厉,学生反而有逆反心理。但是,如果太放松学生,学生就不怕你,从而也不听你的话。因此,一个老师要做到真心为学生着想,关爱自己的学生。做事认真负责,让学生感受到你对他的好,对他的期待,从而让学生尊重你,愿意听你的话和听你的课。2.坚持认真备课优化课堂情境的设计 “工欲善其事,必先利其器”,教师要通过精心的备课,让学生用尽可能少 的时间去获取尽可能多的知识和能力,要适时调整自身的教学行为而达到无为而无不为的教学境地。因此,教师在备教案的时候,要做到
2.1 结合学生的实际情况去准备教案。还要多考虑上课时候可以出现的情况。
这样我们才能以防万一
2.2 每写一份教案之前,要清楚这节课的知识点有哪些,最好先根据课本,把课本的知识点罗列出来,再看看有哪些需要补充的课外知识点。接着明确这节课的重点,难点。
2.3 知道要讲的内容后,就要想办法突破难点。在讲到比较抽象的知识点的时候,想一想这个知识点可以用生活中哪些同学们比较熟悉的例子,化抽象为具体事例,让同学们更容易理解。例如:在讲函数的定义时,(函数:在)举例子:人照镜子,镜子中的人与真人是一一对应的关系。人笑,镜中的人就笑,人哭,镜中的人就哭。镜中的人随着人本身情绪的变化而变化。因此,镜中的人是真人的函数。有时候,为了更形象地表达某些知识,可以稍微画一下简笔画,(例如:初二的数学课本中的一道题:弹簧原长为3厘米,每增加1千克的物体,弹簧伸长0.5厘米,求物体的增加量x与弹簧伸长量y的关系?这时,我们可以把弹簧的原长和挂物体后的长度在黑板上画简图)运用图形结合的方式,让学生更容易明白。
2.4 在写教学过程的时候,要清楚哪一个知识点接着哪个知识点。哪些知识点需要叫学生上背板写过程,哪个环节让学生口答。
总的来说,每一份教案都要认真,特别要注意细节上的问题。写教案的过程首先是研读课本,清楚本节课的重点、难点。一份教案至少要包括课题,教学内容,教学目标,师生互动,设计意图,小结,课后作业或练习。3.营造轻松愉快的课堂氛围
教师要营造一个轻松愉快的课堂氛围,就要转变传统观念,打破正统的教学方式,有老师认为数学是一门严谨的学科,所以教师的语言表达就得非常的精炼,不能说一个与教学无关的字,我却不认同,试想本来就单调枯燥的数学,再加上正统的教师,呆板一平如镜的语言,我们那活泼好动的学生能坚持45分钟吗?所以教师口头语言的抑扬顿挫、肢体语言的形象生动、甚至搞笑,都能及时唤起学生注意力集中,一些重要的话语往往在语言的波峰或低谷时说出会更有效果。所以课堂里只要有一两句风趣的话或者一两个幽默的动作,就足以引起学生们的兴奋,然后再将他们的兴奋 点迁移到学习上来。此外,还要经常性的叫同学上来回答问题,回答错误了也没关系,鼓励他们这次回答错误,老师、同学帮你纠正错误,那么你就会永远记牢,下次就不会做错了。经常叫学生站起来回答问题,不仅可以让部分不听课或睡觉的同学因为怕自己被叫起来回答问题而不得不听课,还可以带动课堂气氛。学生也能够培养敢于质疑,提出问题的习惯。提高课堂效率。
4.调动学生上课的积极性
调动学生上课的积极性,对于高效课堂教学也是必要的。数学相对于其他学科,逻辑思维较强且枯燥乏味,容易让学生乏味甚至厌学。仅有教师的“单相思”,而没有学生“想学”的心理基础,高效课堂也就无从谈起。因此如何调动学生的积极性成了每个教师必须思考的问题。下面说一下本人实习期间,针对高一(3)班学生上课回答问题不积极,课堂气氛比较沉闷所采取的措施:跟学生商量,针对回答问题不积极这种情况。采用小组加分的形式。将班级分为8个小组,一组6—8个人。最后,当我实习快要结束的时候,选出加分最多的前三组进行奖励。奖品保密,但是不会让你们失望。高一(3)班小组加分减分规则
a.上课主动举手并被老师叫到,回答意思相近,每组每次加1分,全错不扣分。b.课堂上认真听讲,大声发言,回答正确的组,每次加1分。(错的不加分)c.每次作业(资料)全交的组,最后加3分。每次作业(资料)能够自己完成的组,加10分。
d.每组组长认真记录自己组的加分情况,课后到我这登记。
e.上课聊天,影响老师上课,老师提醒一次减1分,之后被老师警告的减2分。从今天开始,你们就是一个团队,团队的荣誉与共,都是与你有关系。组员有责任和义务跟自己的队员一起讨论问题,一起回答问题,互帮互助,互相监督。
自在高一(3)班采取了小组加分政策后,班上学生上课的积极性明显增加。有些听不懂的学生,为了能够让小组加分,即使做错了,也会把自己的答案写上黑板上。睡觉的同学觉得这样子很有意思,因此也不睡觉了。虽然不是很认真听课,起码可以不睡觉看其他同学为了加分,是如何争先恐后的上黑板做题或答题。5.采取适当的教学方法
俗话说:“教学有法教无定法贵在得法”。教学中绝对的、万能的、最好的教学方法是没有的,但不管采用何种方法,都应落脚于是否调动了学生的学习积极性,是否产生良好的教学效果,否则任何方法都是失败的。计算、概念、几何、应用题等不同的教学内容具有不同的特点,教师选用的教学方法必须适宜于内容的不同特点,才能提高教学效果。
上面是本人实习后对课堂教学的一点心得体会。但总的来说,课堂教学还是要根据学生的实际情况就行调整。以学生为教学中心是基础。真心关爱学生是前提。